1
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
2
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Matzinger M, Schmücker A, Yelagandula R, Stejskal K, Krššáková G, Berger F, Mechtler K, Mayer RL. Micropillar arrays, wide window acquisition and AI-based data analysis improve comprehensiveness in multiple proteomic applications. Nat Commun 2024; 15:1019. [PMID: 38310095 PMCID: PMC10838342 DOI: 10.1038/s41467-024-45391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Comprehensive proteomic analysis is essential to elucidate molecular pathways and protein functions. Despite tremendous progress in proteomics, current studies still suffer from limited proteomic coverage and dynamic range. Here, we utilize micropillar array columns (µPACs) together with wide-window acquisition and the AI-based CHIMERYS search engine to achieve excellent proteomic comprehensiveness for bulk proteomics, affinity purification mass spectrometry and single cell proteomics. Our data show that µPACs identify ≤50% more peptides and ≤24% more proteins, while offering improved throughput, which is critical for large (clinical) proteomics studies. Combining wide precursor isolation widths of m/z 4-12 with the CHIMERYS search engine identified +51-74% and +59-150% more proteins and peptides, respectively, for single cell, co-immunoprecipitation, and multi-species samples over a conventional workflow at well-controlled false discovery rates. The workflow further offers excellent precision, with CVs <7% for low input bulk samples, and accuracy, with deviations <10% from expected fold changes for regular abundance two-proteome mixes. Compared to a conventional workflow, our entire optimized platform discovered 92% more potential interactors in a protein-protein interaction study on the chromatin remodeler Smarca5/Snf2h. These include previously described Smarca5 binding partners and undescribed ones including Arid1a, another chromatin remodeler with key roles in neurodevelopmental and malignant disorders.
Collapse
Affiliation(s)
- Manuel Matzinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | - Anna Schmücker
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ramesh Yelagandula
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Laboratory of Epigenetics, Cell Fate & Disease, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Gabriela Krššáková
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | - Rupert L Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
4
|
Mayer RL, Mechtler K. Immunopeptidomics in the Era of Single-Cell Proteomics. BIOLOGY 2023; 12:1514. [PMID: 38132340 PMCID: PMC10740491 DOI: 10.3390/biology12121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Immunopeptidomics, as the analysis of antigen peptides being presented to the immune system via major histocompatibility complexes (MHC), is being seen as an imperative tool for identifying epitopes for vaccine development to treat cancer and viral and bacterial infections as well as parasites. The field has made tremendous strides over the last 25 years but currently still faces challenges in sensitivity and throughput for widespread applications in personalized medicine and large vaccine development studies. Cutting-edge technological advancements in sample preparation, liquid chromatography as well as mass spectrometry, and data analysis, however, are currently transforming the field. This perspective showcases how the advent of single-cell proteomics has accelerated this transformation of immunopeptidomics in recent years and will pave the way for even more sensitive and higher-throughput immunopeptidomics analyses.
Collapse
Affiliation(s)
- Rupert L. Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
5
|
Raval S, Douglas P, Laurent D, Khan MF, Lees-Miller SP, Schriemer DC. High-Efficiency Enrichment by Saturating Nanoliters of Protein Affinity Media. Anal Chem 2023; 95:15884-15892. [PMID: 37851921 PMCID: PMC11234515 DOI: 10.1021/acs.analchem.3c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Affinity-purification mass spectrometry (AP-MS) is an established technique for identifying protein-protein interactions (PPIs). The basic technology involves immobilizing a high-specificity ligand to a solid-phase support (e.g., an agarose or magnetic bead) to pull down protein(s) of interest from cell lysates. Although these supports are engineered to minimize interactions with background protein, the conventional method recovers mostly nonspecific binders. The law of mass action for dilute solutions has taught us to use an excess of beads to capture all target proteins, especially weakly interacting ones. However, modern microbead technology presents a binding environment that is much different from a dilute solution. We describe a fluidic platform that captures and processes ultralow nanoliter quantities of magnetic particles, simultaneously increasing the efficiency of PPI detection and strongly suppressing nonspecific binding. We demonstrate the concept with synthetic mixtures of tagged protein and illustrate performance with a variety of AP-MS experiment types. These include a BioID experiment targeting lamin-A interactors from HeLa cells and pulldowns using GFP-tagged proteins associated with a double-strand DNA repair mechanism. We show that efficient extraction requires saturation of the solid-phase support and that <10 nL of beads is sufficient to generate comprehensive protein interaction maps.
Collapse
Affiliation(s)
- Shaunak Raval
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - Pauline Douglas
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
| | - Danny Laurent
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
| | - Morgan F. Khan
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
| | - David C. Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada, T2N-4N1
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| |
Collapse
|
6
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
7
|
Gebreyesus ST, Muneer G, Huang CC, Siyal AA, Anand M, Chen YJ, Tu HL. Recent advances in microfluidics for single-cell functional proteomics. LAB ON A CHIP 2023; 23:1726-1751. [PMID: 36811978 DOI: 10.1039/d2lc01096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-cell proteomics (SCP) reveals phenotypic heterogeneity by profiling individual cells, their biological states and functional outcomes upon signaling activation that can hardly be probed via other omics characterizations. This has become appealing to researchers as it enables an overall more holistic view of biological details underlying cellular processes, disease onset and progression, as well as facilitates unique biomarker identification from individual cells. Microfluidic-based strategies have become methods of choice for single-cell analysis because they allow facile assay integrations, such as cell sorting, manipulation, and content analysis. Notably, they have been serving as an enabling technology to improve the sensitivity, robustness, and reproducibility of recently developed SCP methods. Critical roles of microfluidics technologies are expected to further expand rapidly in advancing the next phase of SCP analysis to reveal more biological and clinical insights. In this review, we will capture the excitement of the recent achievements of microfluidics methods for both targeted and global SCP, including efforts to enhance the proteomic coverage, minimize sample loss, and increase multiplexity and throughput. Furthermore, we will discuss the advantages, challenges, applications, and future prospects of SCP.
Collapse
Affiliation(s)
- Sofani Tafesse Gebreyesus
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | | | - Asad Ali Siyal
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Mihir Anand
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Shao X, Huang Y, Wang G. Microfluidic devices for protein analysis using intact and top‐down mass spectrometry. VIEW 2022. [DOI: 10.1002/viw.20220032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Xinyang Shao
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing China
| | - Yanyi Huang
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences Peking University Beijing China
| | - Guanbo Wang
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
| |
Collapse
|
9
|
Li W, Chaihu L, Jiang J, Wu B, Zheng X, Dai R, Tian Y, Huang Y, Wang G, Men Y. Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry. Anal Chem 2022; 94:7520-7527. [PMID: 35584038 DOI: 10.1021/acs.analchem.2c00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Characterization of protein higher-order structures and dynamics is essential for understanding the biological functions of proteins and revealing the underlying mechanisms. Top-down mass spectrometry (MS) accesses structural information at both the intact protein level and the peptide fragment level. Native top-down MS allows analysis of a protein complex's architecture and subunits' identity and modifications. Top-down hydrogen/deuterium exchange (HDX) MS offers high spatial resolution for conformational or binding interface analysis and enables conformer-specific characterization. A microfluidic chip can provide superior performance for front-end reactions useful for these MS workflows, such as flexibility in manipulating multiple reactant flows, integrating various functional modules, and automation. However, most microchip-MS devices are designed for bottom-up approaches or top-down proteomics. Here, we demonstrate a strategy for designing a microchip for top-down MS analysis of protein higher-order structures and dynamics. It is suitable for time-resolved native MS and HDX MS, with designs aiming for efficient ionization of intact protein complexes, flexible manipulation of multiple reactant flows, and precise control of reaction times over a broad range of flow rates on the submicroliter per minute scale. The performance of the prototype device is demonstrated by measurements of systems including monoclonal antibodies, antibody-antigen complexes, and coexisting protein conformers. This strategy may benefit elaborate structural analysis of biomacromolecules and inspire method development using the microchip-MS approach.
Collapse
Affiliation(s)
- Wen Li
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jialu Jiang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bizhu Wu
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuan Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ye Tian
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yanyi Huang
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Guanbo Wang
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Yongfan Men
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Wen Y, Xie D, Liu Z. Advances in protein analysis in single live cells: principle, instrumentation and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Mader M, Rein C, Konrat E, Meermeyer SL, Lee-Thedieck C, Kotz-Helmer F, Rapp BE. Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene. MICROMACHINES 2021; 12:1348. [PMID: 34832759 PMCID: PMC8618114 DOI: 10.3390/mi12111348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Polystyrene (PS) is one of the most commonly used thermoplastic materials worldwide and plays a ubiquitous role in today's biomedical and life science industry and research. The main advantage of PS lies in its facile processability, its excellent optical and mechanical properties, as well as its biocompatibility. However, PS is only rarely used in microfluidic prototyping, since the structuring of PS is mainly performed using industrial-scale replication processes. So far, microfluidic chips in PS have not been accessible to rapid prototyping via 3D printing. In this work, we present, for the first time, 3D printing of transparent PS using fused deposition modeling (FDM). We present FDM printing of transparent PS microfluidic channels with dimensions as small as 300 µm and a high transparency in the region of interest. Furthermore, we demonstrate the fabrication of functional chips such as Tesla-mixer and mixer cascades. Cell culture experiments showed a high cell viability during seven days of culturing, as well as enabling cell adhesion and proliferation. With the aid of this new PS prototyping method, the development of future biomedical microfluidic chips will be significantly accelerated, as it enables using PS from the early academic prototyping all the way to industrial-scale mass replication.
Collapse
Affiliation(s)
- Markus Mader
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Christof Rein
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Eveline Konrat
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Sophia Lena Meermeyer
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, 30419 Hannover, Germany; (S.L.M.); (C.L.-T.)
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, 30419 Hannover, Germany; (S.L.M.); (C.L.-T.)
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Bastian E. Rapp
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
12
|
Santos-Barriopedro I, van Mierlo G, Vermeulen M. Off-the-shelf proximity biotinylation for interaction proteomics. Nat Commun 2021; 12:5015. [PMID: 34408139 PMCID: PMC8373943 DOI: 10.1038/s41467-021-25338-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Proximity biotinylation workflows typically require CRISPR-based genetic manipulation of target cells. To overcome this bottleneck, we fused the TurboID proximity biotinylation enzyme to Protein A. Upon target cell permeabilization, the ProtA-Turbo enzyme can be targeted to proteins or post-translational modifications of interest using bait-specific antibodies. Addition of biotin then triggers bait-proximal protein biotinylation. Biotinylated proteins can subsequently be enriched from crude lysates and identified by mass spectrometry. We demonstrate this workflow by targeting Emerin, H3K9me3 and BRG1. Amongst the main findings, our experiments reveal that the essential protein FLYWCH1 interacts with a subset of H3K9me3-marked (peri)centromeres in human cells. The ProtA-Turbo enzyme represents an off-the-shelf proximity biotinylation enzyme that facilitates proximity biotinylation experiments in primary cells and can be used to understand how proteins cooperate in vivo and how this contributes to cellular homeostasis and disease.
Collapse
Affiliation(s)
- Irene Santos-Barriopedro
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Chen DP, Chen C, Wu PY, Lin YH, Lin WT, Yan YL. Micro-Droplet Platform for Exploring the Mechanism of Mixed Field Agglutination in B 3 Subtype. BIOSENSORS 2021; 11:276. [PMID: 34436078 PMCID: PMC8393913 DOI: 10.3390/bios11080276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
B3 is the most common subtype of blood group B in the Taiwanese population, and most of the B3 individuals in the Taiwanese population have the IVS3 + 5 G > A (rs55852701) gene variation. Additionally, a typical mixed field agglutination is observed when the B3 subtype is tested with anti-B antibody or anti-AB antibody. The molecular biology of the gene variation in the B3 subtype has been identified, however, the mechanism of the mixed field agglutination caused by the type B3 blood samples is still unclear. Therefore, the purpose of this study was to understand the reason for the mixed field agglutination caused by B3. A micro-droplet platform was used to observe the agglutination of type B and type B3 blood samples in different blood sample concentrations, antibody concentrations, and at reaction times. We found that the agglutination reaction in every droplet slowed down with an increase in the dilution ratio of blood sample and antibody, whether type B blood or type B3 blood was used. However, as the reaction time increased, the complete agglutination in the droplet was seen in type B blood, while the mixed field agglutination still occurred in B3 within 1 min. In addition, the degree of agglutination was similar in each droplet, which showed high reproducibility. As a result, we inferred that there are two types of cells in the B3 subtype that simultaneously create a mixed field agglutination, rather than each red blood cell carrying a small amount of antigen, resulting in less agglutination.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 333, Taiwan; (D.-P.C.); (W.-T.L.); (Y.-L.Y.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Chen Chen
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (C.C.); (P.-Y.W.)
| | - Pei-Yu Wu
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (C.C.); (P.-Y.W.)
| | - Yen-Heng Lin
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (C.C.); (P.-Y.W.)
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan City 333, Taiwan
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 333, Taiwan; (D.-P.C.); (W.-T.L.); (Y.-L.Y.)
| | - Yi-Liang Yan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 333, Taiwan; (D.-P.C.); (W.-T.L.); (Y.-L.Y.)
| |
Collapse
|
14
|
Abstract
T cells must recognize pathogen-derived peptides bound to major histocompatibility complexes (MHCs) in order to initiate a cell-mediated immune response against an infection, or to support the development of high-affinity antibody responses. Identifying antigens presented on MHCs by infected cells and professional antigen-presenting cells (APCs) during infection may therefore provide a route toward developing new vaccines. Peptides bound to MHCs can be identified at whole-proteome scale using mass spectrometry-a technique referred to as "immunopeptidomics." This technique has emerged as a powerful tool for identifying potential vaccine targets in the context of many infectious diseases. In this review, we discuss the contributions immunopeptidomic studies have made to understanding antigen presentation and T cell priming in the context of infection and the potential for immunopeptidomics to inform the development of vaccines to address pressing global health problems in infectious disease.
Collapse
|
15
|
Rosenthal SM, Misra T, Abdouni H, Branon TC, Ting AY, Scott IC, Gingras AC. A Toolbox for Efficient Proximity-Dependent Biotinylation in Zebrafish Embryos. Mol Cell Proteomics 2021; 20:100128. [PMID: 34332124 PMCID: PMC8383115 DOI: 10.1016/j.mcpro.2021.100128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding how proteins are organized in compartments is essential to elucidating their function. While proximity-dependent approaches such as BioID have enabled a massive increase in information about organelles, protein complexes, and other structures in cell culture, to date there have been only a few studies on living vertebrates. Here, we adapted proximity labeling for protein discovery in vivo in the vertebrate model organism, zebrafish. Using lamin A (LMNA) as bait and green fluorescent protein (GFP) as a negative control, we developed, optimized, and benchmarked in vivo TurboID and miniTurbo labeling in early zebrafish embryos. We developed both an mRNA injection protocol and a transgenic system in which transgene expression is controlled by a heat shock promoter. In both cases, biotin is provided directly in the egg water, and we demonstrate that 12 h of labeling are sufficient for biotinylation of prey proteins, which should permit time-resolved analysis of development. After statistical scoring, we found that the proximal partners of LMNA detected in each system were enriched for nuclear envelope and nuclear membrane proteins and included many orthologs of human proteins identified as proximity partners of lamin A in mammalian cell culture. The tools and protocols developed here will allow zebrafish researchers to complement genetic tools with powerful proteomics approaches.
Collapse
Affiliation(s)
- Shimon M Rosenthal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Tvisha Misra
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hala Abdouni
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, California, USA; Department of Biology, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, California, USA; Department of Biology, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Sharma S, Bhatia V. Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal. Nanomedicine (Lond) 2021; 16:1329-1342. [PMID: 34027677 DOI: 10.2217/nnm-2021-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of magnetic nanoparticles (MNPs) in microfluidics based diagnostics is a classic case of micro-, nano- and bio-technology coming together to design extremely controllable, reproducible, and scalable nano and micro 'on-chip bio sensing systems.' In this review, applications of MNPs in microfluidics ranging from molecular diagnostics and immunodiagnostics to clinical uses have been examined. In addition, microfluidic mixing and capture of analytes using MNPs, and MNPs as carriers in microfluidic devices has been investigated. Finally, the challenges and future directions of this upcoming field have been summarized. The use of MNP-based microfluidic devices, will help in developing decentralized or 'point of care' testing globally, contributing to affordable healthcare, particularly, for middle- and low-income developing countries.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital & Postgraduate Institute, Noida, U.P., India
| |
Collapse
|
17
|
Vitorino R, Guedes S, da Costa JP, Kašička V. Microfluidics for Peptidomics, Proteomics, and Cell Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1118. [PMID: 33925983 PMCID: PMC8145566 DOI: 10.3390/nano11051118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.
Collapse
Affiliation(s)
- Rui Vitorino
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4785-999 Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 00351234 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - João Pinto da Costa
- Department of Chemistry & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 00351234 Aveiro, Portugal;
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemigovo n. 542/2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
18
|
Kim S, Dorlhiac G, Cotrim Chaves R, Zalavadia M, Streets A. Paper-thin multilayer microfluidic devices with integrated valves. LAB ON A CHIP 2021; 21:1287-1298. [PMID: 33690757 DOI: 10.1039/d0lc01217c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Integrated valve microfluidics has an unparalleled capability to automate rapid delivery of fluids at the nanoliter scale for high-throughput biological experimentation. However, multilayer soft lithography, which is used to fabricate valve-microfluidics, produces devices with a minimum thickness of around five millimeters. This form-factor limitation prevents the use of such devices in experiments with limited sample thickness tolerance such as 4-pi microscopy, stimulated Raman scattering microscopy, and many forms of optical or magnetic tweezer applications. We present a new generation of integrated valve microfluidic devices that are less than 300 μm thick, including the cover-glass substrate, that resolves the thickness limitation. This "thin-chip" was fabricated through a novel soft-lithography technique that produces on-chip micro-valves with the same functionality and reliability of traditional thick valve-microfluidic devices despite the orders of magnitude reduction in thickness. We demonstrated the advantage of using our thin-chip over traditional thick devices to automate fluid control while imaging on a high-resolution inverted microscope. First, we demonstrate that the thin-chip provides an improved signal to noise when imaging single cells with two-color stimulated Raman scattering (SRS). We then demonstrated how the thin-chip can be used to simultaneously perform on-chip magnetic manipulation of beads and fluorescent imaging. This study reveals the potential of our thin-chip in high-resolution imaging, sorting, and bead capture-based single-cell multi-omics applications.
Collapse
Affiliation(s)
- Soohong Kim
- Ningbo University, College of Food and Pharmaceutical Sciences, Ningbo, Zhejiang 315832, China
| | | | | | | | | |
Collapse
|
19
|
van Mierlo G, Vermeulen M. Chromatin Proteomics to Study Epigenetics - Challenges and Opportunities. Mol Cell Proteomics 2021; 20:100056. [PMID: 33556626 PMCID: PMC7973309 DOI: 10.1074/mcp.r120.002208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulation of gene expression is essential for the functioning of all eukaryotic organisms. Understanding gene expression regulation requires determining which proteins interact with regulatory elements in chromatin. MS-based analysis of chromatin has emerged as a powerful tool to identify proteins associated with gene regulation, as it allows studying protein function and protein complex formation in their in vivo chromatin-bound context. Total chromatin isolated from cells can be directly analyzed using MS or further fractionated into transcriptionally active and inactive chromatin prior to MS-based analysis. Newly formed chromatin that is assembled during DNA replication can also be specifically isolated and analyzed. Furthermore, capturing specific chromatin domains facilitates the identification of previously unknown transcription factors interacting with these domains. Finally, in recent years, advances have been made toward identifying proteins that interact with a single genomic locus of interest. In this review, we highlight the power of chromatin proteomics approaches and how these provide complementary alternatives compared with conventional affinity purification methods. Furthermore, we discuss the biochemical challenges that should be addressed to consolidate and expand the role of chromatin proteomics as a key technology in the context of gene expression regulation and epigenetics research in health and disease. An overview of proteomics methods to study chromatin and gene regulation. Strength and limitations of the different approaches are highlighted. An outlook on the outstanding challenges for chromatin proteomics. Future directions for chromatin proteomics are discussed.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Mao Y, Chen P, Ke M, Chen X, Ji S, Chen W, Tian R. Fully Integrated and Multiplexed Sample Preparation Technology for Sensitive Interactome Profiling. Anal Chem 2021; 93:3026-3034. [DOI: 10.1021/acs.analchem.0c05076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yiheng Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peizhong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Mi Ke
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shanping Ji
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wendong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Academy for Advanced Interdisciplinary Studies, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Gilquin B, Cubizolles M, Den Dulk R, Revol-Cavalier F, Alessio M, Goujon CE, Echampard C, Arrizabalaga G, Adrait A, Louwagie M, Laurent P, Navarro FP, Couté Y, Cosnier ML, Brun V. PepS: An Innovative Microfluidic Device for Bedside Whole Blood Processing before Plasma Proteomics Analyses. Anal Chem 2021; 93:683-690. [PMID: 33319979 DOI: 10.1021/acs.analchem.0c02270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Immunoassays have been used for decades in clinical laboratories to quantify proteins in serum and plasma samples. However, their limitations make them inappropriate in some cases. Recently, mass spectrometry (MS) based proteomics analysis has emerged as a promising alternative method when seeking to assess panels of protein biomarkers with a view to providing protein profiles to monitor health status. Up to now, however, translation of MS-based proteomics to the clinic has been hampered by its complexity and the substantial time and human resources necessary for sample preparation. Plasma matrix is particularly tricky to process as it contains more than 3000 proteins with concentrations spanning an extreme dynamic range (1010). To address this preanalytical challenge, we designed a microfluidic device (PepS) automating and accelerating blood sample preparation for bottom-up MS-based proteomics analysis. The microfluidic cartridge is operated through a dedicated compact instrument providing fully automated fluid processing and thermal control. In less than 2 h, the PepS device allows bedside plasma separation from whole blood, volume metering, depletion of albumin, protein digestion with trypsin, and stabilization of tryptic peptides on solid-phase extraction sorbent. For this first presentation, the performance of the PepS device was assessed using discovery proteomics and targeted proteomics, detecting a panel of three protein biomarkers routinely assayed in clinical laboratories (alanine aminotransferase 1, C-reactive protein, and myoglobin). This innovative microfluidic device and its associated instrumentation should help to streamline and simplify clinical proteomics studies.
Collapse
Affiliation(s)
- Benoit Gilquin
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, F-38000 Grenoble, FRANCE.,Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, EDyP, F-38000 Grenoble, FRANCE
| | - Myriam Cubizolles
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000 Grenoble, FRANCE
| | - Remco Den Dulk
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000 Grenoble, FRANCE
| | - Frédéric Revol-Cavalier
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000 Grenoble, FRANCE
| | - Manuel Alessio
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000 Grenoble, FRANCE
| | | | - Camille Echampard
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000 Grenoble, FRANCE
| | | | - Annie Adrait
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, EDyP, F-38000 Grenoble, FRANCE
| | - Mathilde Louwagie
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, EDyP, F-38000 Grenoble, FRANCE
| | - Patricia Laurent
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000 Grenoble, FRANCE
| | - Fabrice P Navarro
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000 Grenoble, FRANCE
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, EDyP, F-38000 Grenoble, FRANCE
| | - Marie-Line Cosnier
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000 Grenoble, FRANCE
| | - Virginie Brun
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, EDyP, F-38000 Grenoble, FRANCE
| |
Collapse
|
22
|
Abstract
Microfluidics-based liquid chromatography is based on the miniaturization of the different types of liquid chromatography (LC) systems (e.g., affinity, adsorption, size exclusion, ion exchange) on a microchip to perform on-chip separation of different types of analytes. On-chip chromatography finds applications in genomics, proteomics, biomarker discovery, and environmental analysis. Microfluidics-based chromatography has good reproducibility and small sample consumption. However, the on-chip chromatography fabrication techniques are often more challenging to perform than conventional LC column preparation. Different research groups have attempted to develop different techniques to fabricate microfluidics-based LC systems. In this review, we will summarize the recent advances in microfluidics-based chromatography.
Collapse
|
23
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
24
|
Kong Q, Huang P, Chu B, Ke M, Chen W, Zheng Z, Ji S, Cai Z, Li P, Tian R. High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes. Anal Chem 2020; 92:8933-8942. [PMID: 32539344 DOI: 10.1021/acs.analchem.0c00839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphotyrosine (pTyr) signaling complexes are important resources of biomarkers and drug targets which often need to be profiled with enough throughput. Current profiling approaches are not feasible to meet this need due to either biased profiling by antibody-based detection or low throughput by traditional affinity purification-mass spectrometry approach (AP-MS), as exemplified by our previously developed photo-pTyr-scaffold approach. To address these limitations, we developed a 96-well microplate-based sample preparation and fast data independent proteomic analysis workflow. By assembling the photo-pTyr-scaffold probe into a 96-well microplate, we achieved steric hindrance-free photoaffinity capture of pTyr signaling complexes, selective enrichment under denaturing conditions, and efficient in-well digestion in a fully integrated manner. EGFR signaling complex proteins could be efficiently captured and identified by using 300 times less cell lysate and 100 times less photo-pTyr-scaffold probe as compared with our previous approach operated in an Eppendorf tube. Furthermore, the lifetime of the photo-pTyr-scaffold probe in a 96-well microplate was significantly extended from 1 week up to 1 month. More importantly, by combining with high-flow nano LC separation and data independent acquisition on the Q Exactive HF-X mass spectrometer, LC-MS time could be significantly reduced to only 35 min per sample without increasing sample loading amount and compromising identification and quantification performance. This new high-throughput proteomic approach allowed us to rapidly and reproducibly profile dynamic pTyr signaling complexes with EGF stimulation at five time points and EGFR inhibitor treatment at five different concentrations. We are therefore optimized for its generic application in biomarkers discovery and drug screening in a high-throughput fashion.
Collapse
Affiliation(s)
- Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Peiwu Huang
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Bizhu Chu
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Mi Ke
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Wendong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zhendong Zheng
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Shanping Ji
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
25
|
Purification and enrichment of specific chromatin loci. Nat Methods 2020; 17:380-389. [PMID: 32152500 DOI: 10.1038/s41592-020-0765-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Understanding how chromatin is regulated is essential to fully grasp genome biology, and establishing the locus-specific protein composition is a major step toward this goal. Here we explain why the isolation and analysis of a specific chromatin segment are technically challenging, independently of the method. We then describe the published strategies and discuss their advantages and limitations. We conclude by discussing why significant technology developments are required to unambiguously describe the composition of small single loci.
Collapse
|
26
|
Affiliation(s)
- Iulia M. Lazar
- Department of Biological Sciences, Academy of Integrated Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Carilion School of Medicine, Academy of Integrated Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas S. Gulakowski
- Systems Biology, Academy of Integrated Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
27
|
Classification of mouse B cell types using surfaceome proteotype maps. Nat Commun 2019; 10:5734. [PMID: 31844046 PMCID: PMC6915781 DOI: 10.1038/s41467-019-13418-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/07/2019] [Indexed: 01/19/2023] Open
Abstract
System-wide quantification of the cell surface proteotype and identification of extracellular glycosylation sites is challenging when samples are limited. Here, we miniaturize and automate the previously described Cell Surface Capture (CSC) technology, increasing sensitivity, reproducibility and throughput. We use this technology, which we call autoCSC, to create population-specific surfaceome maps of developing mouse B cells and use targeted flow cytometry to uncover developmental cell subpopulations. Analysis of the cell surface proteome (surfaceome) is essential for cell classification but is technically challenging. Here the authors miniaturize and automate the Cell Surface Capture method to increase sensitivity, reproducibility and throughput, and use it to create population-specific surfaceome maps of developing mouse B cells.
Collapse
|