1
|
Ye Y, Cai Y, Wang F, He Y, Yang Y, Guo Z, Liu M, Ren H, Wang S, Liu D, Xu J, Wang Z. Industrial Microbial Technologies for Feed Protein Production from Non-Protein Nitrogen. Microorganisms 2025; 13:742. [PMID: 40284579 PMCID: PMC12029832 DOI: 10.3390/microorganisms13040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Due to the increasing global demand for feed protein, microbial protein has great potential of being able to feed sustainably. However, the application of microbial protein in the animal cultivation industry is still limited by its high cost and availability on scale. From the viewpoint of industrial production, it is vital to specify the crucial processes and components for further technical exploration and process optimization. This article presents state-of-the-art industrial microbial technologies for non-protein nitrogen (NPN) assimilation in feed protein production. Nitrogen sources are one of the main cost factors in the media used for large-scale microbial protein fermentation. Therefore, the available NPN sources for microbial protein synthesis, NPN utilization mechanisms, and fermentation technologies corresponding to the strain and NPN are reviewed in this paper. Especially, the random mutagenesis and adaptive laboratory evolution (ALE) approach combined with (ultra-) throughput screening provided the main impetus for strain evolution to increase the protein yield. Despite the underlying potential and technological advances in the production of microbial protein, extensive research and development efforts are still required before large-scale commercial application of microbial protein in animal feed.
Collapse
Affiliation(s)
- Yuxin Ye
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
- State Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
| | - Yi He
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
| | - Yuxuan Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
| | - Zhengxiang Guo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
| | - Mengyu Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
| | - Huimin Ren
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
- State Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
- State Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Y.); (Y.C.); (F.W.); (Y.H.); (Y.Y.); (Z.G.); (M.L.); (H.R.); (S.W.); (J.X.)
- State Key Laboratory of Biobased Transport Fuel Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Wang S, Tian R, Yan J, Hu J, Xu S, Zhao S, Zhang M, Dai S, Yang H, Zhang X. Decadal Response of Atmospheric Inorganic Nitrogen Dry Deposition into Offshore Areas to Policy Controls and Environmental Significance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:689-698. [PMID: 39723963 DOI: 10.1021/acs.est.4c12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Accurately assessing the dry deposition fluxes of inorganic nitrogen aerosol (aerosol-IN) is crucial for mitigating the ecological damage caused by excessive nitrogen in oceanic equilibria. We developed a dry deposition model to assess the dry deposition fluxes of aerosol-IN into Chinese offshore areas over a decade, with the range of 2.81 × 106-1.89 × 107 g N km-2 year-1. Our findings showed a clear decline in the dry deposition fluxes of aerosol-IN following the implementation of environmental laws and policies. Promoting cleaner production, using new energy vehicles, the rational use of nitrogenous fertilizers, and standardized straw burning will all reduce pollution caused by excessive nitrogen deposition. High ratios of dry deposit to river transport nitrogen (0.48-17.89) indicate aerosol-IN is a significant source of inorganic nitrogen in Chinese offshore areas. The implementation of the policy has significantly reduced aerosol-IN deposition into the ocean, but its contribution remained substantial and should be considered when protecting the Chinese marine ecological environment.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361001, China
| | - Rong Tian
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361001, China
| | - Jinpei Yan
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361001, China
| | - Jiehua Hu
- Xiamen Ocean Vocational College, Xiamen 361100, China
| | - Suqing Xu
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361001, China
| | - Shuhui Zhao
- School of Tourism, Taishan University, Tai'an 271021, China
| | - Miming Zhang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361001, China
| | - Siying Dai
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361001, China
| | - Hang Yang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361001, China
| | - Xiaoke Zhang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361001, China
| |
Collapse
|
3
|
Zhang J, Zhang F, Dong Z, Zhang W, Sun T, Chen L. Response and acclimation of cyanobacteria to acidification: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173978. [PMID: 38897479 DOI: 10.1016/j.scitotenv.2024.173978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria, as vital components of aquatic ecosystems, face increasing challenges due to acidification driven by various anthropogenic and natural factors. Understanding how cyanobacteria adapt and respond to acidification is crucial for predicting their ecological dynamics and potential impacts on ecosystem health. This comprehensive review synthesizes current knowledge on the acclimation mechanisms and responses of cyanobacteria to acidification stress. Detailly, ecological roles of cyanobacteria were firstly briefly concluded, followed by the effects of acidification on aquatic ecosystems and cyanobacteria. Then the review focuses on the physiological, biochemical, and molecular strategies employed by cyanobacteria to cope with acidification stress, highlighting key adaptive mechanisms and their ecological implications. Finally, a summary of strategies to enhance acid resistance in cyanobacteria and future directions was discussed. Utilizing omics data and machine learning technology to build a cyanobacterial acid regulatory network allows for predicting the impact of acidification on cyanobacteria and inferring its broader effects on ecosystems. Additionally, acquiring acid-tolerant chassis cells of cyanobacteria through innovative techniques facilitates the advancement of environmentally friendly production of acidic chemicals. By synthesizing empirical evidence and theoretical frameworks, this review aims to elucidate the complex interplay between cyanobacteria and acidification stressors, providing insights for future research directions and ecosystem management strategies.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China..
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China.
| |
Collapse
|
4
|
Gao M, Andrews J, Armin G, Chakraborty S, Zehr JP, Inomura K. Rapid mode switching facilitates the growth of Trichodesmium: A model analysis. iScience 2024; 27:109906. [PMID: 38947530 PMCID: PMC11214483 DOI: 10.1016/j.isci.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/02/2024] Open
Abstract
Trichodesmium is one of the dominant dinitrogen (N2) fixers in the ocean, influencing global carbon and nitrogen cycles through biochemical reactions. Although its photosynthetic activity fluctuates rapidly, the physiological or ecological advantage of this fluctuation is unclear. We develop a metabolic model of Trichodesmium that can perform daytime N2 fixation. We examined (1) the effect of the duration of switches between photosynthetic and non-photosynthetic cellular states and (2) the effect of the presence and absence of N2 fixation in photosynthetic states. Results show that a rapid switch between photosynthetic and non-photosynthetic states increases Trichodesmium growth rates by improving metabolic efficiencies due to an improved balance of C and N metabolism. This provides a strategy for previous paradoxical observations that all Trichodesmium cells can contain nitrogenase. This study reveals the importance of fluctuating photosynthetic activity and provides a mechanism for daytime N2 fixation that allows Trichodesmium to fix N2 aerobically in the global ocean.
Collapse
Affiliation(s)
- Meng Gao
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Jamal Andrews
- Biological and Environmental Sciences Graduate Program, University of Rhode Island, Kingston, RI, USA
| | - Gabrielle Armin
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Subhendu Chakraborty
- Systems Ecology Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| |
Collapse
|
5
|
Rucker HR, Kaçar B. Enigmatic evolution of microbial nitrogen fixation: insights from Earth's past. Trends Microbiol 2024; 32:554-564. [PMID: 37061455 DOI: 10.1016/j.tim.2023.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/17/2023]
Abstract
The evolution of nitrogen fixation undoubtedly altered nearly all corners of the biosphere, given the essential role of nitrogen in the synthesis of biomass. To date, there is no unified view on what planetary conditions gave rise to nitrogen fixation or how these conditions have sustained it evolutionarily. Intriguingly, the concentrations of metals that nitrogenases require to function have changed throughout Earth's history. In this review, we describe the interconnection of the metal and nitrogen cycles with nitrogenase evolution and the importance of ancient ecology in the formation of the modern nitrogen cycle. We argue that exploration of the nitrogen cycle's deep past will provide insights into humanity's immediate environmental challenges centered on nitrogen availability.
Collapse
Affiliation(s)
- Holly R Rucker
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
6
|
Eichner M, Inomura K, Pierella Karlusich JJ, Shaked Y. Better together? Lessons on sociality from Trichodesmium. Trends Microbiol 2023; 31:1072-1084. [PMID: 37244772 DOI: 10.1016/j.tim.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
The N2-fixing cyanobacterium Trichodesmium is an important player in the oceanic nitrogen and carbon cycles. Trichodesmium occurs both as single trichomes and as colonies containing hundreds of trichomes. In this review, we explore the benefits and disadvantages of colony formation, considering physical, chemical, and biological effects from nanometer to kilometer scale. Showing that all major life challenges are affected by colony formation, we claim that Trichodesmium's ecological success is tightly linked to its colonial lifestyle. Microbial interactions in the microbiome, chemical gradients within the colony, interactions with particles, and elevated mobility in the water column shape a highly dynamic microenvironment. We postulate that these dynamics are key to the resilience of Trichodesmium and other colony formers in our changing environment.
Collapse
Affiliation(s)
- Meri Eichner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | - Yeala Shaked
- Freddy and Nadine Herrmann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel; Interuniversity Institute for Marine Sciences, Eilat, Israel
| |
Collapse
|
7
|
Luo W, Luo YW. Diurnally dynamic iron allocation promotes N 2 fixation in marine dominant diazotroph Trichodesmium. Comput Struct Biotechnol J 2023; 21:3503-3512. [PMID: 37484493 PMCID: PMC10362294 DOI: 10.1016/j.csbj.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
Trichodesmium is the dominant photoautotrophic dinitrogen (N2) fixer (diazotroph) in the ocean. Iron is an important factor limiting growth of marine diazotrophs including Trichodesmium mainly because of high iron content of its N2-fixing enzyme, nitrogenase. However, it still lacks a quantitative understanding of how dynamic iron allocation among physiological processes acts to regulate growth and N2 fixation in Trichodesmium. Here, we constructed a model of Trichodesmium trichome in which intracellular iron could be dynamically re-allocated in photosystems and nitrogenase during the daytime. The results demonstrate that the dynamic iron allocation enhances modeled N2 fixation and growth rates of Trichodesmium, especially in iron-limited conditions, albeit having a marginal impact under high iron concentrations. Although the reuse of iron during a day is an apparent cause that dynamic iron allocation can benefit Trichodesmium under iron limitation, our model reveals two important mechanisms. First, the release of iron from photosystems downregulates the intracellular oxygen (O2) production and reduces the demand of respiratory protection, a process that Trichodesmium wastefully respires carbohydrates to create a lower O2 window for N2 fixation. Hence, more carbohydrates can be used in growth. Second, lower allocation of iron to nitrogenase during early daytime, a period when photosynthesis is active and intracellular O2 is high, reduces the amount of iron that is trapped in the inactivated nitrogenase induced by O2. This mechanism further increases the iron use efficiency in Trichodesmium. Overall, our study provides mechanistic and quantitative insight into the diurnal iron allocation that can alleviate iron limitation to Trichodesmium.
Collapse
|
8
|
Li H, Gao K. Deoxygenation enhances photosynthetic performance and increases N 2 fixation in the marine cyanobacterium Trichodesmium under elevated pCO 2. Front Microbiol 2023; 14:1102909. [PMID: 36876059 PMCID: PMC9975739 DOI: 10.3389/fmicb.2023.1102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Effects of changed levels of dissolved O2 and CO2 on marine primary producers are of general concern with respect to ecological effects of ongoing ocean deoxygenation and acidification as well as upwelled seawaters. We investigated the response of the diazotroph Trichodesmium erythraeum IMS 101 after it had acclimated to lowered pO2 (~60 μM O2) and/or elevated pCO2 levels (HC, ~32 μM CO2) for about 20 generations. Our results showed that reduced O2 levels decreased dark respiration significantly, and increased the net photosynthetic rate by 66 and 89% under the ambient (AC, ~13 μM CO2) and the HC, respectively. The reduced pO2 enhanced the N2 fixation rate by ~139% under AC and only by 44% under HC, respectively. The N2 fixation quotient, the ratio of N2 fixed per O2 evolved, increased by 143% when pO2 decreased by 75% under the elevated pCO2. Meanwhile, particulate organic carbon and nitrogen quota increased simultaneously under reduced O2 levels, regardless of the pCO2 treatments. Nevertheless, changed levels of O2 and CO2 did not bring about significant changes in the specific growth rate of the diazotroph. Such inconsistency was attributed to the daytime positive and nighttime negative effects of both lowered pO2 and elevated pCO2 on the energy supply for growth. Our results suggest that Trichodesmium decrease its dark respiration by 5% and increase its N2-fixation by 49% and N2-fixation quotient by 30% under future ocean deoxygenation and acidification with 16% decline of pO2 and 138% rise of pCO2 by the end of this century.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
9
|
Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium. Nat Commun 2022; 13:6730. [PMID: 36344528 PMCID: PMC9640675 DOI: 10.1038/s41467-022-34586-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Growth of the prominent nitrogen-fixing cyanobacterium Trichodesmium is often limited by phosphorus availability in the ocean. How nitrogen fixation by phosphorus-limited Trichodesmium may respond to ocean acidification remains poorly understood. Here, we use phosphate-limited chemostat experiments to show that acidification enhanced phosphorus demands and decreased phosphorus-specific nitrogen fixation rates in Trichodesmium. The increased phosphorus requirements were attributed primarily to elevated cellular polyphosphate contents, likely for maintaining cytosolic pH homeostasis in response to acidification. Alongside the accumulation of polyphosphate, decreased NADP(H):NAD(H) ratios and impaired chlorophyll synthesis and energy production were observed under acidified conditions. Consequently, the negative effects of acidification were amplified compared to those demonstrated previously under phosphorus sufficiency. Estimating the potential implications of this finding, using outputs from the Community Earth System Model, predicts that acidification and dissolved inorganic and organic phosphorus stress could synergistically cause an appreciable decrease in global Trichodesmium nitrogen fixation by 2100.
Collapse
|
10
|
Abstract
The dominant marine filamentous N2 fixer, Trichodesmium, conducts photosynthesis and N2 fixation during the daytime. Because N2 fixation is sensitive to O2, some previous studies suggested that spatial segregation of N2 fixation and photosynthesis is essential in Trichodesmium. However, this hypothesis conflicts with some observations where all the cells contain both photosystems and the N2-fixing enzyme nitrogenase. Here, we construct a systematic model simulating Trichodesmium metabolism, showing that the hypothetical spatial segregation is probably useless in increasing the Trichodesmium growth and N2 fixation, unless substances can efficiently transfer among cells with low loss to the environment. The model suggests that Trichodesmium accumulates fixed carbon in the morning and uses that in respiratory protection to reduce intracellular O2 during the mid-daytime, when photosynthesis is downregulated, allowing the occurrence of N2 fixation. A cell membrane barrier against O2 and alternative non-O2 evolving electron transfer also contribute to maintaining low intracellular O2. Our study provides a mechanism enabling N2 fixation despite the presence of photosynthesis across Trichodesmium. IMPORTANCE The filamentous Trichodesmium is a globally prominent marine nitrogen fixer. A long-standing paradox is that the nitrogen-fixing enzyme nitrogenase is sensitive to oxygen, but Trichodesmium conducts both nitrogen fixation and oxygen-evolving photosynthesis during the daytime. Previous studies using immunoassays reported that nitrogenase was limited in some specialized Trichodesmium cells (termed diazocytes), suggesting the necessity of spatial segregation of nitrogen fixation and photosynthesis. However, attempts using other methods failed to find diazocytes in Trichodesmium, causing controversy on the existence of the spatial segregation. Here, our physiological model shows that Trichodesmium can maintain low intracellular O2 in mid-daytime and achieve feasible nitrogen fixation and growth rates even without the spatial segregation, while the hypothetical spatial segregation might not be useful if substantial loss of substances to the environment occurs when they transfer among the Trichodesmium cells. Our study then suggests a possible mechanism by which Trichodesmium can survive without the spatial segregation.
Collapse
|
11
|
Ma J, Wang P, Hu B, Wang X, Qian J. Synergistic promoting effect of increasing aquatic ammonium and CO 2 on Microcystis aeruginosa. CHEMOSPHERE 2022; 301:134553. [PMID: 35405194 DOI: 10.1016/j.chemosphere.2022.134553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Owing to climate change and intensive agricultural development, freshwater bodies have been affected by increases in both CO2 levels and chemically-reduced forms of N. However, little is known about how these changes affect cyanobacterial growth and blooms. This study explored a range of light conditions (30, 80, 130, or 200 μmol photons/m2/s) wherein Microcystis aeruginosa, a widespread bloom-forming species, was exposed to different concentrations of CO2 (400 parts per million (ppm) and 1000 ppm) in a medium containing NH4+ or NO3-. The interactive effects of N sources and CO2 levels on the C/N metabolic balance and energy balance were examined to assess changes in the growth of M. aeruginosa. When the light intensity was 80 μmol photons/m2/s, elevated CO2 could reduce intracellular reactive oxygen species (ROS) in NH4+-grown M. aeruginosa. Meanwhile, cell density and chlorophyll a (Chl a) increased with increasing CO2 levels, and the increase in Chl a was significantly greater in NH4+-grown M. aeruginosa than in NO3--grown M. aeruginosa. Under light conditions of 200 μmol photons/m2/s, elevated CO2 concentration caused NO3--grown M. aeruginosa to be affected by a large amount of ROS, and the growth of NO3--grown M. aeruginosa was finally suppressed. However, NH4+-grown M. aeruginosa had a smaller amount of ROS and showed improved growth as CO2 was elevated. This difference can be attributed to the faster metabolic pathways in the NH4+ environment, which manifested in a lower accumulation of 2-oxoglutarate and fatty acids as CO2 was elevated. These findings suggest that the simultaneous increase in ammonium and CO2 in aquatic ecosystems confers cyanobacteria with greater advantages than the combination of nitrate and CO2, which may aggravate cyanobacterial blooms.
Collapse
Affiliation(s)
- Jingjie Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
12
|
Zhang Q, Luo YW. A Competitive Advantage of Middle-Sized Diatoms From Increasing Seawater CO 2. Front Microbiol 2022; 13:838629. [PMID: 35663890 PMCID: PMC9158336 DOI: 10.3389/fmicb.2022.838629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Diatoms, one of the most important phytoplankton groups, fulfill their carbon demand from seawater mainly by obtaining passively diffused carbon dioxide (CO2) and/or actively consuming intracellular energy to acquire bicarbonate (HCO3–). An anthropogenically induced increase in seawater CO2 reduces the HCO3– requirement of diatoms, potentially saving intracellular energy and benefitting their growth. This effect is commonly speculated to be most remarkable in larger diatoms that are subject to a stronger limitation of CO2 supply because of their smaller surface-to-volume ratios. However, we constructed a theoretical model for diatoms and revealed a unimodal relationship between the simulated growth rate response (GRR, the ratio of growth rates under elevated and ambient CO2) and cell size, with the GRR peaking at a cell diameter of ∼7 μm. The simulated GRR of the smallest diatoms was low because the CO2 supply was nearly sufficient at the ambient level, while the decline of GRR from a cell diameter of 7 μm was simulated because the contribution of seawater CO2 to the total carbon demand greatly decreased and diatoms became less sensitive to CO2 increase. A collection of historical data in CO2 enrichment experiments of diatoms also showed a roughly unimodal relationship between maximal GRR and cell size. Our model further revealed that the “optimal” cell size corresponding to peak GRR enlarged with the magnitude of CO2 increase but diminished with elevating cellular carbon demand, leading to projection of the smallest optimal cell size in the equatorial Pacific upwelling zone. Last, we need to emphasize that the size-dependent effects of increasing CO2 on diatoms are multifaceted, while our model only considers the inorganic carbon supply from seawater and optimal allocation of intracellular energy. Our study proposes a competitive advantage of middle-sized diatoms and can be useful in projecting changes in the diatom community in the future acidified high-CO2 ocean.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ya-Wei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Wang S, Yan J, Zhao S, Feng Y, Shi J, Yang H, Lin Q, Xu S, Luo Y, Li L, Zhang M, Jiao L. Dry-deposition of inorganic and organic nitrogen aerosols in Xiamen Bay: Fluxes, sources, and biogeochemical significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152912. [PMID: 34998747 DOI: 10.1016/j.scitotenv.2022.152912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Increased dry deposition of nitrogen aerosols (aerosol-N) as a result of anthropogenic emissions has caused large negative impacts on marine ecosystems. We monitored the number concentrations and sizes of inorganic nitrogen aerosols (aerosol-IN: NH4+ and NO3-) and organic nitrogen aerosols (aerosol-ON: methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, and triethylamine) by single-particle aerosol mass spectrometry (SPAMS) during the warm season (WS) and cold season (CS) of 2013 and 2015 in Xiamen Bay. The mean hourly number concentration of aerosol-IN (874/h) overwhelmed that of aerosol-ON (103/h), accounting for 83.9 ± 16.1% of aerosol-N. More than 90% of aerosol-N was concentrated in the condensation mode (0.1-0.5 μm) and droplet mode (0.5-2.0 μm). Aerosol-IN was the main contributor (80.1-94.2%) to aerosol-N deposition. New production potentially supported by the ocean's external nitrogen supply provided aerosol-N input of 11.51-11.96 g C m-2 yr-1, which contributed 17.5-18.2% of total new production in the southern East China Sea. Four potential sources of aerosol-N were identified based on the results of positive matrix factorization analysis, including secondary formation (F1), biogenic source (F2), sea spray, soil dust, biomass burning (F3), and anthropogenic sources (F4). Aerosol-N concentrations in Xiamen Bay were mainly affected by the ocean air masses during the WS and inland air masses during the CS. The percentages of aerosol-N at each backward trajectory cluster showed that the inland air masses brought more aerosol-IN emitted from biomass burning, soil dust, and secondary formation sources, whereas the ocean air masses brought more aerosol-ON emitted from a marine biogenic source into Xiamen Bay. This study provides an example of determining the number concentrations and sizes of IN and ON in aerosols by SPAMS, and helps us further understand the dry deposition and sources of IN and ON in aerosols in Xiamen Bay.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jinpei Yan
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Shuhui Zhao
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Yao Feng
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jun Shi
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hang Yang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Qi Lin
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Suqing Xu
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yang Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Lei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Miming Zhang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Liping Jiao
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
14
|
El-Khaled YC, Nafeh R, Roth F, Rädecker N, Karcher DB, Jones BH, Voolstra CR, Wild C. High plasticity of nitrogen fixation and denitrification of common coral reef substrates in response to nitrate availability. MARINE POLLUTION BULLETIN 2021; 168:112430. [PMID: 34000709 DOI: 10.1016/j.marpolbul.2021.112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen cycling in coral reefs may be affected by nutrient availability, but knowledge about concentration-dependent thresholds that modulate dinitrogen fixation and denitrification is missing. We determined the effects of different nitrate concentrations (ambient, 1, 5, 10 μM nitrate addition) on both processes under two light scenarios (i.e., light and dark) using a combined acetylene assay for two common benthic reef substrates, i.e., turf algae and coral rubble. For both substrates, dinitrogen fixation rates peaked at 5 μM nitrate addition in light, whereas denitrification was highest at 10 μM nitrate addition in the dark. At 10 μm nitrate addition in the dark, a near-complete collapse of dinitrogen fixation concurrent with a 76-fold increase in denitrification observed for coral rubble, suggesting potential threshold responses linked to the nutritional state of the community. We conclude that dynamic nitrogen cycling activity may help stabilise nitrogen availability in microbial communities associated with coral reef substrates.
Collapse
Affiliation(s)
- Yusuf C El-Khaled
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany.
| | - Rassil Nafeh
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Florian Roth
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), 23995 Thuwal, Saudi Arabia; Baltic Sea Centre, Stockholm University, 10691 Stockholm, Sweden; Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, 00014 Helsinki, Finland
| | - Nils Rädecker
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), 23995 Thuwal, Saudi Arabia; Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Denis B Karcher
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany; Australian National Centre for the Public Awareness of Science, Australian National University, ACT 2601 Canberra, Australia
| | - Burton H Jones
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), 23995 Thuwal, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), 23995 Thuwal, Saudi Arabia; Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
15
|
Rabouille S, Campbell DA, Masuda T, Zavřel T, Bernát G, Polerecky L, Halsey K, Eichner M, Kotabová E, Stephan S, Lukeš M, Claquin P, Bonomi-Barufi J, Lombardi AT, Červený J, Suggett DJ, Giordano M, Kromkamp JC, Prášil O. Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations. Front Microbiol 2021; 12:617802. [PMID: 33897635 PMCID: PMC8063122 DOI: 10.3389/fmicb.2021.617802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Abstract
Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.
Collapse
Affiliation(s)
- Sophie Rabouille
- Sorbonne Université, CNRS, LOV, Villefranche-sur-Mer, France.,Sorbonne Université, CNRS, LOMIC, Banyuls-sur-Mer, France
| | - Douglas A Campbell
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Mount Allison University, Sackville, NB, Canada
| | - Takako Masuda
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czechia
| | - Gábor Bernát
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kuno u. 3. 8237 Tihany, Hungary
| | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Meri Eichner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Eva Kotabová
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Susanne Stephan
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, Stechlin, Germany.,Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, Berlin, Germany
| | - Martin Lukeš
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Pascal Claquin
- UMR BOREA (CNRS 8067), MNHN, IRD (207), Université de Caen Basse-Normandie, Caen, France
| | - José Bonomi-Barufi
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czechia
| | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Mario Giordano
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Dipartimento di Scienze della Vita e dell'Ambiente, UniversitaÌ Politecnica delle Marche, Ancona, Italy
| | - Jacco C Kromkamp
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Utrecht, Netherlands
| | - Ondřej Prášil
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| |
Collapse
|
16
|
Ma J, Wang P. Effects of rising atmospheric CO 2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141889. [PMID: 32920383 DOI: 10.1016/j.scitotenv.2020.141889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 05/19/2023]
Abstract
Increasing atmospheric CO2 concentration negatively impacts aquatic ecosystems and may exacerbate the problem of undesirable cyanobacterial bloom development in freshwater ecosystems. Elevated levels of atmospheric CO2 may increase the levels of dissolved CO2 in freshwater systems, via air-water exchanges, enhancing primary production in the water and catchments. Although high CO2 levels improve cyanobacterial growth and increase cyanobacterial biomass, the impacts on their internal physiological processes can be more complex. Here, we have reviewed previous studies to evaluate the physiological responses of cyanobacteria to high concentrations of CO2. In response to high CO2 concentrations, the pressures of inorganic carbon absorption are reduced, and carbon concentration mechanisms are downregulated, affecting the intracellular metabolic processes and competitiveness of the cyanobacteria. Nitrogen and phosphorus metabolism and light utilization are closely related to CO2 assimilation, and these processes are likely to be affected by resource and energy reallocation when CO2 levels are high. Additionally, the responses of diazotrophic and toxic cyanobacteria to elevated CO2 levels were specifically reviewed. The responses of diazotrophic cyanobacteria to elevated CO2 concentrations were found to be inconsistent, probably because of differences in other factors in experimental designs. Toxic cyanobacteria tended to be superior to non-toxic strains at low levels of CO2; however, the specific effects of microcystin on the regulation require further investigation. Furthermore, the effects of increasing CO2 levels on cyanobacterial competitiveness in phytoplankton communities and nutrient cycling in aquatic ecosystems were reviewed. High CO2 concentrations may make cyanobacteria less competitive relative to other algal taxa; however, due to the complexity of natural systems and the specificity of algal species, the dominant positions of the cyanobacteria do not seems to be changed. To better understand cyanobacterial responses to elevated CO2 levels and help control cyanobacterial bloom developments, this review has identified key areas for future research.
Collapse
Affiliation(s)
- Jingjie Ma
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
17
|
Wu S, Mi T, Zhen Y, Yu K, Wang F, Yu Z. A Rise in ROS and EPS Production: New Insights into the Trichodesmium erythraeum Response to Ocean Acidification. JOURNAL OF PHYCOLOGY 2021; 57:172-182. [PMID: 32975309 DOI: 10.1111/jpy.13075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The diazotrophic cyanobacterium Trichodesmium is thought to be a major contributor to the new N in parts of the oligotrophic, subtropical, and tropical oceans. In this study, physiological and biochemical methods and transcriptome sequencing were used to investigate the influences of ocean acidification (OA) on Trichodesmium erythraeum (T. erythraeum). We presented evidence that OA caused by CO2 slowed the growth rate and physiological activity of T. erythraeum. OA led to reduced development of proportion of the vegetative cells into diazocytes which included up-regulated genes of nitrogen fixation. Reactive oxygen species (ROS) accumulation was increased due to the disruption of photosynthetic electron transport and decrease in antioxidant enzyme activities under acidified conditions. This study showed that OA increased the amounts of (exopolysaccharides) EPS in T. erythraeum, and the key genes of ribose-5-phosphate (R5P) and glycosyltransferases (Tery_3818) were up-regulated. These results provide new insight into how ROS and EPS of T. erythraeum increase in an acidified future ocean to cope with OA-imposed stress.
Collapse
Affiliation(s)
- Shijie Wu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kaiqiang Yu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fuwen Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
18
|
von Friesen LW, Riemann L. Nitrogen Fixation in a Changing Arctic Ocean: An Overlooked Source of Nitrogen? Front Microbiol 2021; 11:596426. [PMID: 33391213 PMCID: PMC7775723 DOI: 10.3389/fmicb.2020.596426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
The Arctic Ocean is the smallest ocean on Earth, yet estimated to play a substantial role as a global carbon sink. As climate change is rapidly changing fundamental components of the Arctic, it is of local and global importance to understand and predict consequences for its carbon dynamics. Primary production in the Arctic Ocean is often nitrogen-limited, and this is predicted to increase in some regions. It is therefore of critical interest that biological nitrogen fixation, a process where some bacteria and archaea termed diazotrophs convert nitrogen gas to bioavailable ammonia, has now been detected in the Arctic Ocean. Several studies report diverse and active diazotrophs on various temporal and spatial scales across the Arctic Ocean. Their ecology and biogeochemical impact remain poorly known, and nitrogen fixation is so far absent from models of primary production in the Arctic Ocean. The composition of the diazotroph community appears distinct from other oceans – challenging paradigms of function and regulation of nitrogen fixation. There is evidence of both symbiotic cyanobacterial nitrogen fixation and heterotrophic diazotrophy, but large regions are not yet sampled, and the sparse quantitative data hamper conclusive insights. Hence, it remains to be determined to what extent nitrogen fixation represents a hitherto overlooked source of new nitrogen to consider when predicting future productivity of the Arctic Ocean. Here, we discuss current knowledge on diazotroph distribution, composition, and activity in pelagic and sea ice-associated environments of the Arctic Ocean. Based on this, we identify gaps and outline pertinent research questions in the context of a climate change-influenced Arctic Ocean – with the aim of guiding and encouraging future research on nitrogen fixation in this region.
Collapse
Affiliation(s)
- Lisa W von Friesen
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Lasse Riemann
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
19
|
Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 2020; 18:3905-3924. [PMID: 33335688 PMCID: PMC7733014 DOI: 10.1016/j.csbj.2020.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 10/26/2022] Open
Abstract
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
Freeman EC, Creed IF, Jones B, Bergström AK. Global changes may be promoting a rise in select cyanobacteria in nutrient-poor northern lakes. GLOBAL CHANGE BIOLOGY 2020; 26:4966-4987. [PMID: 32445590 DOI: 10.1111/gcb.15189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The interacting effects of global changes-including increased temperature, altered precipitation, reduced acidification and increased dissolved organic matter loads to lakes-are anticipated to create favourable environmental conditions for cyanobacteria in northern lakes. However, responses of cyanobacteria to these global changes are complex, if not contradictory. We hypothesized that absolute and relative biovolumes of cyanobacteria (both total and specific genera) are increasing in Swedish nutrient-poor lakes and that these increases are associated with global changes. We tested these hypotheses using data from 28 nutrient-poor Swedish lakes over 16 years (1998-2013). Increases in cyanobacteria relative biovolume were identified in 21% of the study sites, primarily in the southeastern region of Sweden, and were composed mostly of increases from three specific genera: Merismopedia, Chroococcus and Dolichospermum. Taxon-specific changes were related to different environmental stressors; that is, increased surface water temperature favoured higher Merismopedia relative biovolume in low pH lakes with high nitrogen to phosphorus ratios, whereas acidification recovery was statistically related to increased relative biovolumes of Chroococcus and Dolichospermum. In addition, enhanced dissolved organic matter loads were identified as potential determinants of Chroococcus suppression and Dolichospermum promotion. Our findings highlight that specific genera of cyanobacteria benefit from different environmental changes. Our ability to predict the risk of cyanobacteria prevalence requires consideration of the environmental condition of a lake and the sensitivities of the cyanobacteria genera within the lake. Regional patterns may emerge due to spatial autocorrelations within and among lake history, rates and direction of environmental change and the niche space occupied by specific cyanobacteria.
Collapse
Affiliation(s)
- Erika C Freeman
- Department of Geography, Western University, London, ON, Canada
| | - Irena F Creed
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Blake Jones
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | | |
Collapse
|
21
|
Chen C, Han H, Xu T, Lv Y, Hu K, Li XX, Qiao Y, Ding GC, Li J. Comparison of the Total, Diazotrophic and Ammonia-Oxidizing Bacterial Communities Between Under Organic and Conventional Greenhouse Farming. Front Microbiol 2020; 11:1861. [PMID: 32903338 PMCID: PMC7434936 DOI: 10.3389/fmicb.2020.01861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Organic greenhouse farming is an innovative system that may maintain a high yield and healthy agroecosystem. There have been no rigorous studies on the comparison of total and nitrogen-cycling bacterial community in vegetable soils between organic and conventional farming management at large scale. A survey of bacterial community and nitrogen cycles from soils under organic and conventional greenhouse farming was performed at 30 sites, covering seven soil types with 4 to 18 years of organic farming history. Communities of the total, diazotrophs and ammonia-oxidizing bacteria were studied with high-throughput sequencing of the 16S rRNA, nifH and amoA genes, respectively. Organic greenhouse farming did not influence alpha diversities. Beta diversities among the total (26/30) and diazotrophic (17/19) bacteria differed between farming systems, but compositional differences in ammonia-oxidizing bacteria between the two farming systems were only detected at 6 sites. Despite the effects of farming system on most bacterial genera were varied across different sites, organic greenhouse farming persistently selected for a few genera, possibly for the biodegradation of organic carbon with high molecular weight (Hyphomicrobium, Rubinisphaera, Aciditerrimonas, Planifilum, Phaselicystis, and Ohtaekwangia), but against putative ammonia oxidizing (Nitrosospira, Nitrosopumilus) and diazotrophic (Bradyrhizobium) bacterial genera, as determined by 16S rRNA analysis. Diazotrophic bacteria affiliated with nifH cluster 1J were preferentially associated with organic greenhouse farming, in contrast to Paenibacillus borealis. In summary, this study provides insights into the complex effects of organic greenhouse farming on the total, diazotrophic and ammonia oxidizing bacterial communities across different environmental context.
Collapse
Affiliation(s)
- Chen Chen
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hui Han
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou ViCheck Biotechnology Co., Ltd., Suzhou, China
| | - Yizhong Lv
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Kelin Hu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xue Xian Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yuhui Qiao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guo-Chun Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou ViCheck Biotechnology Co., Ltd., Suzhou, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.,Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou ViCheck Biotechnology Co., Ltd., Suzhou, China
| |
Collapse
|
22
|
Lin W, Ren Z, Mu C, Ye Y, Wang C. Effects of Elevated pCO 2 on the Survival and Growth of Portunus trituberculatus. Front Physiol 2020; 11:750. [PMID: 32754046 PMCID: PMC7367060 DOI: 10.3389/fphys.2020.00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Identifying the response of Portunus trituberculatus to ocean acidification (OA) is critical to understanding the future development of this commercially important Chinese crab species. Recent studies have reported negative effects of OA on crustaceans. Here, we subjected swimming crabs to projected oceanic CO2 levels (current: 380 μatm; 2100: 750 μatm; 2200: 1500 μatm) for 4 weeks and analyzed the effects on survival, growth, digestion, antioxidant capacity, immune function, tissue metabolites, and gut bacteria of the crabs and on seawater bacteria. We integrated these findings to construct a structural equation model to evaluate the contribution of these variables to the survival and growth of swimming crabs. Reduced crab growth shown under OA is significantly correlated with changes in gut, muscle, and hepatopancreas metabolites whereas enhanced crab survival is significantly associated with changes in the carbonate system, seawater and gut bacteria, and activities of antioxidative and digestive enzymes. In addition, seawater bacteria appear to play a central role in the digestion, stress response, immune response, and metabolism of swimming crabs and their gut bacteria. We predict that if anthropogenic CO2 emissions continue to rise, future OA could lead to severe alterations in antioxidative, immune, and metabolic functions and gut bacterial community composition in the swimming crabs through direct oxidative stress and/or indirect seawater bacterial roles. These effects appear to mediate improved survival, but at the cost of growth of the swimming crabs.
Collapse
Affiliation(s)
- Weichuan Lin
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Zhiming Ren
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| |
Collapse
|
23
|
Abstract
Nitrogen fixation, the reduction of atmospheric dinitrogen gas (N2) to ammonia, is critical for biological productivity but is difficult to study in the vast expanse of the global ocean. Decades of field studies and the infusion of molecular biological, genomic, isotopic, and geochemical modeling approaches have led to new paradigms and questions. The discovery of previously unknown N2-fixing (diazotrophic) microorganisms and unusual physiological adaptations, combined with diagnostic distributions of nutrients and their isotopes as well as measured and modeled biogeographic patterns, have revolutionized our understanding of marine N2 fixation and its role in the global nitrogen cycle. Anthropogenic upper-ocean warming, increased dissolved carbon dioxide, and acidification will affect the distribution and relative importance of specific subgroups of N2 fixers in the sea; these changes have implications for foodwebs and biogeochemical cycles.
Collapse
Affiliation(s)
- Jonathan P. Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95003, USA
| | - Douglas G. Capone
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Zhang F, Hong H, Kranz SA, Shen R, Lin W, Shi D. Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions. PHOTOSYNTHESIS RESEARCH 2019; 142:17-34. [PMID: 31077001 DOI: 10.1007/s11120-019-00643-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/30/2019] [Indexed: 05/19/2023]
Abstract
Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.
Collapse
Affiliation(s)
- Futing Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Haizheng Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, Fujian, People's Republic of China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Sven A Kranz
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Rong Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Wenfang Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, Fujian, People's Republic of China.
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|