1
|
Kobe B, Nanson JD, Hoad M, Blumenthal A, Gambin Y, Sierecki E, Stacey KJ, Ve T, Halfmann R. Signalling by co-operative higher-order assembly formation: linking evidence at molecular and cellular levels. Biochem J 2025; 482:275-294. [PMID: 40040472 DOI: 10.1042/bcj20220094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The concept of higher-order assembly signalling or signalling by co-operative assembly formation (SCAF) was proposed based on the structures of signalling assemblies formed by proteins featuring domains from the death-fold family and the Toll/interleukin-1 receptor domain family. Because these domains form filamentous assemblies upon stimulation and activate downstream pathways through induced proximity, they were envisioned to sharpen response thresholds through the extreme co-operativity of higher-order assembly. Recent findings demonstrate that a central feature of the SCAF mechanism is the nucleation barrier that allows a switch-like, digital or 'all-or-none' response to minute stimuli. In agreement, this signalling mechanism features in cell-death and innate immunity activation pathways where a binary decision is required. Here, we broaden the concept of SCAF to encapsulate the essential kinetic properties of open-ended assembly in signalling, compare properties of filamentous assemblies and other co-operative assemblies such as biomolecular condensates, and review how this concept operates in cells.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey D Nanson
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Mikayla Hoad
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Antje Blumenthal
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Yann Gambin
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Sierecki
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, U.S.A
| |
Collapse
|
2
|
Araújo Dos Santos DL, Santana de Curcio J, Novaes E, Maria de Almeida Soares C. miRNAs regulate the metabolic adaptation of Paracoccidioides brasiliensis during copper deprivation. Microbes Infect 2025; 27:105435. [PMID: 39528107 DOI: 10.1016/j.micinf.2024.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Copper is an essential metal for cellular processes such as detoxification of reactive oxygen species, oxidative phosphorylation, and iron uptake. However, during infection, the host restricts the bioavailability of this micronutrient to the pathogen as a strategy to combat infection. Recently, we have shown the involvement of miRNAs as an adaptive strategy of P. brasiliensis upon metal deprivation such as iron and zinc. However, their role in copper limitation still needs to be elucidated. Our objective was to characterize the expression profile of miRNAs regulated during copper deprivation in P. brasiliensis and the putative altered processes. Through RNAseq analysis and bioinformatics, we identified 14 differentially expressed miRNAs, two of which putatively regulated oxidative stress response, beta-oxidation, glyoxylate cycle, and cell wall remodeling. Our results suggest that metabolic adaptations carried out by P. brasiliensis in copper deprivation are regulated by miRNAs.
Collapse
Affiliation(s)
- Dener Lucas Araújo Dos Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil
| | - Evandro Novaes
- Setor de Genética, Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
3
|
Kim H, Heredia MY, Chen X, Ahmed M, Qasim M, Callender TL, Hernday AD, Rauceo JM. Mitochondrial targeting of Candida albicans SPFH proteins and requirement of stomatins for SDS-induced stress tolerance. Microbiol Spectr 2025; 13:e0173324. [PMID: 39641539 PMCID: PMC11705831 DOI: 10.1128/spectrum.01733-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast Candida albicans, stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and SLP3 overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, H2O2. Here, we sought to determine the cellular localization and functionally characterize stomatin-like protein 2 (Slp2), prohibitin-1 (Phb1), prohibitin-2 (Phb2), and prohibitin-12 (Phb12) in C. albicans. Cytological and western blotting results showed that Slp2-Gfp/Rfp and prohibitin-Gfp fusion proteins localize to the mitochondrion in yeast cells. Growth assay results did not identify any respiration defects in a panel of stomatin and prohibitin mutant strains, suggesting that SPFH respiratory function has diverged in C. albicans from other model eukaryotes. However, a slp2Δ/Δ/slp3Δ/Δ double mutant strain grew poorly in the presence of 0.08% SDS, accumulated intracellular reactive oxidative species, and displayed aberrant ergosterol distribution in the plasma membrane. These phenotypes were not observed in slp2Δ/Δ or slp3Δ/Δ single mutants, indicating a possible indirect genetic interaction between SLP2 and SLP3. In addition, slp2Δ/Δ and slp2Δ/Δ/slp3Δ/Δ mutant strains were slightly resistant to the antifungal drug, fluconazole. Collectively, these findings reveal the cellular localization of Slp2, Phb1, Phb2, and Phb12, highlight the significance of stomatins in C. albicans SDS stress tolerance, and, for the first time, associate stomatins with antifungal resistance. IMPORTANCE Stomatins and prohibitins coordinate respiration and stress adaptation in fungi. Invasive mycoses caused by Candida albicans are a significant cause of morbidity, and candidemia patients show high mortality rates worldwide. Mitochondria are essential for C. albicans commensalism and virulence, and mitochondrial proteins are targets for antifungal interventions. C. albicans encodes five SPFH proteins: two stomatin-like proteins and three prohibitins. We have previously shown that Slp3 is important for C. albicans adaptation to various types of environmental stress. Moreover, synthetic compounds that bind to mammalian prohibitins inhibit C. albicans filamentation and are fungicidal. However, there is limited information available regarding the remaining SPFH proteins. Our findings show that mitochondrial localization of SPFH proteins is conserved in C. albicans. In addition, we demonstrate the importance of stomatins in plasma membrane and mitochondrial stress tolerance.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Marienela Y. Heredia
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Xiao Chen
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Maisha Ahmed
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Tracy L. Callender
- Department of Biology, Farmingdale State College of the State University of New York, Farmingdale, New York, USA
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
4
|
Li H, Ma T, Zhao Z, Chen Y, Xi X, Zhao X, Zhou X, Gao Y, Wei L, Zhang X. scTML: a pan-cancer single-cell landscape of multiple mutation types. Nucleic Acids Res 2025; 53:D1547-D1556. [PMID: 39420637 PMCID: PMC11701564 DOI: 10.1093/nar/gkae898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating mutations, including single nucleotide variations (SNVs), gene fusions, alternative splicing and copy number variations (CNVs), is fundamental to cancer study. Recent computational methods and biological research have demonstrated the reliability and biological significance of detecting mutations from single-cell transcriptomic data. However, there is a lack of a single-cell-level database containing comprehensive mutation information in all types of cancer. Establishing a single-cell mutation landscape from the huge emerging single-cell transcriptomic data can provide a critical resource for elucidating the mechanisms of tumorigenesis and evolution. Here, we developed scTML (http://sctml.xglab.tech/), the first database offering a pan-cancer single-cell landscape of multiple mutation types. It includes SNVs, insertions/deletions, gene fusions, alternative splicing and CNVs, along with gene expression, cell states and other phenotype information. The data are from 74 datasets with 2 582 633 cells, including 35 full-length (Smart-seq2) transcriptomic single-cell datasets (all publicly available data with raw sequencing files), 23 datasets from 10X technology and 16 spatial transcriptomic datasets. scTML enables users to interactively explore multiple mutation landscapes across tumors or cell types, analyze single-cell-level mutation-phenotype associations and detect cell subclusters of interest. scTML is an important resource that will significantly advance deciphering intra-tumor and inter-tumor heterogeneity, and how mutations shape cell phenotypes.
Collapse
Affiliation(s)
- Haochen Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
- School of Medicine, Tsinghua Medicine, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Tianxing Ma
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Zetong Zhao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
- Department of Biostatistics, School of Public Health, Yale University, 60 College St, New Haven, CT 06510, USA
| | - Yixin Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Xi Xi
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Xiaofei Zhao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Xiaoxiang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, No. 2 Biotechnology Street, Hangkonggang District, Zhengzhou 450000, China
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancers Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No. 3,ZhiGongXin Street, Xinghualing District, Taiyuan 030013, China
- Central Laboratory and Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 113 Baohe Road, Longgang District, Shenzhen 518116, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
- School of Medicine, Tsinghua Medicine, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| |
Collapse
|
5
|
Bitencourt T, Nogueira F, Jenull S, Phan-Canh T, Tscherner M, Kuchler K, Lion T. Integrated multi-omics identifies pathways governing interspecies interaction between A. fumigatus and K. pneumoniae. Commun Biol 2024; 7:1496. [PMID: 39533021 PMCID: PMC11557599 DOI: 10.1038/s42003-024-07145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Polymicrobial co- and superinfections involving bacterial and fungal pathogens pose serious challenges for diagnosis and therapy, and are associated with elevated morbidity and mortality. However, the metabolic dynamics of bacterial-fungal interactions (BFI) and the resulting impact on disease outcome remain largely unknown. The fungus Aspergillus fumigatus and the bacterium Klebsiella pneumoniae are clinically important pathogens sharing common niches in the human body, especially in the lower respiratory tract. We have exploited an integrated multi-omics approach to unravel the complex and multifaceted processes implicated in the interspecies communication involving these pathogens in mixed biofilms. In this setting, A. fumigatus responds to the bacterial challenge by rewiring its metabolism, attenuating the translational machineries, and by connecting secondary with primary metabolism, while K. pneumoniae maintains its central metabolism and translation activity. The flexibility in the metabolism of A. fumigatus and the ability to quickly adapt to the changing microenvironment mediated by the bacteria highlight new possibilities for studying the impact of cross-communication between competing interaction partners. The data underscore the complexity governing the dynamics underlying BFI, such as pronounced metabolic changes mounted in A. fumigatus interacting with K. pneumoniae. Our findings identify candidate biomarkers potentially exploitable for improved clinical management of BFI.
Collapse
Affiliation(s)
- Tamires Bitencourt
- CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
- Labdia - Labordiagnostik GmbH, Vienna, Austria
- Department of Medical Biochemistry, Campus Vienna Biocenter, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Filomena Nogueira
- CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
- Labdia - Labordiagnostik GmbH, Vienna, Austria
- Department of Medical Biochemistry, Campus Vienna Biocenter, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jenull
- Department of Medical Biochemistry, Campus Vienna Biocenter, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
- Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Trinh Phan-Canh
- Department of Medical Biochemistry, Campus Vienna Biocenter, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Michael Tscherner
- Department of Medical Biochemistry, Campus Vienna Biocenter, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Campus Vienna Biocenter, Max Perutz Labs, Medical University of Vienna, Vienna, Austria.
| | - Thomas Lion
- CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria.
- Labdia - Labordiagnostik GmbH, Vienna, Austria.
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Sherry J, Rego EH. Phenotypic Heterogeneity in Pathogens. Annu Rev Genet 2024; 58:183-209. [PMID: 39083846 DOI: 10.1146/annurev-genet-111523-102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, and Mycobacterium tuberculosis, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| |
Collapse
|
7
|
Dadole I, Blaha D, Personnic N. The macrophage-bacterium mismatch in persister formation. Trends Microbiol 2024; 32:944-956. [PMID: 38443279 DOI: 10.1016/j.tim.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Many pathogens are hard to eradicate, even in the absence of genetically detectable antimicrobial resistance mechanisms and despite proven antibiotic susceptibility. The fraction of clonal bacteria that temporarily elude effective antibiotic treatments is commonly known as 'antibiotic persisters.' Over the past decade, there has been a growing body of research highlighting the pivotal role played by the cellular host in the development of persisters. In parallel, this research has also sought to elucidate the molecular mechanisms underlying the formation of intracellular antibiotic persisters and has demonstrated a prominent role for the bacterial stress response. However, questions remain regarding the conditions leading to the formation of stress-induced persisters among a clonal population of intracellular bacteria and despite an ostensibly uniform environment. In this opinion, following a brief review of the current state of knowledge regarding intracellular antibiotic persisters, we explore the ways in which macrophage functional heterogeneity and bacterial phenotypic heterogeneity may contribute to the emergence of these persisters. We propose that the degree of mismatch between the macrophage permissiveness and the bacterial preparedness to invade and thrive intracellularly may explain the formation of stress-induced nonreplicating intracellular persisters.
Collapse
Affiliation(s)
- Iris Dadole
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France
| | - Didier Blaha
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France
| | - Nicolas Personnic
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France.
| |
Collapse
|
8
|
Wu Q, Gu Z, Shang B, Wan D, Zhang Q, Zhang X, Xie P, Cheng S, Zhang W, Zhang K. Circulating tumor cell clustering modulates RNA splicing and polyadenylation to facilitate metastasis. Cancer Lett 2024; 588:216757. [PMID: 38417668 DOI: 10.1016/j.canlet.2024.216757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Circulating tumor cell (CTC) clusters exhibit significantly higher metastatic potential compared to single CTCs. However, the underlying mechanism behind this phenomenon remains unclear, and the role of posttranscriptional RNA regulation in CTC clusters has not been explored. Here, we conducted a comparative analysis of alternative splicing (AS) and alternative polyadenylation (APA) profiles between single CTCs and CTC clusters. We identified 994 and 836 AS events in single CTCs and CTC clusters, respectively, with ∼20% of AS events showing differential regulation between the two cell types. A key event in this differential splicing was observed in SRSF6, which disrupted AS profiles and contributed to the increased malignancy of CTC clusters. Regarding APA, we found a global lengthening of 3' UTRs in CTC clusters compared to single CTCs. This alteration was primarily governed by 14 core APA factors, particularly PPP1CA. The modified APA profiles facilitated the cell cycle progression of CTC clusters and indicated their reduced susceptibility to oxidative stress. Further investigation revealed that the proportion of H2AFY mRNA with long 3' UTR instead of short 3' UTR was higher in CTC clusters than single CTCs. The AU-rich elements (AREs) within the long 3' UTR of H2AFY mRNA enhance mRNA stability and translation activity, resulting in promoting cell proliferation and invasion, which potentially facilitate the establishment and rapid formation of metastatic tumors mediated by CTC clusters. These findings provide new insights into the mechanisms driving CTC cluster metastasis.
Collapse
Affiliation(s)
- Quanyou Wu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China; State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaoru Gu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bingqing Shang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Duo Wan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peipei Xie
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Day AW, Kumamoto CA. Selection of ethanol tolerant strains of Candida albicans by repeated ethanol exposure results in strains with reduced susceptibility to fluconazole. PLoS One 2024; 19:e0298724. [PMID: 38377103 PMCID: PMC10878505 DOI: 10.1371/journal.pone.0298724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Zhang FY, Lian N, Li M. Macrophage pyroptosis induced by Candida albicans. Pathog Dis 2024; 82:ftae003. [PMID: 38499444 PMCID: PMC11162155 DOI: 10.1093/femspd/ftae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Candida albicans (C. albicans) is a prevalent opportunistic pathogen that causes mucocutaneous and systemic infections, particularly in immunocompromised individuals. Macrophages play a crucial role in eliminating C. albicans in local and bloodstream contexts, while also regulating antifungal immune responses. However, C. albicans can induce macrophage lysis through pyroptosis, a type of regulated cell death. This process can enable C. albicans to escape from immune cells and trigger the release of IL-1β and IL-18, which can impact both the host and the pathogen. Nevertheless, the mechanisms by which C. albicans triggers pyroptosis in macrophages and the key factors involved in this process remain unclear. In this review, we will explore various factors that may influence or trigger pyroptosis in macrophages induced by C. albicans, such as hypha, ergosterol, cell wall remodeling, and other virulence factors. We will also examine the possible immune response following macrophage pyroptosis.
Collapse
Affiliation(s)
- Feng-yuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Ni Lian
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Min Li
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
- Center for Global Health, School of Public Health, Nanjing Medical University, 101st. LongMian Avenue, Nanjing, 211166, China
| |
Collapse
|
11
|
King WR, Acosta-Zaldívar M, Qi W, Cherico N, Cooke L, Köhler JR, Patton-Vogt J. Glycerophosphocholine provision rescues Candida albicans growth and signaling phenotypes associated with phosphate limitation. mSphere 2023; 8:e0023123. [PMID: 37843297 PMCID: PMC10732039 DOI: 10.1128/msphere.00231-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Candida albicans is the most commonly isolated species from patients suffering from invasive fungal disease. C. albicans is most commonly a commensal organism colonizing a variety of niches in the human host. The fungus must compete for resources with the host flora to acquire essential nutrients such as phosphate. Phosphate acquisition and homeostasis have been shown to play a key role in C. albicans virulence, with several genes involved in these processes being required for normal virulence and several being upregulated during infection. In addition to inorganic phosphate (Pi), C. albicans can utilize the lipid-derived metabolite glycerophosphocholine (GPC) as a phosphate source. As GPC is available within the human host, we examined the role of GPC in phosphate homeostasis in C. albicans. We find that GPC can substitute for Pi by many though not all criteria and is likely a relevant physiological phosphate source for C. albicans.
Collapse
Affiliation(s)
- William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Maikel Acosta-Zaldívar
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Wanjun Qi
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Cherico
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Lauren Cooke
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Julia R. Köhler
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Day AW, Kumamoto CA. Selection of Ethanol Tolerant Strains of Candida albicans by Repeated Ethanol Exposure Results in Strains with Reduced Susceptibility to Fluconazole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557677. [PMID: 37745460 PMCID: PMC10515905 DOI: 10.1101/2023.09.13.557677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| |
Collapse
|
13
|
Cristovao B, Rodrigues L, Catarino S, Abreu M, Gonçalves T, Domingues N, Girao H. Cx43-mediated hyphal folding counteracts phagosome integrity loss during fungal infection. Microbiol Spectr 2023; 11:e0123823. [PMID: 37733471 PMCID: PMC10581180 DOI: 10.1128/spectrum.01238-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
Phagolysosomes are crucial organelles during the elimination of pathogens by host cells. The maintenance of their membrane integrity is vital during stressful conditions, such as during Candida albicans infection. As the fungal hyphae grow, the phagolysosome membrane expands to ensure that the growing fungus remains entrapped. Additionally, actin structures surrounding the hyphae-containing phagosome were recently described to damage and constrain these pathogens inside the host vacuoles by inducing their folding. However, the molecular mechanism involved in the phagosome membrane adaptation during this extreme expansion process is still unclear. The main goal of this study was to unveil the interplay between phagosomal membrane integrity and folding capacity of C. albicans-infected macrophages. We show that components of the repair machinery are gradually recruited to the expanding phagolysosomal membrane and that their inhibition diminishes macrophage folding capacity. Through an analysis of an RNAseq data set of C. albicans-infected macrophages, we identified Cx43, a gap junction protein, as a putative player involved in the interplay between lysosomal homeostasis and actin-related processes. Our findings further reveal that Cx43 is recruited to expand phagosomes and potentiates the hyphal folding capacity of macrophages, promoting their survival. Additionally, we reveal that Cx43 can act as an anchor for complexes involved in Arp2-mediated actin nucleation during the assembly of actin rings around hyphae-containing phagosomes. Overall, this work brings new insights on the mechanisms by which macrophages cope with C. albicans infection ascribing to Cx43 a new noncanonical regulatory role in phagosome dynamics during pathogen phagocytosis. IMPORTANCE Invasive candidiasis is a life-threatening fungal infection that can become increasingly resistant to treatment. Thus, strategies to improve immune system efficiency, such as the macrophage response during the clearance of the fungal infection, are crucial to ameliorate the current therapies. Engulfed Candida albicans, one of the most common Candida species, is able to quickly transit from yeast-to-hypha form, which can elicit a phagosomal membrane injury and ultimately lead to macrophage death. Here, we extend the understanding of phagosome membrane homeostasis during the hypha expansion and folding process. We found that loss of phagosomal membrane integrity decreases the capacity of macrophages to fold the hyphae. Furthermore, through a bioinformatic analysis, we reveal a new window of opportunities to disclose the mechanisms underlying the hyphal constraining process. We identified Cx43 as a new weapon in the armamentarium to tackle infection by potentiating hyphal folding and promoting macrophage survival.
Collapse
Affiliation(s)
- Beatriz Cristovao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Center for Neurosciences and Cell Biology (CNC-UC), University of Coimbra, Coimbra, Portugal
| | - Steve Catarino
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Monica Abreu
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology (CNC-UC), University of Coimbra, Coimbra, Portugal
| | - Neuza Domingues
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinical Academic Centre of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Ghaddar B, Blaser MJ, De S. Denoising sparse microbial signals from single-cell sequencing of mammalian host tissues. NATURE COMPUTATIONAL SCIENCE 2023; 3:741-747. [PMID: 37946872 PMCID: PMC10634611 DOI: 10.1038/s43588-023-00507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 08/07/2023] [Indexed: 11/12/2023]
Abstract
Existing genomic sequencing data can be used to study host-microbiome ecosystems, however distinguishing signals originating from truly present microbes versus contaminating species and artifacts is a substantial and often prohibitive challenge. Here we show that emerging sequencing technologies definitely capture reads from present microbes. We developed SAHMI, a computational resource to identify truly present microbial nucleic acids and filter contaminants and spurious false-positive taxonomic assignments from standard transcriptomic sequencing of mammalian tissues. In benchmark studies, SAHMI correctly identifies known microbial infections present in diverse tissues, and we validate SAHMI's enrichment for correctly classified, truly present species using multiple orthogonal computational experiments. The application of SAHMI to single-cell and spatial genomic data thus enables co-detection of somatic cells and microorganisms and joint analysis of host-microbiome ecosystems.
Collapse
Affiliation(s)
- Bassel Ghaddar
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University; 195 Albany St., New Brunswick, New Jersey 08901
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University; 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University; 195 Albany St., New Brunswick, New Jersey 08901
| |
Collapse
|
15
|
Hildebrandt F, Mohammed M, Dziedziech A, Bhandage AK, Divne AM, Barrenäs F, Barragan A, Henriksson J, Ankarklev J. scDual-Seq of Toxoplasma gondii-infected mouse BMDCs reveals heterogeneity and differential infection dynamics. Front Immunol 2023; 14:1224591. [PMID: 37575232 PMCID: PMC10415529 DOI: 10.3389/fimmu.2023.1224591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Global Health, Institut Pasteur, Paris, France
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Fredrik Barrenäs
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Johan Henriksson
- Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Liu Z, Basso P, Hossain S, Liston SD, Robbins N, Whitesell L, Noble SM, Cowen LE. Multifactor transcriptional control of alternative oxidase induction integrates diverse environmental inputs to enable fungal virulence. Nat Commun 2023; 14:4528. [PMID: 37500616 PMCID: PMC10374912 DOI: 10.1038/s41467-023-40209-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Metabolic flexibility enables fungi to invade challenging host environments. In Candida albicans, a common cause of life-threatening infections in humans, an important contributor to flexibility is alternative oxidase (Aox) activity. Dramatic induction of this activity occurs under respiratory-stress conditions, which impair the classical electron transport chain (ETC). Here, we show that deletion of the inducible AOX2 gene cripples C. albicans virulence in mice by increasing immune recognition. To investigate further, we examined transcriptional regulation of AOX2 in molecular detail under host-relevant, ETC-inhibitory conditions. We found that multiple transcription factors, including Rtg1/Rtg3, Cwt1/Zcf11, and Zcf2, bind and regulate the AOX2 promoter, conferring thousand-fold levels of inducibility to AOX2 in response to distinct environmental stressors. Further dissection of this complex promoter revealed how integration of stimuli ranging from reactive species of oxygen, nitrogen, and sulfur to reduced copper availability is achieved at the transcriptional level to regulate AOX2 induction and enable pathogenesis.
Collapse
Affiliation(s)
- Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Pauline Basso
- UCSF Department of Microbiology & Immunology, San Francisco, CA, USA
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Suzanne M Noble
- UCSF Department of Microbiology & Immunology, San Francisco, CA, USA.
- UCSF Department of Medicine, Division of Infectious Diseases, San Francisco, CA, USA.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Arastehfar A, Daneshnia F, Cabrera N, Penalva-Lopez S, Sarathy J, Zimmerman M, Shor E, Perlin DS. Macrophage internalization creates a multidrug-tolerant fungal persister reservoir and facilitates the emergence of drug resistance. Nat Commun 2023; 14:1183. [PMID: 36864040 PMCID: PMC9981703 DOI: 10.1038/s41467-023-36882-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Candida glabrata is a major fungal pathogen notable for causing recalcitrant infections, rapid emergence of drug-resistant strains, and its ability to survive and proliferate within macrophages. Resembling bacterial persisters, a subset of genetically drug-susceptible C. glabrata cells can survive lethal exposure to the fungicidal echinocandin drugs. Herein, we show that macrophage internalization induces cidal drug tolerance in C. glabrata, expanding the persister reservoir from which echinocandin-resistant mutants emerge. We show that this drug tolerance is associated with non-proliferation and is triggered by macrophage-induced oxidative stress, and that deletion of genes involved in reactive oxygen species detoxification significantly increases the emergence of echinocandin-resistant mutants. Finally, we show that the fungicidal drug amphotericin B can kill intracellular C. glabrata echinocandin persisters, reducing emergence of resistance. Our study supports the hypothesis that intra-macrophage C. glabrata is a reservoir of recalcitrant/drug-resistant infections, and that drug alternating strategies can be developed to eliminate this reservoir.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Suyapa Penalva-Lopez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jansy Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA.
| |
Collapse
|
18
|
Delaney C, Short B, Rajendran R, Kean R, Burgess K, Williams C, Munro CA, Ramage G. An integrated transcriptomic and metabolomic approach to investigate the heterogeneous Candida albicans biofilm phenotype. Biofilm 2023; 5:100112. [PMID: 36969800 PMCID: PMC10034394 DOI: 10.1016/j.bioflm.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Candida albicans is the most prevalent and notorious of the Candida species involved in bloodstream infections, which is characterised by its capacity to form robust biofilms. Biofilm formation is an important clinical entity shown to be highly variable among clinical isolates. There are various environmental and physiological factors, including nutrient availability which influence the phenotype of Candida species. However, mechanisms underpinning adaptive biofilm heterogeneity have not yet been fully explored. Within this study we have profiled previously characterised and phenotypically distinct C. albicans bloodstream isolates. We assessed the dynamic susceptibility of these differing populations to antifungal treatments using population analysis profiling in addition to assessing biofilm formation and morphological changes. High throughput methodologies of RNA-Seq and LC-MS were employed to map and integrate the transcriptional and metabolic reprogramming undertaken by heterogenous C. albicans isolates in response to biofilm and hyphal inducing serum. We found a significant relationship between biofilm heterogeneity and azole resistance (P < 0.05). In addition, we observed that in response to serum our low biofilm forming (LBF) C. albicans exhibited a significant increase in biofilm formation and hyphal elongation. The transcriptional reprogramming of LBF strains compared to high biofilm forming (HBF) was distinct, indicating a high level of plasticity and variation in stress responses by heterogenous strains. The metabolic responses, although variable between LBF and HBF, shared many of the same responses to serum. Notably, a high upregulation of the arachidonic acid cascade, part of the COX pathway, was observed and this pathway was found to induce biofilm formation in LBF 3-fold. C. albicans is a highly heterogenous bloodstream pathogen with clinical isolates varying in antifungal tolerance and biofilm formation. In addition to this, C. albicans is capable of highly complex and variable regulation of transcription and metabolic pathways and heterogeneity across isolates further increases the complexity of these pathways. Here we have shown with a dual and integrated approach, the importance of studying a diverse panel of C. albicans isolates, which has the potential to reveal distinct pathways that can harnessed for drug discovery.
Collapse
|
19
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
20
|
Rai MN, Parsania C, Rai R. Mapping the mutual transcriptional responses during Candida albicans and human macrophage interactions by dual RNA-sequencing. Microb Pathog 2022; 173:105864. [DOI: 10.1016/j.micpath.2022.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
21
|
Ghaddar B, Biswas A, Harris C, Omary MB, Carpizo DR, Blaser MJ, De S. Tumor microbiome links cellular programs and immunity in pancreatic cancer. Cancer Cell 2022; 40:1240-1253.e5. [PMID: 36220074 PMCID: PMC9556978 DOI: 10.1016/j.ccell.2022.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
Microorganisms are detected in multiple cancer types, including in putatively sterile organs, but the contexts in which they influence oncogenesis or anti-tumor responses in humans remain unclear. We recently developed single-cell analysis of host-microbiome interactions (SAHMI), a computational pipeline to recover and denoise microbial signals from single-cell sequencing of host tissues. Here we use SAHMI to interrogate tumor-microbiome interactions in two human pancreatic cancer cohorts. We identify somatic-cell-associated bacteria in a subset of tumors and their near absence in nonmalignant tissues. These bacteria predominantly pair with tumor cells, and their presence is associated with cell-type-specific gene expression and pathway activities, including cell motility and immune signaling. Modeling results indicate that tumor-infiltrating lymphocytes closely resemble T cells from infected tissue. Finally, using multiple independent datasets, a signature of cell-associated bacteria predicts clinical prognosis. Tumor-microbiome crosstalk may modulate tumorigenesis in pancreatic cancer with implications for clinical management.
Collapse
Affiliation(s)
- Bassel Ghaddar
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Albany St., New Brunswick, NJ 08901, USA
| | - Antara Biswas
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Albany St., New Brunswick, NJ 08901, USA
| | - Chris Harris
- Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box SURG, Rochester, NY 14642, USA
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Darren R Carpizo
- Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box SURG, Rochester, NY 14642, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, USA.
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Albany St., New Brunswick, NJ 08901, USA.
| |
Collapse
|
22
|
Rodriguez Gama A, Miller T, Lange JJ, Unruh JR, Halfmann R. A nucleation barrier spring-loads the CBM signalosome for binary activation. eLife 2022; 11:79826. [PMID: 35727133 PMCID: PMC9342958 DOI: 10.7554/elife.79826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Immune cells activate in binary, switch-like fashion via large protein assemblies known as signalosomes, but the molecular mechanism of the switch is not yet understood. Here, we employed an in-cell biophysical approach to dissect the assembly mechanism of the CARD-BCL10-MALT1 (CBM) signalosome, which governs nuclear transcription factor-κB activation in both innate and adaptive immunity. We found that the switch consists of a sequence-encoded and deeply conserved nucleation barrier to ordered polymerization by the adaptor protein BCL10. The particular structure of the BCL10 polymers did not matter for activity. Using optogenetic tools and single-cell transcriptional reporters, we discovered that endogenous BCL10 is functionally supersaturated even in unstimulated human cells, and this results in a predetermined response to stimulation upon nucleation by activated CARD multimers. Our findings may inform on the progressive nature of age-associated inflammation, and suggest that signalosome structure has evolved via selection for kinetic rather than equilibrium properties of the proteins. The innate immune system is the body’s first line of defence against pathogens. Although innate immune cells do not recognize specific disease-causing agents, they can detect extremely low levels of harmful organisms or substances. In response, they activate signals that lead to inflammation, which tells other cells that there is an infection. Innate immune cells are turned on in a switch-like fashion, becoming active very quickly after interacting with a pathogen. This is due to the action of signalosomes, large complexes made up of several proteins that clump together to form long chains that activate the cell. But how do these large protein complexes assemble quick enough to create the switch-like activation observed in innate immune cells? To answer this question, Rodríguez Gama et al. focused on the CBM signalosome, which is involved in triggering inflammation through the activation of a protein called NF-kB. First, Rodríguez Gama et al. used genetic tools to determine that activating the CBM signalosome drives a switch-like activation of NF-kB in cells. This means that individual cells in a population either become fully activated or not at all in response to minute amounts of harmful substances. Once they had established this, Rodríguez Gama et al. wanted to know which protein in the CBM signalosome was responsible for the switch. They found that one of the proteins in the signalosome, called BCL10, has a ‘nucleation barrier’ encoded in its sequence. This means that it is very hard for BCL10 to start clumping together, but once it does, the clumps grow on their own. The nucleation barrier describes exactly how hard it is for these clumps to get started, and is determined by how disorganized the protein is. When a pathogen ‘stimulates’ an immune cell, a tiny template is formed that lowers the nucleation barrier so that BCL10 can then aggregate itself together, leading to the switch-like behaviour observed. The nucleation barrier allows there to be more than enough BCL10 present in the cell at all times – ready to clump together at a moment’s notice – and this permits the cell to detect very low levels of a pathogen. Rodríguez Gama et al. then tested whether BCL10 from other animals also has a nucleation barrier. They found that this feature is conserved from cnidarians, such as corals or jellyfish, to mammals, including humans. This suggests that the use of nucleation barriers to regulate innate immune signalling has existed for a long time throughout evolution. The work by Rodríguez Gama et al. broadens our understanding of how the innate immune system senses and responds to extremely low levels of pathogens. That BCL10 is always ready to clump together suggests it may be a driving force for chronic and age-associated inflammation. Additionally, the findings of Rodríguez Gama et al. also offer insights into how other signalosomes may become activated, and offer the possibility of new drugs aimed at modifying nucleation barriers.
Collapse
Affiliation(s)
| | - Tayla Miller
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
23
|
Stress- and metabolic responses of Candida albicans require Tor1 kinase N-terminal HEAT repeats. PLoS Pathog 2022; 18:e1010089. [PMID: 35687592 PMCID: PMC9223334 DOI: 10.1371/journal.ppat.1010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/23/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Whether to commit limited cellular resources toward growth and proliferation, or toward survival and stress responses, is an essential determination made by Target of Rapamycin Complex 1 (TORC1) for a eukaryotic cell in response to favorable or adverse conditions. Loss of TORC1 function is lethal. The TORC1 inhibitor rapamycin that targets the highly conserved Tor kinase domain kills fungal pathogens like Candida albicans, but is also severely toxic to human cells. The least conserved region of fungal and human Tor kinases are the N-terminal HEAT domains. We examined the role of the 8 most N-terminal HEAT repeats of C. albicans Tor1. We compared nutritional- and stress responses of cells that express a message for N-terminally truncated Tor1 from repressible tetO, with cells expressing wild type TOR1 from tetO or from the native promoter. Some but not all stress responses were significantly impaired by loss of Tor1 N-terminal HEAT repeats, including those to oxidative-, cell wall-, and heat stress; in contrast, plasma membrane stress and antifungal agents that disrupt plasma membrane function were tolerated by cells lacking this Tor1 region. Translation was inappropriately upregulated during oxidative stress in cells lacking N-terminal Tor1 HEAT repeats despite simultaneously elevated Gcn2 activity, while activation of the oxidative stress response MAP kinase Hog1 was weak. Conversely, these cells were unable to take advantage of favorable nutritional conditions by accelerating their growth. Consuming oxygen more slowly than cells containing wild type TOR1 alleles during growth in glucose, cells lacking N-terminal Tor1 HEAT repeats additionally were incapable of utilizing non-fermentable carbon sources. They were also hypersensitive to inhibitors of specific complexes within the respiratory electron transport chain, suggesting that inefficient ATP generation and a resulting dearth of nucleotide sugar building blocks for cell wall polysaccharides causes cell wall integrity defects in these mutants. Genome-wide expression analysis of cells lacking N-terminal HEAT repeats showed dysregulation of carbon metabolism, cell wall biosynthetic enzymes, translational machinery biosynthesis, oxidative stress responses, and hyphal- as well as white-opaque cell type-associated genes. Targeting fungal-specific Tor1 N-terminal HEAT repeats with small molecules might selectively abrogate fungal viability, especially when during infection multiple stresses are imposed by the host immune system. Whether growing harmlessly on our mucous membranes in competition with bacterial multitudes, or invading our tissues and bloodstream, the fungus Candida albicans must be capable of rapid growth when it finds abundant nutrients and favorable conditions. It must also be able to switch to stress- and survival mode when encountering host immune cells and when starving for nutrients. Tor1 kinase is the central regulator at the heart of these cellular decisions. As an essential protein, it is an attractive drug target. But the Tor1 kinase domain is very similar to its human counterpart, rendering its inhibitors like rapamycin toxic for humans. We identified a region of helical protein-protein interaction domains, the N-terminal HEAT repeats, as the least conserved part of C. albicans Tor1. Using genetic- and genome-wide expression analysis, we found that 8 N-terminal HEAT repeats are required for growth acceleration in nutrient-rich environments and for decreased translation in starvation- and stress conditions. This Tor1 region contributes to oxidative-, cell wall- and heat stress reponses, to hyphal growth and to respiration, but apparently not to plasma membrane stress endurance or fermentation. Small molecules that disrupt the protein-protein interactions mediated by this region could become fungal-selective inhibitors of Tor kinase.
Collapse
|
24
|
Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat Commun 2022; 13:3192. [PMID: 35680868 PMCID: PMC9184479 DOI: 10.1038/s41467-022-30661-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Intestinal microbiota dysbiosis can initiate overgrowth of commensal Candida species - a major predisposing factor for disseminated candidiasis. Commensal bacteria such as Lactobacillus rhamnosus can antagonize Candida albicans pathogenicity. Here, we investigate the interplay between C. albicans, L. rhamnosus, and intestinal epithelial cells by integrating transcriptional and metabolic profiling, and reverse genetics. Untargeted metabolomics and in silico modelling indicate that intestinal epithelial cells foster bacterial growth metabolically, leading to bacterial production of antivirulence compounds. In addition, bacterial growth modifies the metabolic environment, including removal of C. albicans' favoured nutrient sources. This is accompanied by transcriptional and metabolic changes in C. albicans, including altered expression of virulence-related genes. Our results indicate that intestinal colonization with bacteria can antagonize C. albicans by reshaping the metabolic environment, forcing metabolic adaptations that reduce fungal pathogenicity.
Collapse
|
25
|
Datta A, Hernandez-Franco JF, Park S, Olson MR, HogenEsch H, Thangamani S. Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine. J Fungi (Basel) 2022; 8:jof8060610. [PMID: 35736093 PMCID: PMC9224641 DOI: 10.3390/jof8060610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023] Open
Abstract
Invasive Candida albicans (CA) infections often arise from the intestine and cause life-threatening infections in immunocompromised individuals. The role of gut commensal microbiota, metabolites, and host factors in the regulation of CA colonization in the intestine is poorly understood. Previous findings from our lab indicate that taurocholic acid (TCA), a major bile acid present in the intestine, promotes CA colonization and dissemination. Here, we report that oral administration of TCA to CA-infected mice significantly decreased the number of mononuclear phagocytes and CD4+ IL17A+ T helper 17 cells that play a critical role in controlling CA in the intestine. Collectively, our results indicate that TCA modulates mucosal innate and adaptive immune responses to promote CA colonization in the intestine.
Collapse
Affiliation(s)
- Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; (A.D.); (J.F.H.-F.); (H.H.)
| | - Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; (A.D.); (J.F.H.-F.); (H.H.)
| | - Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA; (S.P.); (M.R.O.)
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA; (S.P.); (M.R.O.)
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; (A.D.); (J.F.H.-F.); (H.H.)
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; (A.D.); (J.F.H.-F.); (H.H.)
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
- Correspondence: ; Tel.: +1-765-494-0763
| |
Collapse
|
26
|
Pasman R, Krom BP, Zaat SAJ, Brul S. The Role of the Oral Immune System in Oropharyngeal Candidiasis-Facilitated Invasion and Dissemination of Staphylococcus aureus. FRONTIERS IN ORAL HEALTH 2022; 3:851786. [PMID: 35464779 PMCID: PMC9021398 DOI: 10.3389/froh.2022.851786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans and Staphylococcus aureus account for most invasive fungal and bacterial bloodstream infections (BSIs), respectively. However, the initial point of invasion responsible for S. aureus BSIs is often unclear. Recently, C. albicans has been proposed to mediate S. aureus invasion of immunocompromised hosts during co-colonization of oral mucosal surfaces. The status of the oral immune system crucially contributes to this process in two distinct ways: firstly, by allowing invasive C. albicans growth during dysfunction of extra-epithelial immunity, and secondly following invasion by some remaining function of intra-epithelial immunity. Immunocompromised individuals at risk of developing invasive oral C. albicans infections could, therefore, also be at risk of contracting concordant S. aureus BSIs. Considering the crucial contribution of both oral immune function and dysfunction, the aim of this review is to provide an overview of relevant aspects of intra and extra-epithelial oral immunity and discuss predominant immune deficiencies expected to facilitate C. albicans induced S. aureus BSIs.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Stanley Brul
| |
Collapse
|
27
|
Bitencourt TA, Hatanaka O, Pessoni AM, Freitas MS, Trentin G, Santos P, Rossi A, Martinez-Rossi NM, Alves LL, Casadevall A, Rodrigues ML, Almeida F. Fungal Extracellular Vesicles Are Involved in Intraspecies Intracellular Communication. mBio 2022; 13:e0327221. [PMID: 35012355 PMCID: PMC8749427 DOI: 10.1128/mbio.03272-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Fungal infections are associated with high mortality rates in humans. The risk of fungal diseases creates the urgent need to broaden the knowledge base regarding their pathophysiology. In this sense, the role of extracellular vesicles (EVs) has been described to convey biological information and participate in the fungus-host interaction process. We hypothesized that fungal EVs work as an additional element in the communication routes regulating fungal responses in intraspecies interaction systems. In this respect, the aim of this study was to address the gene regulation profiles prompted by fungal EVs in intraspecies recipient cells. Our data demonstrated the intraspecies uptake of EVs in pathogenic fungi, such as Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis, and the effects triggered by EVs in fungal cells. In C. albicans, we evaluated the involvement of EVs in the yeast-to-hypha transition, while in P. brasiliensis and A. fumigatus the function of EVs as stress transducers was investigated. P. brasiliensis and A. fumigatus were exposed to an inhibitor of glycosylation or UV light, respectively. The results demonstrated the role of EVs in regulating the expression of target genes and triggering phenotypic changes. The EVs treatment induced cellular proliferation and boosted the yeast to hyphal transition in C. albicans, while they enhanced stress responsiveness in A. fumigatus and P. brasiliensis, establishing a role for EVs in fungal intraspecies communication. Thus, EVs regulate fungal behavior, acting as potent message effectors, and understanding their effects and mechanism(s) of action could be exploited in antifungal therapies. IMPORTANCE Here, we report a study about extracellular vesicles (EVs) as communication mediators in fungi. Our results demonstrated the role of EVs from Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis regulating the expression of target genes and phenotypic features. We asked whether fungal EVs play a role as message effectors. We show that fungal EVs are involved in fungal interaction systems as potent message effectors, and understanding their effects and mechanisms of action could be exploited in antifungal therapies.
Collapse
Affiliation(s)
- Tamires A. Bitencourt
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Otavio Hatanaka
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Andre M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Patrick Santos
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lysangela L. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, PR, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, PR, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|
28
|
Abstract
The tight association of Candida albicans with the human host has driven the evolution of mechanisms that permit metabolic flexibility. Amino acids, present in a free or peptide-bound form, are abundant carbon and nitrogen sources in many host niches. In C. albicans, the capacity to utilize certain amino acids, like proline, is directly connected to fungal morphogenesis and virulence. Yet the precise nature of proline sensing and uptake in this pathogenic fungus has not been investigated. Since C. albicans encodes 10 putative orthologs of the four Saccharomyces cerevisiae proline transporters, we tested deletion strains of the respective genes and identified Gnp2 (CR_09920W) as the main C. albicans proline permease. In addition, we found that this specialization of Gnp2 was reflected in its transcriptional regulation and further assigned distinct substrate specificities for the other orthologs, indicating functional differences of the C. albicans amino acid permeases compared to the model yeast. The physiological relevance of proline uptake is exemplified by the findings that strains lacking GNP2 were unable to filament in response to extracellular proline and had a reduced capacity to damage macrophages and impaired survival following phagocytosis. Furthermore, GNP2 deletion rendered the cells more sensitive to oxidative stress, illustrating new connections between amino acid uptake and stress adaptation in C. albicans. IMPORTANCE The utilization of various nutrients is of paramount importance for the ability of Candida albicans to successfully colonize and infect diverse host niches. In this context, amino acids are of special interest due to their ubiquitous availability, relevance for fungal growth, and direct influence on virulence traits like filamentation. In this study, we identify a specialized proline transporter in C. albicans encoded by GNP2. The corresponding amino acid permease is essential for proline-induced filamentation, oxidative stress resistance, and fungal survival following interaction with macrophages. Altogether, this work highlights the importance of amino acid uptake for metabolic and stress adaptation in this fungus.
Collapse
|
29
|
Dohn R, Xie B, Back R, Selewa A, Eckart H, Rao RP, Basu A. mDrop-Seq: Massively Parallel Single-Cell RNA-Seq of Saccharomyces cerevisiae and Candida albicans. Vaccines (Basel) 2021; 10:vaccines10010030. [PMID: 35062691 PMCID: PMC8779198 DOI: 10.3390/vaccines10010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Advances in high-throughput single-cell RNA sequencing (scRNA-seq) have been limited by technical challenges such as tough cell walls and low RNA quantity that prevent transcriptomic profiling of microbial species at throughput. We present microbial Drop-seq or mDrop-seq, a high-throughput scRNA-seq technique that is demonstrated on two yeast species, Saccharomyces cerevisiae, a popular model organism, and Candida albicans, a common opportunistic pathogen. We benchmarked mDrop-seq for sensitivity and specificity and used it to profile 35,109 S. cerevisiae cells to detect variation in mRNA levels between them. As a proof of concept, we quantified expression differences in heat shock S. cerevisiae using mDrop-seq. We detected differential activation of stress response genes within a seemingly homogenous population of S. cerevisiae under heat shock. We also applied mDrop-seq to C. albicans cells, a polymorphic and clinically relevant species of yeast with a thicker cell wall compared to S. cerevisiae. Single-cell transcriptomes in 39,705 C. albicans cells were characterized using mDrop-seq under different conditions, including exposure to fluconazole, a common anti-fungal drug. We noted differential regulation in stress response and drug target pathways between C. albicans cells, changes in cell cycle patterns and marked increases in histone activity when treated with fluconazole. We demonstrate mDrop-seq to be an affordable and scalable technique that can quantify the variability in gene expression in different yeast species. We hope that mDrop-seq will lead to a better understanding of genetic variation in pathogens in response to stimuli and find immediate applications in investigating drug resistance, infection outcome and developing new drugs and treatment strategies.
Collapse
Affiliation(s)
- Ryan Dohn
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Rebecca Back
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Alan Selewa
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA
| | - Heather Eckart
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Reeta Prusty Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Interactions of Both Pathogenic and Nonpathogenic CUG Clade Candida Species with Macrophages Share a Conserved Transcriptional Landscape. mBio 2021; 12:e0331721. [PMID: 34903044 PMCID: PMC8669484 DOI: 10.1128/mbio.03317-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Candida species are a leading cause of opportunistic, hospital-associated bloodstream infections with high mortality rates, typically in immunocompromised patients. Several species, including Candida albicans, the most prevalent cause of infection, belong to the monophyletic CUG clade of yeasts. Innate immune cells such as macrophages are crucial for controlling infection, and C. albicans responds to phagocytosis by a coordinated induction of pathways involved in catabolism of nonglucose carbon sources, termed alternative carbon metabolism, which together are essential for virulence. However, the interactions of other CUG clade species with macrophages have not been characterized. Here, we analyzed transcriptional responses to macrophage phagocytosis by six Candida species across a range of virulence and clinical importance. We define a core induced response common to pathogenic and nonpathogenic species alike, heavily weighted to alternative carbon metabolism. One prominent pathogen, Candida parapsilosis, showed species-specific expansion of phagocytosis-responsive genes, particularly metabolite transporters. C. albicans and Candida tropicalis, the other prominent pathogens, also had species-specific responses, but these were largely comprised of functionally uncharacterized genes. Transcriptional analysis of macrophages also demonstrated highly correlated proinflammatory transcriptional responses to different Candida species that were largely independent of fungal viability, suggesting that this response is driven by recognition of conserved cell wall components. This study significantly broadens our understanding of host interactions in CUG clade species, demonstrating that although metabolic plasticity is crucial for virulence in Candida, it alone is not sufficient to confer pathogenicity. Instead, we identify sets of mostly uncharacterized genes that may explain the evolution of pathogenicity.
Collapse
|
31
|
The network interplay of interferon and Toll-like receptor signaling pathways in the anti-Candida immune response. Sci Rep 2021; 11:20281. [PMID: 34645905 PMCID: PMC8514550 DOI: 10.1038/s41598-021-99838-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Fungal infections represent a major global health problem affecting over a billion people that kills more than 1.5 million annually. In this study, we employed an integrative approach to reveal the landscape of the human immune responses to Candida spp. through meta-analysis of microarray, bulk, and single-cell RNA sequencing (scRNA-seq) data for the blood transcriptome. We identified across these different studies a consistent interconnected network interplay of signaling molecules involved in both Toll-like receptor (TLR) and interferon (IFN) signaling cascades that is activated in response to different Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis). Among these molecules are several types I IFN, indicating an overlap with antiviral immune responses. scRNA-seq data confirmed that genes commonly identified by the three transcriptomic methods show cell type-specific expression patterns in various innate and adaptive immune cells. These findings shed new light on the anti-Candida immune response, providing putative molecular pathways for therapeutic intervention.
Collapse
|
32
|
Last A, Maurer M, S. Mosig A, S. Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev 2021; 45:fuab005. [PMID: 33524102 PMCID: PMC8498566 DOI: 10.1093/femsre/fuab005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections (mycoses) affect over a billion people per year. Approximately, two million of these infections are life-threatening, especially for patients with a compromised immune system. Fungi of the genera Aspergillus, Candida, Histoplasma and Cryptococcus are opportunistic pathogens that contribute to a substantial number of mycoses. To optimize the diagnosis and treatment of mycoses, we need to understand the complex fungal-host interplay during pathogenesis, the fungal attributes causing virulence and how the host resists infection via immunological defenses. In vitro models can be used to mimic fungal infections of various tissues and organs and the corresponding immune responses at near-physiological conditions. Furthermore, models can include fungal interactions with the host-microbiota to mimic the in vivo situation on skin and mucosal surfaces. This article reviews currently used in vitro models of fungal infections ranging from cell monolayers to microfluidic 3D organ-on-chip (OOC) platforms. We also discuss how OOC models can expand the toolbox for investigating interactions of fungi and their human hosts in the future.
Collapse
Affiliation(s)
- Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michelle Maurer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 24, 07743, Jena, Germany
| |
Collapse
|
33
|
Challenges and Opportunities in Understanding Genetics of Fungal Diseases: Towards a Functional Genomics Approach. Infect Immun 2021; 89:e0000521. [PMID: 34031131 DOI: 10.1128/iai.00005-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.
Collapse
|
34
|
Analysis of a mathematical model of immune response to fungal infection. J Math Biol 2021; 83:8. [PMID: 34184123 DOI: 10.1007/s00285-021-01633-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/20/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
Fungi are cells found as commensal residents, on the skin, and on mucosal surfaces of the human body, including the digestive track and urogenital track, but some species are pathogenic. Fungal infection may spread into deep-seated organs causing life-threatening infection, especially in immune-compromised individuals. Effective defense against fungal infection requires a coordinated response by the innate and adaptive immune systems. In the present paper we introduce a simple mathematical model of immune response to fungal infection consisting of three partial differential equations, for the populations of fungi (F), neutrophils (N) and cytotoxic T cells (T), taking N and T to represent, respectively, the innate and adaptive immune cells. We denote by [Formula: see text] the aggressive proliferation rate of the fungi, by [Formula: see text] and [Formula: see text] the killing rates of fungi by neutrophils and T cells, and by [Formula: see text] and [Formula: see text] the immune strengths, respectively, of N and T of an infected individual. We take the expression [Formula: see text] to represent the coordinated defense of the immune system against fungal infection. We use mathematical analysis to prove the following: If [Formula: see text], then the infection is eventually stopped, and [Formula: see text] as [Formula: see text]; and (ii) if [Formula: see text] then the infection cannot be stopped and F converges to some positive constant as [Formula: see text]. Treatments of fungal infection include anti-fungal agents and immunotherapy drugs, and both cause the parameter I to increase.
Collapse
|
35
|
Bitencourt TA, Neves-da-Rocha J, Martins MP, Sanches PR, Lang EAS, Bortolossi JC, Rossi A, Martinez-Rossi NM. StuA-Regulated Processes in the Dermatophyte Trichophyton rubrum: Transcription Profile, Cell-Cell Adhesion, and Immunomodulation. Front Cell Infect Microbiol 2021; 11:643659. [PMID: 34169004 PMCID: PMC8218993 DOI: 10.3389/fcimb.2021.643659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections represent a significant concern worldwide, contributing to human morbidity and mortality. Dermatophyte infections are among the most significant mycoses, and Trichophyton rubrum appears to be the principal causative agent. Thus, an understanding of its pathophysiology is urgently required. Several lines of evidence have demonstrated that the APSES family of transcription factors (Asm1p, Phd1p, Sok2p, Efg1p, and StuA) is an important point of vulnerability in fungal pathogens and a potential therapeutic target. These transcription factors are unique to fungi, contributing to cell differentiation and adaptation to environmental cues and virulence. It has recently been demonstrated that StuA plays a pleiotropic role in dermatophyte pathophysiology. It was suggested that it functions as a mediator of crosstalk between different pathways that ultimately contribute to adaptive responses and fungal-host interactions. The complex regulation of StuA and its interaction pathways are yet to be unveiled. Thus, this study aimed to gain a deeper understanding of StuA-regulated processes in T. rubrum by assessing global gene expression following growth on keratin or glucose sources. The data showed the involvement of StuA in biological processes related to central carbon metabolism and glycerol catabolism, reactive oxygen species metabolism, and cell wall construction. Changes in carbohydrate metabolism may be responsible for the significant alteration in cell wall pattern and consequently in cell-cell interaction and adhesion. Loss of StuA led to impaired biofilm production and promoted proinflammatory cytokine secretion in a human keratinocyte cell line. We also observed the StuA-dependent regulation of catalase genes. Altogether, these data demonstrate the multitude of regulatory targets of StuA with a critical role in central metabolism that may ultimately trigger a cascade of secondary effects with substantial impact on fungal physiology and virulence traits.
Collapse
Affiliation(s)
- Tamires A Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, Brazil
| | - João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, Brazil
| | - Maira P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, Brazil
| | - Elza A S Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, Brazil
| | - Julio C Bortolossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, Brazil
| |
Collapse
|
36
|
Horváth M, Nagy G, Zsindely N, Bodai L, Horváth P, Vágvölgyi C, Nosanchuk JD, Tóth R, Gácser A. Oral Epithelial Cells Distinguish between Candida Species with High or Low Pathogenic Potential through MicroRNA Regulation. mSystems 2021; 6:6/3/e00163-21. [PMID: 33975967 PMCID: PMC8125073 DOI: 10.1128/msystems.00163-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral epithelial cells monitor microbiome composition and initiate immune response upon dysbiosis, as in the case of Candida imbalances. Candida species, such as C. albicans and C. parapsilosis, are the most prevalent yeasts in the oral cavity. Comparison of healthy oral epithelial cell responses revealed that while C. albicans infection robustly activated inflammation cascades, C. parapsilosis primarily activated various inflammation-independent pathways. In posttranscriptional regulatory processes, several miRNAs were altered by both species. For C. parapsilosis, the dose of yeast cells directly correlated with changes in transcriptomic responses with higher fungal burdens inducing significantly different and broader changes. MicroRNAs (miRNAs) associated with carbohydrate metabolism-, hypoxia-, and vascular development-related responses dominated with C. parapsilosis infection, whereas C. albicans altered miRNAs linked to inflammatory responses. Subsequent analyses of hypoxia-inducible factor 1α (HIF1-α) and hepatic stellate cell (HSC) activation pathways predicted target genes through which miRNA-dependent regulation of yeast-specific functions may occur, which also supported the observed species-specific responses. Our findings suggest that C. parapsilosis is recognized as a commensal at low doses by the oral epithelium; however, increased fungal burden activates different pathways, some of which overlap with the inflammatory processes robustly induced by C. albicans IMPORTANCE A relatively new topic within the field of immunology involves the role of miRNAs in innate as well as adaptive immune response regulation. In recent years, posttranscriptional regulation of host-pathogenic fungal interactions through miRNAs was also suggested. Our study reveals that the distinct nature of human oral epithelial cell responses toward C. parapsilosis and C. albicans is possibly due to species-specific fine-tuning of host miRNA regulatory processes. The findings of this study also shed new light on the nature of early host cell transcriptional responses to the presence of C. parapsilosis and highlight the species' potential inflammation-independent host activation processes. These findings contribute to our better understanding of how miRNA deregulation at the oral immunological barrier, in noncanonical immune cells, may discriminate between fungal species, particularly Candida species with high or low pathogenic potential.
Collapse
Affiliation(s)
- Márton Horváth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
37
|
Teo YJ, Ng SL, Mak KW, Setiagani YA, Chen Q, Nair SK, Sheng J, Ruedl C. Renal CD169 ++ resident macrophages are crucial for protection against acute systemic candidiasis. Life Sci Alliance 2021; 4:e202000890. [PMID: 33608410 PMCID: PMC7918719 DOI: 10.26508/lsa.202000890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Disseminated candidiasis remains as the most common hospital-acquired bloodstream fungal infection with up to 40% mortality rate despite the advancement of medical and hygienic practices. While it is well established that this infection heavily relies on the innate immune response for host survival, much less is known for the protective role elicited by the tissue-resident macrophage (TRM) subsets in the kidney, the prime organ for Candida persistence. Here, we describe a unique CD169++ TRM subset that controls Candida growth and inflammation during acute systemic candidiasis. Their absence causes severe fungal-mediated renal pathology. CD169++ TRMs, without being actively involved in direct fungal clearance, increase host resistance by promoting IFN-γ release and neutrophil ROS activity.
Collapse
Affiliation(s)
- Yi Juan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - See Liang Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Keng Wai Mak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Qi Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sajith Kumar Nair
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
38
|
Chung M, Bruno VM, Rasko DA, Cuomo CA, Muñoz JF, Livny J, Shetty AC, Mahurkar A, Dunning Hotopp JC. Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biol 2021; 22:121. [PMID: 33926528 PMCID: PMC8082843 DOI: 10.1186/s13059-021-02337-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
Collapse
Affiliation(s)
- Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - José F. Muñoz
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
39
|
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 2021; 249:126771. [PMID: 33930840 DOI: 10.1016/j.micres.2021.126771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022]
Abstract
Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.
Collapse
Affiliation(s)
- Shahid Ali
- Plant Epigenetic and Development, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
40
|
Wang JM, Woodruff AL, Dunn MJ, Fillinger RJ, Bennett RJ, Anderson MZ. Intraspecies Transcriptional Profiling Reveals Key Regulators of Candida albicans Pathogenic Traits. mBio 2021; 12:e00586-21. [PMID: 33879584 PMCID: PMC8092256 DOI: 10.1128/mbio.00586-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
The human commensal and opportunistic fungal pathogen Candida albicans displays extensive genetic and phenotypic variation across clinical isolates. Here, we performed RNA sequencing on 21 well-characterized isolates to examine how genetic variation contributes to gene expression differences and to link these differences to phenotypic traits. C. albicans adapts primarily through clonal evolution, and yet hierarchical clustering of gene expression profiles in this set of isolates did not reproduce their phylogenetic relationship. Strikingly, strain-specific gene expression was prevalent in some strain backgrounds. Association of gene expression with phenotypic data by differential analysis, linear correlation, and assembly of gene networks connected both previously characterized and novel genes with 23 C. albicans traits. Construction of de novo gene modules produced a gene atlas incorporating 67% of C. albicans genes and revealed correlations between expression modules and important phenotypes such as systemic virulence. Furthermore, targeted investigation of two modules that have novel roles in growth and filamentation supported our bioinformatic predictions. Together, these studies reveal widespread transcriptional variation across C. albicans isolates and identify genetic and epigenetic links to phenotypic variation based on coexpression network analysis.IMPORTANCE Infectious fungal species are often treated uniformly despite clear evidence of genotypic and phenotypic heterogeneity being widespread across strains. Identifying the genetic basis for this phenotypic diversity is extremely challenging because of the tens or hundreds of thousands of variants that may distinguish two strains. Here, we use transcriptional profiling to determine differences in gene expression that can be linked to phenotypic variation among a set of 21 Candida albicans isolates. Analysis of this transcriptional data set uncovered clear trends in gene expression characteristics for this species and new genes and pathways that were associated with variation in pathogenic processes. Direct investigation confirmed functional predictions for a number of new regulators associated with growth and filamentation, demonstrating the utility of these approaches in linking genes to important phenotypes.
Collapse
Affiliation(s)
- Joshua M Wang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Andrew L Woodruff
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew J Dunn
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Robert J Fillinger
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
41
|
Zhou Y, Cheng L, Liao B, Shi Y, Niu Y, Zhu C, Ye X, Zhou X, Ren B. Candida albicans CHK1 gene from two-component system is essential for its pathogenicity in oral candidiasis. Appl Microbiol Biotechnol 2021; 105:2485-2496. [PMID: 33635358 DOI: 10.1007/s00253-021-11187-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
The roles of Candida albicans CHK1, a key gene from two-component system, in oral mucosal infection are not clear. This study evaluated the key roles of CHK1 gene in vitro and in vivo. The expression of CHK1 and its regulated virulence factors were tested during the oral epithelial cell infection. The production of lactate dehydrogenase, ROS, and IL-1α combined with the confocal and scanning electron microscope observation was employed to identify the capability of CHK1 in damaging the epithelial cells. Both immunocompetent and immunodeficient mice oropharyngeal infection models were involved to confirm the roles of CHK1 gene in vivo. The expression of CHK1 gene was significantly increased during the oral epithelial cell infection. The chk1Δ/Δ mutant failed to damage the epithelial cells or induce IL-α and ROS production. Interestingly, chk1Δ/Δ can also form the similar hyphae with WT and complementary strains. Accordingly, chk1Δ/Δ did not affect the adhesion and invasion rates of C. albicans to oral epithelial cells. However, chk1Δ/Δ significantly decreased the expression levels of the virulence factors, including ALS2, SAP6, and YWP1. The chk1Δ/Δ also failed to cause oral candidiasis in both immunocompetent and immunodeficient mice indicating that CHK1 gene from the two-component system is essential for the pathogenicity of C. albicans. KEY POINTS: • CHK1gene is essential for C. albicans in oral candidiasis • C. albicans without CHK1 gene can form "non-pathogenic" hyphae. • CHK1 gene regulates the virulence of C. albicans.
Collapse
Affiliation(s)
- Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yulong Niu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
42
|
Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe A, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, Jagadeesh KA, Dey KK, Sen P, Slyper M, Pita-Juárez YH, Phillips D, Bloom-Ackerman Z, Barkas N, Ganna A, Gomez J, Normandin E, Naderi P, Popov YV, Raju SS, Niezen S, Tsai LTY, Siddle KJ, Sud M, Tran VM, Vellarikkal SK, Amir-Zilberstein L, Atri DS, Beechem J, Brook OR, Chen J, Divakar P, Dorceus P, Engreitz JM, Essene A, Fitzgerald DM, Fropf R, Gazal S, Gould J, Grzyb J, Harvey T, Hecht J, Hether T, Jane-Valbuena J, Leney-Greene M, Ma H, McCabe C, McLoughlin DE, Miller EM, Muus C, Niemi M, Padera R, Pan L, Pant D, Pe’er C, Pfiffner-Borges J, Pinto CJ, Plaisted J, Reeves J, Ross M, Rudy M, Rueckert EH, Siciliano M, Sturm A, Todres E, Waghray A, Warren S, Zhang S, Zollinger DR, Cosimi L, Gupta RM, Hacohen N, Hide W, Price AL, Rajagopal J, Tata PR, Riedel S, Szabo G, Tickle TL, Hung D, Sabeti PC, Novak R, Rogers R, Ingber DE, Jiang ZG, Juric D, Babadi M, Farhi SL, Stone JR, Vlachos IS, Solomon IH, Ashenberg O, Porter CB, Li B, Shalek AK, Villani AC, et alDelorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe A, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, Jagadeesh KA, Dey KK, Sen P, Slyper M, Pita-Juárez YH, Phillips D, Bloom-Ackerman Z, Barkas N, Ganna A, Gomez J, Normandin E, Naderi P, Popov YV, Raju SS, Niezen S, Tsai LTY, Siddle KJ, Sud M, Tran VM, Vellarikkal SK, Amir-Zilberstein L, Atri DS, Beechem J, Brook OR, Chen J, Divakar P, Dorceus P, Engreitz JM, Essene A, Fitzgerald DM, Fropf R, Gazal S, Gould J, Grzyb J, Harvey T, Hecht J, Hether T, Jane-Valbuena J, Leney-Greene M, Ma H, McCabe C, McLoughlin DE, Miller EM, Muus C, Niemi M, Padera R, Pan L, Pant D, Pe’er C, Pfiffner-Borges J, Pinto CJ, Plaisted J, Reeves J, Ross M, Rudy M, Rueckert EH, Siciliano M, Sturm A, Todres E, Waghray A, Warren S, Zhang S, Zollinger DR, Cosimi L, Gupta RM, Hacohen N, Hide W, Price AL, Rajagopal J, Tata PR, Riedel S, Szabo G, Tickle TL, Hung D, Sabeti PC, Novak R, Rogers R, Ingber DE, Jiang ZG, Juric D, Babadi M, Farhi SL, Stone JR, Vlachos IS, Solomon IH, Ashenberg O, Porter CB, Li B, Shalek AK, Villani AC, Rozenblatt-Rosen O, Regev A. A single-cell and spatial atlas of autopsy tissues reveals pathology and cellular targets of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.25.430130. [PMID: 33655247 PMCID: PMC7924267 DOI: 10.1101/2021.02.25.430130] [Show More Authors] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.
Collapse
Affiliation(s)
- Toni M. Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Carly G. K. Ziegler
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Graham Heimberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Rachelly Normand
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yiming Yang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Asa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Domenic Abbondanza
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Stephen J. Fleming
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Karthik A. Jagadeesh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Kushal K. Dey
- Department of Epidemiology, Harvard School of Public Health
| | - Pritha Sen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Yered H. Pita-Juárez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Devan Phillips
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Zohar Bloom-Ackerman
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nick Barkas
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, Helsinki, Finland
- Analytical & Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Gomez
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Erica Normandin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pourya Naderi
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Yury V. Popov
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Siddharth S. Raju
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sebastian Niezen
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Linus T.-Y. Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Katherine J. Siddle
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Malika Sud
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Victoria M. Tran
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shamsudheen K. Vellarikkal
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liat Amir-Zilberstein
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Deepak S. Atri
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga R. Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Phylicia Dorceus
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Jesse M. Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics and BASE Initiative, Stanford University School of Medicine
| | - Adam Essene
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Donna M. Fitzgerald
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robin Fropf
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Gould
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - John Grzyb
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Tyler Harvey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Jonathan Hecht
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Tyler Hether
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Judit Jane-Valbuena
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Hui Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cristin McCabe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Daniel E. McLoughlin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Christoph Muus
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Mari Niemi
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Robert Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge MA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Deepti Pant
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core Boston, MA 02115, USA
| | - Carmel Pe’er
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | | | - Christopher J. Pinto
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacob Plaisted
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Jason Reeves
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Marty Ross
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Melissa Rudy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ellen Todres
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Avinash Waghray
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sarah Warren
- NanoString Technologies Inc., Seattle, WA 98109, USA
| | - Shuting Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Lisa Cosimi
- Infectious Diseases Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rajat M. Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Winston Hide
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard School of Public Health
| | - Jayaraj Rajagopal
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Stefan Riedel
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Gyongyi Szabo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
| | - Timothy L. Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Deborah Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| | - Robert Rogers
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Massachusetts General Hospital, MA 02114, USA
| | - Donald E. Ingber
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Z. Gordon Jiang
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, MA 02115, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Dejan Juric
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samouil L. Farhi
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - James R. Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ioannis S. Vlachos
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Caroline B.M. Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
- Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| |
Collapse
|
43
|
Austermeier S, Kasper L, Westman J, Gresnigt MS. I want to break free – macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape. Curr Opin Microbiol 2020; 58:15-23. [DOI: 10.1016/j.mib.2020.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
|
44
|
Hodgins-Davis A, O'Meara TR. Systems biology of host-Candida interactions: understanding how we shape each other. Curr Opin Microbiol 2020; 58:1-7. [PMID: 32485592 PMCID: PMC7704567 DOI: 10.1016/j.mib.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022]
Abstract
Candida albicans is both a member of the human mucosal microbiota and a common agent of invasive fungal disease. Systems biology approaches allow for analysis of the interactions between this fungus and its mammalian host. Framing these studies by considering how C. albicans and its host construct the niche the other occupies provides insight into how these interactions shape the ecosystems, behavior, and evolution of each organism. Here, we discuss recent work on multiscale systems biology approaches for examining C. albicans in relation to the host ecosystem to identify the emergent properties of the interactions and new variables that can be targeted for development of therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Hodgins-Davis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
45
|
Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio 2020; 11:mBio.02435-20. [PMID: 33024045 PMCID: PMC7542370 DOI: 10.1128/mbio.02435-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the Candida species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different Candida pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another. Only four species, Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis, together account for about 90% of all Candida bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The ex vivo infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of Candida species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections.
Collapse
|
46
|
Singh R. Single-Cell Sequencing in Human Genital Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:203-220. [PMID: 32949402 DOI: 10.1007/978-981-15-4494-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Human genital infections are one of the most concerning issues worldwide and can be categorized into sexually transmitted, urinary tract and vaginal infections. These infections, if left untreated, can disseminate to the other parts of the body and cause more complicated illnesses such as pelvic inflammatory disease, urethritis, and anogenital cancers. The effective treatment against these infections is further complicated by the emergence of antimicrobial resistance in the genital infection causing pathogens. Furthermore, the development and applications of single-cell sequencing technologies have open new possibilities to study the drug resistant clones, cell to cell variations, the discovery of acquired drug resistance mutations, transcriptional diversity of a pathogen across different infection stages, to identify rare cell types and investigate different cellular states of genital infection causing pathogens, and to develop novel therapeutical strategies. In this chapter, I will provide a complete review of the applications of single-cell sequencing in human genital infections before discussing their limitations and challenges.
Collapse
Affiliation(s)
- Reema Singh
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. .,Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.
| |
Collapse
|
47
|
Kunyeit L, K A AA, Rao RP. Application of Probiotic Yeasts on Candida Species Associated Infection. J Fungi (Basel) 2020; 6:jof6040189. [PMID: 32992993 PMCID: PMC7711718 DOI: 10.3390/jof6040189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023] Open
Abstract
Superficial and life-threatening invasive Candida infections are a major clinical challenge in hospitalized and immuno-compromised patients. Emerging drug-resistance among Candida species is exacerbated by the limited availability of antifungals and their associated side-effects. In the current review, we discuss the application of probiotic yeasts as a potential alternative/ combination therapy against Candida infections. Preclinical studies have identified several probiotic yeasts that effectively inhibit virulence of Candida species, including Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida krusei and Candida auris. However, Saccharomyces cerevisiae var. boulardii is the only probiotic yeast commercially available. In addition, clinical studies have further confirmed the in vitro and in vivo activity of the probiotic yeasts against Candida species. Probiotics use a variety of protective mechanisms, including posing a physical barrier, the ability to aggregate pathogens and render them avirulent. Secreted metabolites such as short-chain fatty acids effectively inhibit the adhesion and morphological transition of Candida species. Overall, the probiotic yeasts could be a promising effective alternative or combination therapy for Candida infections. Additional studies would bolster the application of probiotic yeasts.
Collapse
Affiliation(s)
- Lohith Kunyeit
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; (L.K.); (A.K.A.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Anu-Appaiah K A
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; (L.K.); (A.K.A.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reeta P. Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Correspondence: ; Tel.: +1-508-831-5000
| |
Collapse
|
48
|
Laurian R, Jacot-des-Combes C, Bastian F, Dementhon K, Cotton P. Carbon metabolism snapshot by ddPCR during the early step of Candida albicans phagocytosis by macrophages. Pathog Dis 2020; 78:5780227. [PMID: 32129841 DOI: 10.1093/femspd/ftaa014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/03/2020] [Indexed: 01/08/2023] Open
Abstract
During Candida macrophage interactions, phagocytosed yeast cells feed in order to grow, develop hyphae and escape. Through numerous proteomic and transcriptomic studies, two metabolic phases have been described. A shift to a starvation mode is generally identified as early as one-hour post phagocytosis, followed by a glycolytic growth mode after C. albicans escaped from the macrophage. Healthy macrophages contain low amounts of glucose. To determine if this carbon source was sensed and metabolized by the pathogen, we explored the transcription level of a delimited set of key genes expressed in C. albicans cells during phagocytosis by macrophages, at an early stage of the interaction. This analysis was performed using a technical digital droplet PCR approach to quantify reliably the expression of carbon metabolic genes after 30 min of phagocytosis. Our data confirm the technique of digital droplet PCR for the detection of C. albicans transcripts using cells recovered after a short period of phagocytosis. At this stage, carbon metabolism is clearly oriented towards the use of alternative sources. However, the activation of high-affinity glucose transport system suggests that the low amount of glucose initially present in the macrophages is detected by the pathogen.
Collapse
Affiliation(s)
- Romain Laurian
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon-Université Lyon1, Lyon, France
| | - Cécile Jacot-des-Combes
- DTAMB, FR 3728 Bio-Environnement et Santé, Université de Lyon-Université Lyon1, Lyon, France
| | - Fabiola Bastian
- DTAMB, FR 3728 Bio-Environnement et Santé, Université de Lyon-Université Lyon1, Lyon, France
| | - Karine Dementhon
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Pascale Cotton
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon-Université Lyon1, Lyon, France
| |
Collapse
|
49
|
Wen WX, Mead AJ, Thongjuea S. VALERIE: Visual-based inspection of alternative splicing events at single-cell resolution. PLoS Comput Biol 2020; 16:e1008195. [PMID: 32898151 PMCID: PMC7500686 DOI: 10.1371/journal.pcbi.1008195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/18/2020] [Accepted: 07/26/2020] [Indexed: 01/18/2023] Open
Abstract
We present VALERIE (Visualising alternative splicing events from single-cell ribonucleic acid-sequencing experiments), an R package for visualising alternative splicing events at single-cell resolution. To explore any given specified genomic region, corresponding to an alternative splicing event, VALERIE generates an ensemble of informative plots to visualise cell-to-cell heterogeneity of alternative splicing profiles across single cells and performs statistical tests to compare percent spliced-in (PSI) values across the user-defined groups of cells. Among the features available, VALERIE displays PSI values, in lieu of read coverage, which is more suitable for representing alternative splicing profiles for a large number of samples typically generated by single-cell RNA-sequencing experiments. VALERIE is available on the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/VALERIE/index.html.
Collapse
Affiliation(s)
- Wei Xiong Wen
- MRC WIMM Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Adam J. Mead
- MRC WIMM Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Supat Thongjuea
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
König A, Hube B, Kasper L. The Dual Function of the Fungal Toxin Candidalysin during Candida albicans-Macrophage Interaction and Virulence. Toxins (Basel) 2020; 12:toxins12080469. [PMID: 32722029 PMCID: PMC7471981 DOI: 10.3390/toxins12080469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
The dimorphic fungus Candida albicans is both a harmless commensal organism on mucosal surfaces and an opportunistic pathogen. Under certain predisposing conditions, the fungus can overgrow the mucosal microbiome and cause both superficial and life-threatening systemic infections after gaining access to the bloodstream. As the first line of defense of the innate immune response, infecting C. albicans cells face macrophages, which mediate the clearance of invading fungi by intracellular killing. However, the fungus has evolved sophisticated strategies to counteract macrophage antimicrobial activities and thus evade immune surveillance. The cytolytic peptide toxin, candidalysin, contributes to this fungal defense machinery by damaging immune cell membranes, providing an escape route from the hostile phagosome environment. Nevertheless, candidalysin also induces NLRP3 inflammasome activation, leading to an increased host-protective pro-inflammatory response in mononuclear phagocytes. Therefore, candidalysin facilitates immune evasion by acting as a classical virulence factor but also contributes to an antifungal immune response, serving as an avirulence factor. In this review, we discuss the role of candidalysin during C. albicans infections, focusing on its implications during C. albicans-macrophage interactions.
Collapse
Affiliation(s)
- Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
- Center for Sepsis Control and Care, University Hospital Jena, 07747 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Correspondence: (B.H.); (L.K.)
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, 07745 Jena, Germany;
- Correspondence: (B.H.); (L.K.)
| |
Collapse
|