1
|
Das K, Kuźnik N, Dydio P. Dehomologative C-C Borylation of Aldehydes and Alcohols via a Rh-Catalyzed Dehydroformylation-Borylation Relay. J Am Chem Soc 2025; 147:16735-16741. [PMID: 40354369 PMCID: PMC12100658 DOI: 10.1021/jacs.5c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
The dehomologative conversion of linear or α-methyl aldehydes to vinyl boronates is achieved via a one-pot sequence of rhodium-catalyzed transfer dehydroformylation and transfer borylation of the resulting alkenes. Similarly, allylic or aliphatic alcohols are converted to vinyl boronates through a sequence involving, respectively, rhodium-catalyzed isomerization or transfer dehydrogenation to aldehyde intermediates, followed by dehydroformylation-borylation. The vinyl boronates can be further hydrogenated to alkyl boronates using the same rhodium precatalyst, enabling all five catalytic steps with a single catalyst system.
Collapse
Affiliation(s)
- Kuhali Das
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, United
Kingdom
- University
of Strasbourg, CNRS, ISIS UMR 7006, 67000Strasbourg, France
| | - Nikodem Kuźnik
- University
of Strasbourg, CNRS, ISIS UMR 7006, 67000Strasbourg, France
- Silesian
University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Paweł Dydio
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CambridgeCB2 1EW, United
Kingdom
- University
of Strasbourg, CNRS, ISIS UMR 7006, 67000Strasbourg, France
| |
Collapse
|
2
|
Luescher MU, Gallou F, Lipshutz BH. The impact of earth-abundant metals as a replacement for Pd in cross coupling reactions. Chem Sci 2024; 15:9016-9025. [PMID: 38903222 PMCID: PMC11186335 DOI: 10.1039/d4sc00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 06/22/2024] Open
Abstract
Substitution of one metal catalyst for another is not as straightforward as simply justifying this change based on the availability and/or cost of the metals. Methodologies to properly assess options for reaction design, including multiple factors like a metal's availability, cost, or environmental indicators have not advanced at the pace needed, leaving decisions to be made along these lines more challenging. Isolated indicators can lead to conclusions being made in too hasty a fashion. Therefore, an extensive life cycle-like assessment was performed documenting that the commonly held view that methods using earth-abundant metals (and in this case study, Ni) are inherently green replacements for methods using palladium in cross-coupling reactions, and Suzuki-Miyaura couplings, in particular, is an incomplete analysis of the entire picture. This notion can be misleading, and unfortunately derives mainly from the standpoint of price, and to some degree, relative natural abundance associated with the impact of mining of each metal. A more accurate picture emerges when several additional reaction parameters involved in the compared couplings are considered. The analysis points to the major impact that use of organic solvents has in these couplings, while the metals themselves actually play subordinate roles in terms of CO2-release into the environment and hence, the overall carbon footprint (i.e., climate change). The conclusion is that a far more detailed analysis is required than that typically being utilized.
Collapse
Affiliation(s)
- Michael U Luescher
- Chemical & Analytical Development, Novartis Pharma AG Postfach CH-4002 Basel Switzerland
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG Postfach CH-4002 Basel Switzerland
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California Santa Barbara CA 93106 USA
| |
Collapse
|
3
|
Zaib S, Khan I, Ali HS, Younas MT, Ibrar A, Al-Odayni AB, Al-Kahtani AA. Design and discovery of anthranilamide derivatives as a potential treatment for neurodegenerative disorders via targeting cholinesterases and monoamine oxidases. Int J Biol Macromol 2024; 272:132748. [PMID: 38821306 DOI: 10.1016/j.ijbiomac.2024.132748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neurodegenerative diseases with progressive cellular loss of the central nervous system and elusive disease etiology provide a continuous impetus to explore drug discovery programmes aiming at identifying robust and effective inhibitors of cholinesterase and monoamine oxidase enzymes. We herein present a concise library of anthranilamide derivatives involving a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction to install the diverse structural diversity required for the desired biological action. Using Ellman's method, cholinesterase inhibitory activity was performed against AChE and BuChE enzymes. In vitro assay results demonstrated that anthranilamides are potent inhibitors with remarkable potency. Compound 6k emerged as the lead candidate and dual inhibitor of both enzymes with IC50 values of 0.12 ± 0.01 and 0.49 ± 0.02 μM against AChE and BuChE, respectively. Several other compounds were found as highly potent and selective inhibitors. Anthranilamide derivatives were also tested against monoamine oxidase (A and B) enzymes using fluorometric method. In vitro data revealed compound 6h as the most potent inhibitor against MAO-A, showing an IC50 value of 0.44 ± 0.02 μM, whereas, compound 6k emerged as the top inhibitor of MAO-B with an IC50 value of 0.06 ± 0.01 μM. All the lead inhibitors were analyzed for the identification of their mechanism of action using Michaelis-Menten kinetics experiments. Compound 6k and 6h depicted a competitive mode of action against AChE and MAO-A, whereas, a non-competitive and mixed-type of inhibition was observed against BuChE and MAO-B by compounds 6k. Molecular docking analysis revealed remarkable binding affinities of the potent inhibitors with specific residues inside the active site of receptors. Furthermore, molecular dynamics simulations were performed to explore the ability of potent compounds to form energetically stable complexes with the target protein. Finally, in silico ADME calculations also demonstrated that the potent compounds exhibit promising pharmacokinetic profile, satisfying the essential criteria for drug-likeness. Altogether, the findings reported in the current work clearly suggest that the identified anthranilamide derivatives have the potential to serve as effective drug candidates for future investigations.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester MI 7DN, UK.
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry, the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, KPK 22620, Pakistan.
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Abdullah A Al-Kahtani
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Xie X, Zhang J, Song XQ, Li W, Cao F, Zhou C, Zhu H, Li L. Unveiling Pre-Transmetalation Intermediates in Base-Free Suzuki-Miyaura Cross-Couplings: A Computational Study. Inorg Chem 2024; 63:2606-2615. [PMID: 38267390 DOI: 10.1021/acs.inorgchem.3c03855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The pre-transmetalation intermediates are critically important in Suzuki-Miyaura cross-coupling (SMC) reactions and have become a hot spot of the current research. However, the pre-transmetalation intermediates under base-free conditions have not been clear. Herein, a comprehensive theoretical study is performed on the base-free Pd-catalyzed desulfonative SMC reaction. The fragile coordination feature and the acceleration role of the RuPhos chelate ligand are revealed. The hydrogen-bond complex between the Pd-F complex and aryl boronic acid is identified as an important pre-transmetalation intermediate, which increases the energy span to 32.5 kcal/mol. The controlling factor for the formation of the hydrogen-bond complexes is attributed to the electronegativities of halogen atoms in the metal halide complexes. What is more, other reported SMC reaction systems involving metal halide complexes and aryl boronic acids are reconsidered and suggest that the hydrogen-bond complexes widely exist as stable pre-transmetalation intermediates with influencing the catalytic activities. The earth-abundant Ni-catalyzed desulfonative SMC reaction is further designed and predicted to have a higher activity than the original Pd-catalyzed SMC reaction.
Collapse
Affiliation(s)
- Xiaofeng Xie
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Jiejing Zhang
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xue-Qing Song
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wan Li
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Fei Cao
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Chengyan Zhou
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Huajie Zhu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Longfei Li
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
5
|
Zaib S, Younas MT, Khan I, Ali HS, McAdam CJ, White JM, Jaber F, Awwad NS, Ibrahium HA. Pyrimidine-morpholine hybrids as potent druggable therapeutics for Alzheimer's disease: Synthesis, biochemical and in silico analyses. Bioorg Chem 2023; 141:106868. [PMID: 37738768 DOI: 10.1016/j.bioorg.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The identification of effective and druggable cholinesterase inhibitors to treat progressive neurodegenerative Alzheimer's disorder remains a continuous drug discovery hunt. In this perspective, the present study investigates the design and discovery of pyrimidine-morpholine hybrids (5a-l) as potent cholinesterase inhibitors. Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction was employed to introduce the structural diversity on the pyrimidine heterocyclic core. A range of commercially available boronic acids was successfully coupled showing a high functional group tolerance. In vitro cholinesterase inhibitory potential using Ellman's method revealed significantly strong potency. Compound 5h bearing a meta-tolyl substituent at 2-position of pyrimidine ring emerged as a lead candidate against AChE with an inhibitory potency of 0.43 ± 0.42 µM, ∼38-fold stronger value than neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 5h also showed the lead inhibition against BuChE with an IC50 value of 2.5 ± 0.04 µM. The kinetics analysis of 5h revealed the non-competitive mode of inhibition against AChE whereas computational modelling results of potent leads depicted diverse contacts with the binding site amino acid residues. Molecular dynamics simulations revealed the stability of biomolecular system, while, ADME analysis demonstrated druglikeness behaviour of potent compounds. Overall, the investigated pyrimidine-morpholine scaffold presented a remarkable potential to be developed as efficacious anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester MI 7DN, UK.
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | - Jonathan M White
- School of Chemistry and Bio-21 Institute, University of Melbourne, 3052 Parkville, Australia
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
6
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Chao CBE, Pyne SG, Hyland CJT, Lee R. DFT Mechanistic Insights into the Ni(II)-Catalyzed Enantioselective Arylative Cyclization of Tethered Allene-Ketones. Chem Asian J 2023; 18:e202300724. [PMID: 37712336 DOI: 10.1002/asia.202300724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Density functional theory (DFT) has provided a detailed mechanistic picture for the redox neutral nickel(II)-catalyzed arylative cyclization reactions of a tethered allene-ketone with arylboronic acids. A mechanistic rationale for the high diastereo- and enantioselectivity achieved experimentally at high reaction temperature was uncovered through modeling the reaction with a chiral ligand and the predicted stereochemical outcome corroborates with experimental results. An unprecedented mechanism for the base-free organoboron transmetalation was revealed and the regioselectivity of migratory insertion of tethered allene-ketones as well as the stability of the possible allylnickel isomers (σ-allyl vs π-allyl) were clarified. The multifaceted nature of the reaction is revealed with certain elementary steps preferring cationic compared to the neutral state.
Collapse
Affiliation(s)
- Chi Bong Eric Chao
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Ghahramani F, Meyer M, Unone S, Janssen-Müller D. Pd-Catalyzed Activation of Carbon-Carbon Bonds in Hydroxymethylfurfural Derivatives. Chemistry 2023; 29:e202302038. [PMID: 37449730 DOI: 10.1002/chem.202302038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Palladium-catalyzed activation of C-C bonds in organic molecules is a powerful tool for the synthesis of value-added compounds. 5-Hydroxymethylfurfural (HMF) derivatives are a promising class of biomass-derived chemicals that have received considerable attention due to their potential applications in the synthesis of biologically active molecules and materials. However, the selective activation of unstrained C-C bonds is a challenging task, mainly due to their relatively high bond dissociation energies. Herein, we report a palladium-catalyzed method for the efficient C-C bond activation of HMF derivatives, enabling their arylation with iodobenzenes. Mechanistic studies, including reaction-profile analysis, competition experiments and head-space IR spectroscopy suggest a decarboxylative mechanism.
Collapse
Affiliation(s)
- Fatemeh Ghahramani
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Malte Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Shreya Unone
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Daniel Janssen-Müller
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
9
|
Thermodynamic and Kinetic Studies of the Activities of Aldehydic C−H Bonds toward Their H‐Atom Transfer Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Yang S, Yu X, Szostak M. Divergent Acyl and Decarbonylative Liebeskind-Srogl Cross-Coupling of Thioesters by Cu-Cofactor and Pd-NHC (NHC = N-Heterocyclic Carbene) Catalysis. ACS Catal 2023; 13:1848-1855. [PMID: 38037656 PMCID: PMC10686545 DOI: 10.1021/acscatal.2c05550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-catalyzed cross-coupling reactions of thioesters by selective acyl C(O)-S cleavage have emerged as a powerful platform for the preparation of complex molecules. Herein, we report divergent Liebeskind-Srogl cross-coupling of thioesters by Pd-NHC (NHC = N-heterocyclic carbene) catalysis. The reaction provides straightforward access to functionalized ketones by highly selective C(acyl)-S cleavage under mild conditions. Most crucially, the conditions enable direct functionalization of a range of complex pharmaceuticals decorated with a palette of sensitive functional groups, providing attractive products for medicinal chemistry programs. Furthermore, decarbonylative Liebeskind-Srogl cross-coupling by C(acyl)-S/C(aryl)-C(O) cleavage is reported. Cu metal cofactor directs the reaction pathway to acyl or decarbonylative pathway. This reactivity is applicable to complex pharmaceuticals. The reaction represents the mildest decarbonylative Suzuki cross-coupling discovered to date. The Cu-directed divergent acyl and decarbonylative cross-coupling of thioesters opens up chemical space in complex molecule synthesis.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
11
|
Recent Advances in Nickel-Catalyzed C-C Cross-Coupling. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
12
|
Xu L, Dong Z, Zhang Q, Deng N, Li SY, Xu HJ. Protoboration of Alkynes and Miyaura Borylation Catalyzed by Low Loadings of Palladium. J Org Chem 2022; 87:14879-14888. [PMID: 36223839 DOI: 10.1021/acs.joc.2c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The versions of Miyaura borylation and protoboration of alkynes catalyzed by low loadings of palladium (400 mol ppm = 0.04 mol %) have been developed. These transformations have a broad substrate scope, good functional-group compatibility, and gram-scale synthetic ability.
Collapse
|
13
|
Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Matsuyama T, Yatabe T, Yabe T, Yamaguchi K. Decarbonylation of 1,2-Diketones to Diaryl Ketones via Oxidative Addition Enabled by an Electron-Deficient Au–Pd Nanoparticle Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takehiro Matsuyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Min XT, Mei YK, Chen BZ, He LB, Song TT, Ji DW, Hu YC, Wan B, Chen QA. Rhodium-Catalyzed Deuterated Tsuji-Wilkinson Decarbonylation of Aldehydes with Deuterium Oxide. J Am Chem Soc 2022; 144:11081-11087. [PMID: 35709491 DOI: 10.1021/jacs.2c04422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent surge in the applications of deuterated drug candidates has rendered an urgent need for diverse deuterium labeling techniques. Herein, an efficient Rh-catalyzed deuterated Tsuji-Wilkinson decarbonylation of naturally available aldehydes with D2O is developed. In this reaction, D2O not only acts as a deuterated reagent and solvent but also promotes Rh-catalyzed decarbonylation. In addition, decarbonylative strategies for the synthesis of terminal monodeuterated alkenes from α,β-unsaturated aldehydes are within reach.
Collapse
Affiliation(s)
- Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Duan X, Sun R, Tang J, Li S, Yang X, Zheng X, Li R, Chen H, Fu H, Yuan M. Facile Synthesis of 2-Methylnicotinonitrile through Degenerate Ring Transformation of Pyridinium Salts. J Org Chem 2022; 87:7975-7988. [PMID: 35658477 DOI: 10.1021/acs.joc.2c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleophilic recyclization of pyridinium salts involving a CCN interchange ring transformation for the synthesis of 2-methylnicotinonitrile derivatives was herein developed. 3-Aminocrotononitrile (3-ACN) produced in situ from CH3CN acted as a C-nucleophile, as well as the source of CH3 and CN groups, which was supported by isotope-labeling and control experiments.
Collapse
Affiliation(s)
- Xiaoxia Duan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rui Sun
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Maolin Yuan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
17
|
Long Y, Zheng Y, Xia Y, Qu L, Yang Y, Xiang H, Zhou X. Nickel-Catalyzed Synthesis of an Aryl Nitrile via Aryl Exchange between an Aromatic Amide and a Simple Nitrile. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Long
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanling Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, P. R. China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuhe Yang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
18
|
Cervantes-Reyes A, Smith AC, Chinigo GM, Blakemore DC, Szostak M. Decarbonylative Pd-Catalyzed Suzuki Cross-Coupling for the Synthesis of Structurally Diverse Heterobiaryls. Org Lett 2022; 24:1678-1683. [PMID: 35200025 PMCID: PMC9069322 DOI: 10.1021/acs.orglett.2c00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heteroaromatic biaryls are core scaffolds found in a plethora of pharmaceuticals; however, their direct synthesis by the Suzuki cross-coupling is limited to heteroaromatic halide starting materials. Here, we report a direct synthesis of diverse nitrogen-containing heteroaromatic biaryls by Pd-catalyzed decarbonylative Suzuki cross-coupling of widely available heterocyclic carboxylic acids with arylboronic acids. The practical and modular nature of this cross-coupling enabled the straightforward preparation of >45 heterobiaryl products using pyridines, pyrimidines, pyrazines, and quinolines in excellent yields. We anticipate that the modular nature of this protocol will find broad application in medicinal chemistry and drug discovery research.
Collapse
Affiliation(s)
- Alejandro Cervantes-Reyes
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Aaron C Smith
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Gary M Chinigo
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David C Blakemore
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
19
|
Zhong J, Zhou W, Yan X, Xia Y, Xiang H, Zhou X. Selective Activation of Unstrained C(O)-C Bond in Ketone Suzuki-Miyaura Coupling Reaction Enabled by Hydride-Transfer Strategy. Org Lett 2022; 24:1372-1377. [PMID: 35129355 DOI: 10.1021/acs.orglett.2c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Rh(I)-catalyzed ketone Suzuki-Miyaura coupling reaction of benzylacetone with arylboronic acid is developed. Selective C(O)-C bond activation, which employs aminopyridine as a temporary directing group and ethyl vinyl ketone as a hydride acceptor, occurs on the alkyl chain containing a β-position hydrogen. A series of acetophenone products were obtained in yields up to 75%.
Collapse
Affiliation(s)
- Jing Zhong
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Wuxin Zhou
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | | | - Xiangge Zhou
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
20
|
Long HJ, Zhang L, Lian B, Fang DC. DFT study on the ruthenium-catalyzed decarbonylative annulation of an alkyne with a six-membered hydroxychromone via C–H/C–C activation. Org Chem Front 2022. [DOI: 10.1039/d1qo01786a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both steady-state approximation and the modified energy span model have been employed to determine the TOF-determining transition state and TOF-determining intermediate for the title catalytic reaction.
Collapse
Affiliation(s)
- Hong-Jing Long
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Bing Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
21
|
Wang Y, Lang Y, Li CJ, Zeng H. Visible-light-induced transition metal and photosensitizer free decarbonylative addition of amino-arylaldehydes to ketones. Chem Sci 2022; 13:698-703. [PMID: 35173934 PMCID: PMC8768876 DOI: 10.1039/d1sc06278f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
The decarbonylative-coupling reaction is generally promoted by transition metals (via organometallic complexes) or peroxides (via radical intermediates), often at high temperatures to facilitate the CO release. Herein, a visible-light-induced, transition metal and external photosensitizer free decarbonylative addition of benzaldehydes to ketones/aldehydes at room temperature is reported. Tertiary/secondary alcohols were obtained in moderate to excellent yields promoted by using CsF under mild conditions. The detailed mechanistic investigation showed that the reaction proceeded through photoexcitation–decarbonylation of the aldehyde to generate an aromatic anion, followed by its addition to ketones/aldehydes. The reaction mechanism was verified by the density functional theory (DFT) calculations. A visible-light-induced, transition-metal and external photosensitizer free decarbonylative addition of benzaldehydes to ketones/aldehydes via anion intermediates at room temperature is developed.![]()
Collapse
Affiliation(s)
- Yi Wang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yatao Lang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
22
|
Long Y, Zhou W, Li Q, Zhou X. Transition metal-catalyzed arylation of unstrained C-C single bonds. Org Biomol Chem 2021; 19:9809-9828. [PMID: 34734614 DOI: 10.1039/d1ob01707a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carbon-carbon bond activation is one of the most challenging and important research areas in organic chemistry. Selective C-C bond activation of unstrained substrates is difficult to achieve owing to its inert nature and competitive side reactions, but the ubiquitous presence of C-C bonds in organic molecules makes this transformation attractive and of vital importance. Moreover, transition metal-catalyzed arylation of unstrained C-C single bonds can realize the cleavage of old C-C bonds and introduce important aryl groups into the carbon chain to construct new C-C bonds at the same time, providing a powerful and straightforward method to reconstruct the skeleton of the molecules. In recent years, considerable progress has been made in the area of direct arylation of C-C bonds, and β-C elimination or oxidative addition strategies play key roles in these transformations. This review summarizes recent achievements of transition metal-catalyzed arylation of unstrained C-C bonds, demonstrated by various kinds of substrates including alcohol, nitrile and carbonyl compounds, and each example is detailed by its corresponding mechanism, catalytic system and scope of the substrate.
Collapse
Affiliation(s)
- Yang Long
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Wuxin Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Qiang Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
23
|
D'Alterio MC, Casals-Cruañas È, Tzouras NV, Talarico G, Nolan SP, Poater A. Mechanistic Aspects of the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. Chemistry 2021; 27:13481-13493. [PMID: 34269488 PMCID: PMC8518397 DOI: 10.1002/chem.202101880] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/14/2022]
Abstract
The story of C-C bond formation includes several reactions, and surely Suzuki-Miyaura is among the most outstanding ones. Herein, a brief historical overview of insights regarding the reaction mechanism is provided. In particular, the formation of the catalytically active species is probably the main concern, thus the preactivation is in competition with, or even assumes the role of the rate determining step (rds) of the overall reaction. Computational chemistry is key in identifying the rds and thus leading to milder conditions on an experimental level by means of predictive catalysis.
Collapse
Affiliation(s)
- Massimo C D'Alterio
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
- Dipartimento di Scienze Chimiche, Università di Napoli, Federico II Via Cintia, I-80126, Napoli, Italy
| | - Èric Casals-Cruañas
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Building S3, Krijgslaan 281, 9000, Gent, Belgium
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche, Università di Napoli, Federico II Via Cintia, I-80126, Napoli, Italy
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Building S3, Krijgslaan 281, 9000, Gent, Belgium
| | - Albert Poater
- Institut de Química Computacional i Catàlisi Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
24
|
Affiliation(s)
- Sayantika Bhakta
- Department of Applied Sciences Maulana Abul Kalam Azad University of Technology, West Bengal Simhat, Haringhata 741249 Nadia, West Bengal India
| | - Tapas Ghosh
- Department of Applied Sciences Maulana Abul Kalam Azad University of Technology, West Bengal Simhat, Haringhata 741249 Nadia, West Bengal India
| |
Collapse
|
25
|
Zhao B, Rogge T, Ackermann L, Shi Z. Metal-catalysed C-Het (F, O, S, N) and C-C bond arylation. Chem Soc Rev 2021; 50:8903-8953. [PMID: 34190223 DOI: 10.1039/c9cs00571d] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation of C-aryl bonds has been the focus of intensive research over the last decades for the construction of complex molecules from simple, readily available feedstocks. Traditionally, these strategies involve the coupling of organohalides (I, Br, Cl) with organometallic reagents (Mg, Zn, B, Si, Sn,…) such as Kumada-Corriu, Negishi, Suzuki-Miyaura, Hiyama and Sonogashira cross-couplings. More recently, alternative methods have provided access to these products by reactions with less reactive C-Het (F, O, S, N) and C-C bonds. Compared to traditional methods, the direct cleavage and arylation of these chemical bonds, the essential link in accessible feedstocks, has become increasingly important from the viewpoint of step-economy and functional-group compatibility. This comprehensive review aims to outline the development and advances of this topic, which was organized into (1) C-F bond arylation, (2) C-O bond arylation, (3) C-S bond arylation, (4) C-N bond arylation, and (5) C-C bond arylation. Substantial attention has been paid to the strategies and mechanistic investigations. We hope that this review can trigger chemists to discover more efficient methodologies to access arylation products by cleavage of these C-Het and C-C bonds.
Collapse
Affiliation(s)
- Binlin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | | | |
Collapse
|
26
|
Abstract
Decarbonylative Sonogashira cross-coupling of carboxylic acids by palladium catalysis is presented. The carboxylic acid is activated in situ by the formation of a mixed anhydride and further decarbonylates using the Pd(OAc)2/Xantphos system to provide an aryl-Pd intermediate, which is intercepted by alkynes to access the traditional Pd(0)/(II) cycle using carboxylic acids as ubiquitous and orthogonal electrophilic cross-coupling partners. The methodology efficiently constructs new C(sp2)-C(sp) bonds and can be applied to the derivatization of pharmaceuticals. Mechanistic studies give support to decarbonylation preceding transmetalation in this process.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
27
|
Wang L, Wang Y, Tao Y, Zhang N, Li S. Nickel catalyzed hydrosilane reduction of (het)arenecarboxylic acids into aldehydes. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Ahmadvand Z, Bayat M. Competition between the Hiyama and Suzuki–Miyaura Pd-catalyzed cross-coupling reaction mechanisms for the formation of some regioselective derivatives of quinoxaline and benzofuran; Which reaction mechanism is more favorable? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Kadu BS. Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02059a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suzuki–Miyaura cross coupling reaction (SMCR) – A milestone in the synthesis of C–C coupled compounds.
Collapse
|
30
|
Kazemnejadi M, Ahmed RO, Mahmoudi B. Ni/Pd-catalyzed Suzuki-Miyaura cross-coupling of alcohols and aldehydes and C-N cross-coupling of nitro and amines via domino redox reactions: base-free, hydride acceptor-free. RSC Adv 2020; 10:43962-43974. [PMID: 35517161 PMCID: PMC9058410 DOI: 10.1039/d0ra08344e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023] Open
Abstract
Domino oxidation-Suzuki-Miyaura cross-coupling of benzyl alcohols with phenylboronic acid and domino reduction-C-N cross-coupling of the nitro compounds with aryl halides were carried out using a strong Ni/Pd bimetallic redox catalyst. The catalyst bearing a copolymer with two Ni/Pd coordinated metals in porphyrin (derived from demetalated chlorophyll b) and salen-type ligands, and pyridine moiety as a base functionality all immobilized on magnetite NPs was synthesised and characterized. The domino oxidation cross-coupling reaction was accomplished under molecular O2 in the absence of any hydride acceptor or/and base. Also, the domino reduction C-N cross-coupling reaction was performed in the presence of NaBH4 without the need for any base and co-reductant. This multifunctional catalyst gave moderate to good yields for both coupling reactions with high chemoselectivity. A wide investigation was conducted to determine its mechanism and chemoselectivity.
Collapse
Affiliation(s)
- Milad Kazemnejadi
- Department of Chemistry, College of Science, Shiraz University Shiraz 7194684795 Iran
| | | | - Boshra Mahmoudi
- Research Center, Sulaimani Polytechnic University Sulaimani Iraq
| |
Collapse
|
31
|
Zhou JY, Liu RQ, Wang CY, Zhu YM. Synthesis of Biaryls via Decarbonylative Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Anhydrides. J Org Chem 2020; 85:14149-14157. [PMID: 33108868 DOI: 10.1021/acs.joc.0c02266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transition metal-catalyzed cross-couplings have been widely employed in the synthesis of many important molecules in synthetic chemistry for the construction of diverse C-C bonds. Conventional cross-coupling reactions require active electrophilic coupling partners, such as organohalides or sulfonates, which are not environmentally friendly enough. Herein, we disclose the first nickel-catalyzed Suzuki-Miyaura cross-coupling of aryl anhydrides and arylboronic acids for the synthesis of biaryls in a decarbonylation manner. The reaction tolerates a wide range of electron-withdrawing, electron-neutral, and electron-donating substituents in this process.
Collapse
Affiliation(s)
- Jing-Ya Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui-Qing Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Cheng-Yi Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong-Ming Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
32
|
Li XR, Chen SQ, Fan J, Li CJ, Wang X, Liu ZW, Shi XY. Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. Org Lett 2020; 22:8808-8813. [DOI: 10.1021/acs.orglett.0c03113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xin-Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Si-Qi Chen
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao-Jun Li
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Xue Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
33
|
Talukder MM, Cue JMO, Miller JT, Gamage PL, Aslam A, McCandless GT, Biewer MC, Stefan MC. Ligand Steric Effects of α-Diimine Nickel(II) and Palladium(II) Complexes in the Suzuki-Miyaura Cross-Coupling Reaction. ACS OMEGA 2020; 5:24018-24032. [PMID: 32984724 PMCID: PMC7513363 DOI: 10.1021/acsomega.0c03415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/21/2020] [Indexed: 05/13/2023]
Abstract
Nickel catalysts represent a low cost and environmentally friendly alternative to palladium-based catalytic systems for Suzuki-Miyaura cross-coupling (SMC) reactions. However, nickel catalysts have suffered from poor air, moisture, and thermal stabilities, especially at high catalyst loading, requiring controlled reaction conditions. In this report, we examine a family of mono- and dinuclear Ni(II) and Pd(II) complexes with a diverse and versatile α-diimine ligand environment for SMC reactions. To evaluate the ligand steric effects, including the bite angle in the reaction outcomes, the structural variation of the complexes was achieved by incorporating iminopyridine- and acenaphthene-based ligands. Moreover, the impact of substrate bulkiness was investigated by reacting various aryl bromides with phenylboronic acid, 2-naphthylboronic acid, and 9-phenanthracenylboronic acid. Yields were the best with the dinuclear complex, being nearly quantitative (93-99%), followed by the mononuclear complexes, giving yields of 78-98%. Consequently, α-diimine-based ligands have the potential to deliver Ni-based systems as sustainable catalysts in SMC.
Collapse
Affiliation(s)
- Md Muktadir Talukder
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - John Michael O. Cue
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Justin T. Miller
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Prabhath L. Gamage
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Amina Aslam
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Gregory T. McCandless
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Michael C. Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Mihaela C. Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| |
Collapse
|
34
|
Zhou T, Xie PP, Ji CL, Hong X, Szostak M. Decarbonylative Suzuki-Miyaura Cross-Coupling of Aroyl Chlorides. Org Lett 2020; 22:6434-6440. [PMID: 32806154 DOI: 10.1021/acs.orglett.0c02250] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report a catalyst system for Pd-catalyzed decarbonylative Suzuki-Miyaura cross-coupling of aroyl chlorides with boronic acids to furnish biaryls. This strategy is suitable for a broad range of common aroyl chlorides and boronic acids. The synthetic utility is highlighted in the direct late-stage functionalization of pharmaceuticals and natural products capitalizing on the presence of carboxylic acid moiety. Extensive mechanistic and DFT studies provide key insight into the reaction mechanism and high decarbonylative cross-coupling selectivity.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chong-Lei Ji
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
35
|
Fehér PP, Stirling A. Theoretical Study on the Formation of Ni(PR 3)(Aryl)F Complexes Observed in Ni-Catalyzed Decarbonylative C–C Coupling of Acyl Fluorides. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Péter Pál Fehér
- Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Stirling
- Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
36
|
Li Y, Li W, Tian J, Huang G, Lv H. Nickel-Catalyzed Asymmetric Addition of Aromatic Halides to Ketones: Highly Enantioselective Synthesis of Chiral 2,3-Dihydrobenzofurans Containing a Tertiary Alcohol. Org Lett 2020; 22:5353-5357. [PMID: 32573236 DOI: 10.1021/acs.orglett.0c01612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly enantioselective and straightforward synthetic procedure to chiral 3-hydroxy-2,3-dihydrobenzofurans has been developed by nickel/bisoxazoline-catalyzed intramolecular asymmetric addition of aryl halides to unactivated ketones, giving 2,3-dihydrobenzofurans with a chiral tertiary alcohol at the C-3 position in good yields and excellent enantioselectivities (up to 92% yield and 98% ee). The gram-scale reaction also proceeded smoothly without a loss of yield and enantioselectivity.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.,Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendian Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiangyan Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guozheng Huang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
37
|
Leitl J, Coburger P, Scott DJ, Ziegler CGP, Hierlmeier G, Wolf R, van Leest NP, de Bruin B, Hörner G, Müller C. Phosphorus Analogues of [Ni(bpy)2]: Synthesis and Application in Carbon–Halogen Bond Activation. Inorg Chem 2020; 59:9951-9961. [DOI: 10.1021/acs.inorgchem.0c01115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Leitl
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - P. Coburger
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - D. J. Scott
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - C. G. P. Ziegler
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - G. Hierlmeier
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - R. Wolf
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - N. P. van Leest
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B. de Bruin
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - G. Hörner
- Department of Chemistry, Inorganic Chemistry IV, Unversität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - C. Müller
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34/36, 14195 Berlin, Germany
| |
Collapse
|
38
|
Chen M, Hsieh B, Liu Y, Wu K, Lussari N, Braga AA. N
,
N
′‐bridged binuclear NHC palladium complexes: A combined experimental catalytic and computational study for the Suzuki reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ming‐Tsz Chen
- Department of Applied Chemistry Providence University Taichung 43301 Taiwan
| | - Bing‐Yan Hsieh
- Department of Applied Chemistry Providence University Taichung 43301 Taiwan
| | - Yi‐Hung Liu
- Department of Applied Chemistry Providence University Taichung 43301 Taiwan
| | - Kuo‐Hui Wu
- Department of Chemistry, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Natália Lussari
- Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo Avenida Professor Lineu Prestes, 748 São Paulo 05508‐000 Brazil
| | - Ataualpa A.C. Braga
- Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo Avenida Professor Lineu Prestes, 748 São Paulo 05508‐000 Brazil
| |
Collapse
|
39
|
Lu H, Yu TY, Xu PF, Wei H. Selective Decarbonylation via Transition-Metal-Catalyzed Carbon–Carbon Bond Cleavage. Chem Rev 2020; 121:365-411. [DOI: 10.1021/acs.chemrev.0c00153] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Tian-Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
40
|
Ramesh K, Satyanarayana G. Transition-Metal Catalyzed Stereoselective γ-Arylation and Friedel-Crafts Alkylation: A Concise Synthesis of Indenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Karu Ramesh
- Department of Chemistry; Indian Institute of Technology (IIT) Hyderabad; 502 285, Sangareddy District Kandi - Telangana INDIA
| | - Gedu Satyanarayana
- Department of Chemistry; Indian Institute of Technology (IIT) Hyderabad; 502 285, Sangareddy District Kandi - Telangana INDIA
| |
Collapse
|
41
|
Porcheddu A, Colacino E, De Luca L, Delogu F. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00142] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
- Consorzio C.I.N.M.P.I.S., 70125 Bari, Italy
| | | | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
42
|
Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M. Air‐Stable Fe
3
O
4
@SiO
2
‐EDTA‐Ni(0) as an Efficient Recyclable Magnetic Nanocatalyst for Effective Suzuki‐Miyaura and Heck Cross‐Coupling via Aryl Sulfamates and Carbamates. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry University of Isfahan Isfahan 81746‐73441 Iran
| | - Hassan Eslahi
- Chemistry Department, College of Sciences Shiraz University Shiraz Iran
| | | |
Collapse
|
43
|
Yuan S, Chang J, Yu B. Construction of Biologically Important Biaryl Scaffolds through Direct C–H Bond Activation: Advances and Prospects. Top Curr Chem (Cham) 2020; 378:23. [DOI: 10.1007/s41061-020-0285-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
|
44
|
Nickel-Catalyzed Arylative Additions on 2-Alkynyl-N
-Arylsulfonylanilides to Construct Functionalized Indoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Chen SQ, Li XR, Li CJ, Fan J, Liu ZW, Shi XY. Aldehyde as a Traceless Directing Group for Regioselective C–H Alkylation Catalyzed by Rhodium(III) in Air. Org Lett 2020; 22:1259-1264. [DOI: 10.1021/acs.orglett.9b04433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Si-Qi Chen
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xin-Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao-Jun Li
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
46
|
Jia J, Lefebvre Q, Rueping M. Reductive coupling of imines with redox-active esters by visible light photoredox organocatalysis. Org Chem Front 2020. [DOI: 10.1039/c9qo01428d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direct alkylation of imines with redox-active esters by visible light photoorganocatalysis provides a direct way for accessing α-branched secondary amines which are found in numerous bioactive molecules.
Collapse
Affiliation(s)
- Jiaqi Jia
- Institute of Organic Chemistry
- RWTH Aachen
- Aachen
- Germany
| | | | - Magnus Rueping
- Institute of Organic Chemistry
- RWTH Aachen
- Aachen
- Germany
- King Abdullah University of Science and Technology (KAUST)
| |
Collapse
|
47
|
Runikhina SA, Afanasyev OI, Biriukov K, Perekalin DS, Klussmann M, Chusov D. Aldehydes as Alkylating Agents for Ketones. Chemistry 2019; 25:16225-16229. [PMID: 31603584 DOI: 10.1002/chem.201904605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 11/06/2022]
Abstract
Common and non-toxic aldehydes are proposed as reagents for alkylation of ketones instead of carcinogenic alkyl halides. The developed reductive alkylation reaction proceeds in the presence of the commercially available ruthenium catalyst [(cymene)RuCl2 ]2 (as low as 250 ppm) and carbon monoxide as the reducing agent. The reaction works well for a broad substrate scope, including aromatic and aliphatic aldehydes and ketones. It can be carried out without a solvent and often gives nearly quantitative yields of the products. This straightforward and cost-effective method is promising not only for laboratory application but also for industry, which produces carbon monoxide as a large-scale waste product.
Collapse
Affiliation(s)
- Sofiya A Runikhina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia
| | - Oleg I Afanasyev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia
| | - Klim Biriukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia
| | - Dmitry S Perekalin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia.,G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997, Moscow, Russia
| | - Martin Klussmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Denis Chusov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991, Moscow, Russia.,G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997, Moscow, Russia
| |
Collapse
|
48
|
Srimontree W, Guo L, Rueping M. Hydride Transfer Enables the Nickel‐Catalyzed
ipso
‐Borylation and Silylation of Aldehydes. Chemistry 2019; 26:423-427. [DOI: 10.1002/chem.201904842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Watchara Srimontree
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Lin Guo
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Magnus Rueping
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
- Kaust Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
49
|
Zhang C, Zhao R, Dagnaw WM, Liu Z, Lu Y, Wang ZX. Density Functional Theory Mechanistic Insight into the Base-Free Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling of Acid Fluoride: Concerted versus Stepwise Transmetalation. J Org Chem 2019; 84:13983-13991. [DOI: 10.1021/acs.joc.9b02154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chaoshen Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihua Zhao
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wasihun Menberu Dagnaw
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zheyuan Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Iosub AV, Moravčík Š, Wallentin CJ, Bergman J. Nickel-Catalyzed Selective Reduction of Carboxylic Acids to Aldehydes. Org Lett 2019; 21:7804-7808. [PMID: 31545059 DOI: 10.1021/acs.orglett.9b02779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct reduction of carboxylic acids to aldehydes is a fundamental transformation in organic synthesis. The combination of an air-stable Ni precatalyst, dimethyl dicarbonate as an activator, and silane reductant effects this reduction for a wide variety of substrates, including pharmaceutically relevant structures, in good yields and with no overreduction to alcohols. Moreover, this methodology is scalable, allows access to deuterated aldehydes, and is also compatible with one-pot utilization of the aldehyde products.
Collapse
Affiliation(s)
- Andrei V Iosub
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism , BioPharmaceuticals R&D, AstraZeneca , Gothenburg , Sweden
| | - Štefan Moravčík
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism , BioPharmaceuticals R&D, AstraZeneca , Gothenburg , Sweden
| | - Carl-Johan Wallentin
- Department of Chemistry and Molecular Biology , Gothenburg University , Gothenburg , Sweden
| | - Joakim Bergman
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism , BioPharmaceuticals R&D, AstraZeneca , Gothenburg , Sweden
| |
Collapse
|