1
|
Sun A, Wu Y, Yu L. Quantitative Characterization and Influencing Factors for Electrode-Molecule-Electrode Junction Stability. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28939-28960. [PMID: 40340305 DOI: 10.1021/acsami.4c21560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Molecular electronics has made considerable progress in recent decades. The construction of a stable "electrode-molecule-electrode" junction is critical for the study of molecular electronics, as the stability can promote the exploration of the electrical properties of individual molecules and enable the prolonged observation of physical and chemical phenomena at the single-molecule scale. However, dispersed discussions and conflated concepts hinder our understanding of molecular junction stability. In this review, we systematically discuss the stability of molecular junctions from both thermodynamic and kinetic perspectives, summarize key quantitative parameters and their interrelationships, and provide an overview of the influencing factors at the molecule-electrode interface, as well as the experimental and theoretical analysis methods. We anticipate that this review will contribute to a thorough understanding of the stability of molecular junctions and offer valuable insights for the design of molecular devices based on molecular junctions.
Collapse
Affiliation(s)
- Aoxing Sun
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yiqun Wu
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Lei Yu
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
2
|
Wang J, Wang X, Yao C, Xu J, Wang D, Zhao X, Li X, Liu J, Hong W. Interface Phenomena in Molecular Junctions through Noncovalent Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5705-5735. [PMID: 40009872 DOI: 10.1021/acs.langmuir.4c04865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Noncovalent interactions, both between molecules and at the molecule-electrode interfaces, play essential roles in enabling dynamic and reversible molecular behaviors, including self-assembly, recognition, and various functional properties. In macroscopic ensemble systems, these interfacial phenomena often exhibit emergent properties that arise from the synergistic interplay of multiple noncovalent interactions. However, at the single-molecule scale, precisely distinguishing, characterizing, and controlling individual noncovalent interactions remains a significant challenge. Molecular electronics offers a unique platform for constructing and characterizing both intermolecular and molecule-electrode interfaces governed by noncovalent interactions, enabling the isolated study of these fundamental interactions. Furthermore, precise control over these interfaces through noncovalent interactions facilitates the development of enhanced molecular devices. This review examines the characterization of interfacial phenomena arising from noncovalent interactions through single-molecule electrical measurements and explores their applications in molecular devices. We begin by discussing the construction of stable molecular junctions through intermolecular and molecule-electrode interfaces, followed by an analysis of electron tunneling mechanisms mediated by key noncovalent interactions and their modulation methods. We then investigate how noncovalent interactions enhance device sensitivity, stability, and functionality, establishing design principles for next-generation molecular electronics. We have also explored the potential of noncovalent interactions for bottom-up self-assembled molecular devices. The review concludes by addressing the opportunities and challenges in scaling up molecular electronics through noncovalent interactions.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaojing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Chengpeng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jizhe Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Dongdong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xin Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Wang DN, Shen W, Li M, Zhang M, Mu J, Cai W. Advancements in endohedral metallofullerenes: novel metal-cage interactions driving new phenomena and emerging applications. Chem Commun (Camb) 2024; 60:14733-14749. [PMID: 39584469 DOI: 10.1039/d4cc04341c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Since the discovery of La@C82, a wide array of endohedral metallofullerenes (EMFs) have been synthesized and documented. Various metals, including lanthanides, transition metals, alkali metals, alkaline earth metals and actinides, have been successfully incorporated into the inert fullerene cavities. The interaction between these encapsulated metal species and the fullerene cage isomers plays a crucial role in determining distinct molecular structures and imparting versatile chemical behaviors to these compounds. In particular, recent advancements in EMFs with medium-sized carbon cages, which are among the most versatile categories of EMFs, have marked a significant breakthrough in fundamental coordination chemistry and opened up a wide range of potential applications. The formation of various abnormal metal clusters, possessing unique chemical bonding character and geometric conformations, has been shown to be influenced by novel electron transfer mechanisms between the metal atoms and the carbon cage. Moreover, these specialized metal-cage interactions have also facilitated the stabilization of giant fullerene families and promoted the exploration of these structures in greater detail, particularly with respect to the unanticipated metallofullertubes. Therefore, this review aims to highlight the new phenomena arising from these novel metal-cage interactions in the fundamental study of pristine EMFs. On this basis, we also discussed innovative applications of EMF-based supramolecular complexes that stem from their unique host-guest association.
Collapse
Affiliation(s)
- Dan-Ning Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wangqiang Shen
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Yan C, Fang C, Gan J, Wang J, Zhao X, Wang X, Li J, Zhang Y, Liu H, Li X, Bai J, Liu J, Hong W. From Molecular Electronics to Molecular Intelligence. ACS NANO 2024; 18:28531-28556. [PMID: 39395180 DOI: 10.1021/acsnano.4c10389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Molecular electronics is a field that explores the ultimate limits of electronic device dimensions by using individual molecules as operable electronic devices. Over the past five decades since the proposal of a molecular rectifier by Aviram and Ratner in 1974 ( Chem. Phys. Lett.1974,29, 277-283), researchers have developed various fabrication and characterization techniques to explore the electrical properties of molecules. With the push of electrical characterizations and data analysis methodologies, the reproducibility issues of the single-molecule conductance measurement have been chiefly resolved, and the origins of conductance variation among different devices have been investigated. Numerous prototypical molecular electronic devices with external physical and chemical stimuli have been demonstrated based on the advances of instrumental and methodological developments. These devices enable functions such as switching, logic computing, and synaptic-like computing. However, as the goal of molecular electronics, how can molecular-based intelligence be achieved through single-molecule electronic devices? At the fiftieth anniversary of molecular electronics, we try to answer this question by summarizing recent progress and providing an outlook on single-molecule electronics. First, we review the fabrication methodologies for molecular junctions, which provide the foundation of molecular electronics. Second, the preliminary efforts of molecular logic devices toward integration circuits are discussed for future potential intelligent applications. Third, some molecular devices with sensing applications through physical and chemical stimuli are introduced, demonstrating phenomena at a single-molecule scale beyond conventional macroscopic devices. From this perspective, we summarize the current challenges and outlook prospects by describing the concepts of "AI for single-molecule electronics" and "single-molecule electronics for AI".
Collapse
Affiliation(s)
- Chenshuai Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jinyu Gan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xin Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaojing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Haojie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Yang ZX, Albalawi S, Zhao S, Li YG, Zhang H, Zou YL, Hou S, Chen LC, Shi J, Yang Y, Wu Q, Lambert C, Hong W. Single-Molecule Cross-Plane Conductance of Polycyclic Aromatic Hydrocarbon Derivatives. Chemistry 2024; 30:e202402095. [PMID: 38943462 DOI: 10.1002/chem.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
In the cross-plane single-molecule junctions, the correlation between molecular aromaticity and conductance remained puzzling. Cross-plane break junction (XPBJ) provides new insight into understanding the role of aromaticity and conjugation to molecules on charge transport through the planar molecules. In this work, we investigated the modulation of cross-plane charge transport in pyrene derivatives by hydrogenation and substituents based on the XPBJ method that differs from those used in-plane transport. We measured the electrical conductance of the hydrogenated derivatives of the pyrenes and found that hydrogenation reduces conductance, and the fully hydrogenated molecule has the lowest conductance. Conductance of pyrene derivatives increased after substitution by both electron-donating and electron-withdrawing groups. By calculating, the trend in decreased conductance of hydrogenated pyrene was found to be consistent with the change in aromaticity. Electron-withdrawing substituents reduce the aromaticity of the molecule and narrow the HOMO-LUMO gap, while electron-donating groups increase the aromaticity but also narrow the gap. Our work reveals the potential of fine-tuning the structure of the pyrene molecule to control the cross-plane charge transport through the single-molecule junctions.
Collapse
Affiliation(s)
- Zi-Xian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Shadiah Albalawi
- Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk, Saudi Arabia
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yao-Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Songjun Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| |
Collapse
|
6
|
Zhang X, Li Z, Ji S, Xu W, Chen L, Xiao Z, Liu J, Hong W. Plasmon-Molecule Interactions in Single-Molecule Junctions. Chempluschem 2024; 89:e202300556. [PMID: 38050755 DOI: 10.1002/cplu.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Single-molecule optoelectronics offers opportunities for advancing integrated photonics and electronics, which also serves as a tool to elucidate the underlying mechanism of light-matter interaction. Plasmonics, which plays pivotal role in the interaction of photons and matter, have became an emerging area. A comprehensive understanding of the plasmonic excitation and modulation mechanisms within single-molecule junctions (SMJs) lays the foundation for optoelectronic devices. Consequently, this review primarily concentrates on illuminating the fundamental principles of plasmonics within SMJs, delving into their research methods and modulation factors of plasmon-exciton. Moreover, we underscore the interaction phenomena within SMJs, including the enhancement of molecular fluorescence by plasmonics, Fano resonance and Rabi splitting caused by the interaction of plasmon-exciton. Finally, by emphasizing the potential applications of plasmonics within SMJs, such as their roles in optical tweezers, single-photon sources, super-resolution imaging, and chemical reactions, we elucidate the future prospects and current challenges in this domain.
Collapse
Affiliation(s)
- Xiangui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengyu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Shurui Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
7
|
Zhou J, Yang S, Zhang Y, Ren JC, Liu W. Effective Descriptor for Screening Single-Molecule Conductance Switches. J Am Chem Soc 2024; 146:6962-6973. [PMID: 38426449 DOI: 10.1021/jacs.3c14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The adsorption-type molecular switch exhibits bistable states with an equivalently long lifetime at the organic/inorganic interface, promising reliable switching behavior and superior assembly ability in the electronic circuits at the molecular scale. However, the number of reported adsorption-type molecular switches is currently less than 10, and exploring these molecular switches poses a formidable challenge due to the intricate interplay occurring at the interface. To address this challenge, we have developed a model enabling the identification of diverse molecular switches on metal surfaces based on easily accessible physical characteristics. These characteristics primarily include the metal valency electron concentration, the work function of metal surfaces, and the electronegativity difference of molecules. Using this model, we identified 56 new molecular switches. Employing the gradient descent algorithm and statistical linear discriminant analysis, we constructed an explicit descriptor that establishes a relationship between the interfacial structure and chemical environment and the stability of molecular switches. The model's accuracy was validated through density functional theory calculations, achieving a 90% accuracy for aromatic molecular switches. The conductive switching behaviors were further confirmed by nonequilibrium Green's function transport calculations.
Collapse
Affiliation(s)
- Junjun Zhou
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yirong Zhang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Ji-Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| |
Collapse
|
8
|
Chen LC, Shi J, Lu ZX, Lin RJ, Lu TG, Zou YL, Liang QM, Huang R, Shi J, Xiao ZY, Zhang Y, Liu J, Yang Y, Hong W. Highly Reversible Molecular Photoswitches with Transition Metal Dichalcogenides Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305607. [PMID: 37817357 DOI: 10.1002/smll.202305607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Indexed: 10/12/2023]
Abstract
The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.
Collapse
Affiliation(s)
- Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zhi-Xing Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Rong-Jian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Tai-Ge Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zong-Yuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Chen L, Yang Z, Lin Q, Li X, Bai J, Hong W. Evolution of Single-Molecule Electronic Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1988-2004. [PMID: 38227964 DOI: 10.1021/acs.langmuir.3c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Single-molecule electronics can fabricate single-molecule devices via the construction of molecule-electrode interfaces and also provide a unique tool to investigate single-molecule scale physicochemical processes at these interfaces. To investigate single-molecule electronic devices with desired functionalities, an understanding of the interface evolution processes in single-molecule devices is essential. In this review, we focus on the evolution of molecule-electrode interface properties, including the background of interface evolution in single-molecule electronics, the construction of different types of single-molecule interfaces, and the regulation methods. Finally, we discuss the perspective of future characterization techniques and applications for single-molecule electronic interfaces.
Collapse
Affiliation(s)
- Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Zixian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Qichao Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| |
Collapse
|
10
|
Li X, Wang S, Guo J, Wu Z, Guo C, Cai S, Deng M. Core-Hole Excitation Spectra of the Oxides and Hydrates of Fullerene C 60 and Azafullerene C 59N. Molecules 2024; 29:609. [PMID: 38338353 PMCID: PMC10856231 DOI: 10.3390/molecules29030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The interaction of fullerenes and their derivatives with environmental molecules such as oxygen or water was crucial for the rational design of low-dimensional materials and devices. In this paper, the near-edge X-ray absorption fine structure (NEXAFS), X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) shake-up satellites were employed to distinguish the oxides and hydrates of the fullerene C60 and azafullerene C59N families. The study includes various isomers, such as the open [5,6] and closed [6,6] isomers of C60O, C60H(OH), C60-O-C60, C60H-O-C60H, C59N(OH) and C59N-O-C59N, based on density functional theory. These soft X-ray spectra offered comprehensive insights into the molecular orbitals of these azafullerene molecular groups. The oxygen K-edge NEXAFS, carbon and oxygen K-edge XPS shake-up satellite spectra provided valuable tools for distinguishing oxides or hydrates of fullerene C60 and azafullerene C59N. Our findings could significantly benefit the development of fullerene functional molecular materials and expand the application scope of soft X-ray spectroscopy as a molecular fingerprinting tool for the fullerene family.
Collapse
Affiliation(s)
- Xiong Li
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; (X.L.); (S.W.)
- School of Science, East China University of Technology, Nanchang 330013, China
| | - Shuyi Wang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; (X.L.); (S.W.)
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China;
| | - Jingdong Guo
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China;
| | - Ziye Wu
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (Z.W.); (C.G.)
| | - Changrui Guo
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (Z.W.); (C.G.)
| | - Shaohong Cai
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (Z.W.); (C.G.)
- Department of Resources and Environment, Moutai Institute, Renhuai 564507, China
| | - Mingsen Deng
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (Z.W.); (C.G.)
| |
Collapse
|
11
|
Zhang H, Zhou P, Daaoub A, Sangtarash S, Zhao S, Yang Z, Zhou Y, Zou YL, Decurtins S, Häner R, Yang Y, Sadeghi H, Liu SX, Hong W. Atomically well-defined nitrogen doping for cross-plane transport through graphene heterojunctions. Chem Sci 2023; 14:6079-6086. [PMID: 37293661 PMCID: PMC10246689 DOI: 10.1039/d3sc00075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
The nitrogen doping of graphene leads to graphene heterojunctions with a tunable bandgap, suitable for electronic, electrochemical, and sensing applications. However, the microscopic nature and charge transport properties of atomic-level nitrogen-doped graphene are still unknown, mainly due to the multiple doping sites with topological diversities. In this work, we fabricated atomically well-defined N-doped graphene heterojunctions and investigated the cross-plane transport through these heterojunctions to reveal the effects of doping on their electronic properties. We found that a different doping number of nitrogen atoms leads to a conductance difference of up to ∼288%, and the conductance of graphene heterojunctions with nitrogen-doping at different positions in the conjugated framework can also lead to a conductance difference of ∼170%. Combined ultraviolet photoelectron spectroscopy measurements and theoretical calculations reveal that the insertion of nitrogen atoms into the conjugation framework significantly stabilizes the frontier molecular orbitals, leading to a change in the relative positions of the HOMO and LUMO to the Fermi level of the electrodes. Our work provides a unique insight into the role of nitrogen doping in the charge transport through graphene heterojunctions and materials at the single atomic level.
Collapse
Affiliation(s)
- Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Ping Zhou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Zixian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| |
Collapse
|
12
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
13
|
Li X, Ge W, Guo S, Bai J, Hong W. Characterization and Application of Supramolecular Junctions. Angew Chem Int Ed Engl 2023; 62:e202216819. [PMID: 36585932 DOI: 10.1002/anie.202216819] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
The convergence of supramolecular chemistry and single-molecule electronics offers a new perspective on supramolecular electronics, and provides a new avenue toward understanding and application of intermolecular charge transport at the molecular level. In this review, we will provide an overview of the advances in the characterization technique for the investigation of intermolecular charge transport, and summarize the experimental investigation of several non-covalent interactions, including π-π stacking interactions, hydrogen bonding, host-guest interactions and σ-σ interactions at the single-molecule level. We will also provide a perspective on supramolecular electronics and discuss the potential applications and future challenges.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Wenhui Ge
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Shuhan Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
14
|
Li M, Zhao R, Dang J, Zhao X. Theoretical study on the stabilities, electronic structures, and reaction and formation mechanisms of fullerenes and endohedral metallofullerenes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Felix AB, Pacheco M, Orellana P, Latgé A. Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3475. [PMID: 36234603 PMCID: PMC9565596 DOI: 10.3390/nano12193475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
All-carbon systems have proven to present interesting transport properties and are often used in electronic devices. Motivated by recent resonant responses measured on graphene/fullerene junction, we propose coupled nanoribbons/carbon-nanotube heterostructures for use as charge filters and to allow tuned transport. These hybrid systems are engineered as a four-terminal device, and we explore multiple combinations of source and collector leads. The armchair-edge configuration results in midgap states when the transport is carried through top/bottom terminals. Such states are robust against the lack of perfect order on the tube and are revealed as sharp steps in the characteristic current curves when a bias potential is turned on. The zigzag-edge systems exhibit differential negative resistance, with features determined by the details of the hybrid structures.
Collapse
Affiliation(s)
- Antonio Bernardo Felix
- Physics Institute, Federal Fluminense University, Av. Litorânea, Niterói 24210-356, RJ, Brazil
| | - Monica Pacheco
- Physics Departament, Santa Maria University, Av. Espana, Valparaíso 2390123, Chile
| | - Pedro Orellana
- Physics Departament, Santa Maria University, Av. Espana, Valparaíso 2390123, Chile
| | - Andrea Latgé
- Physics Institute, Federal Fluminense University, Av. Litorânea, Niterói 24210-356, RJ, Brazil
| |
Collapse
|
16
|
Shin J, Eo JS, Jeon T, Lee T, Wang G. Advances of Various Heterogeneous Structure Types in Molecular Junction Systems and Their Charge Transport Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202399. [PMID: 35975456 PMCID: PMC9596861 DOI: 10.1002/advs.202202399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Indexed: 05/31/2023]
Abstract
Molecular electronics that can produce functional electronic circuits using a single molecule or molecular ensemble remains an attractive research field because it not only represents an essential step toward realizing ultimate electronic device scaling but may also expand our understanding of the intrinsic quantum transports at the molecular level. Recently, in order to overcome the difficulties inherent in the conventional approach to studying molecular electronics and developing functional device applications, this field has attempted to diversify the electrical characteristics and device architectures using various types of heterogeneous structures in molecular junctions. This review summarizes recent efforts devoted to functional devices with molecular heterostructures. Diverse molecules and materials can be combined and incorporated in such two- and three-terminal heterojunction structures, to achieve desirable electronic functionalities. The heterojunction structures, charge transport mechanisms, and possible strategies for implementing electronic functions using various hetero unit materials are presented sequentially. In addition, the applicability and merits of molecular heterojunction structures, as well as the anticipated challenges associated with their implementation in device applications are discussed and summarized. This review will contribute to a deeper understanding of charge transport through molecular heterojunction, and it may pave the way toward desirable electronic functionalities in molecular electronics applications.
Collapse
Affiliation(s)
- Jaeho Shin
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of ChemistryRice University6100 Main StreetHoustonTexas77005United States
| | - Jung Sun Eo
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takgyeong Jeon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takhee Lee
- Department of Physics and AstronomyInstitute of Applied PhysicsSeoul National UniversitySeoul08826Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of Integrative Energy EngineeringKorea UniversitySeoul02841Korea
- Center for Neuromorphic EngineeringKorea Institute of Science and TechnologySeoul02792Korea
| |
Collapse
|
17
|
Feng A, Hou S, Yan J, Wu Q, Tang Y, Yang Y, Shi J, Xiao ZY, Lambert CJ, Zheng N, Hong W. Conductance Growth of Single-Cluster Junctions with Increasing Sizes. J Am Chem Soc 2022; 144:15680-15688. [PMID: 35984293 DOI: 10.1021/jacs.2c05856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum-tunneling-based nanoelectronics has the potential for the miniaturization of electronics toward the sub-5 nm scale. However, the nature of phase-coherent quantum tunneling leads to the rapid decays of the electrical conductance with tunneling transport distance, especially in organic molecule-based nanodevices. In this work, we investigated the conductance of the single-cluster junctions of a series of atomically well-defined silver nanoclusters, with varying sizes from 0.9 to 3.0 nm, using the mechanically controllable break junction (MCBJ) technique combined with quantum transport theory. Our charge transport investigations of these single-cluster junctions revealed that the conductance grows with increasing cluster size. The conductance decay constant was determined to be ∼-0.4 nm-1, which is of opposite sign to that of organic molecules. Comparison between experiment and theory reveals that although charge transport through the silver single-cluster junctions occurs via phase-coherent tunneling, this is compensated by a rapid decrease in the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gap) with size and the increase in the electrode-cluster coupling, which results in their conductance increase up to lengths of ∼3.0 nm. These results demonstrate that such families of nanoclusters provide unique bottom-up building blocks for the fabrication of nanodevices in the sub-5 nm size range.
Collapse
Affiliation(s)
- Anni Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Juanzhu Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Yongxiang Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Zong-Yuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Nanfeng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005 Xiamen, China
| |
Collapse
|
18
|
Zhang H, Xu W, Song K, Lu T, Zhang G, Zang Y, Hong W, Zhang D. Dual Modulation of Single Molecule Conductance via Tuning Side Chains and Electric Field with Conjugated Molecules Entailing Intramolecular O•••S Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105667. [PMID: 35434941 PMCID: PMC9189668 DOI: 10.1002/advs.202105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Herein, single-molecule conductance studies of TBT1-TBT6 which entails 1,4-dithienylbenzene as the backbone and SMe groups as the anchoring units, with the scanning tunneling microscope break junction (STM-BJ) technique, are reported. The molecular conductance of TBT1 with intramolecular O•••S noncovalent interactions is enhanced by about one order of magnitude in comparison to their analogue TBT2 (which contains alkyl instead of alkoxy chains). By replacing the methoxy groups in TBT1 with extending alkoxy chains in TBT3, TBT4, and TBT5, the molecular backbones become twisted and as a consequence the single-molecule conductance decreases gradually, showing that the intramolecular O•••S noncovalent interaction is influenced by the structural features of alkoxy chains. More importantly, the single-molecule conductance of TBT3, TBT4, and TBT5 can be boosted by increasing the electric field applied to the molecular junctions. Remarkably, the conductance of TBT3, TBT4, and TBT5 can be reversibly modulated due to the conformational changes between twisted and planar ones by varying the electric field. These results demonstrate that molecules with intramolecular O•••S noncovalent interactions have the potential for in situ control of the electrical properties of molecular-scale devices.
Collapse
Affiliation(s)
- Hua Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Kai Song
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Taige Lu
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yaping Zang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
19
|
|
20
|
Zhao S, Deng ZY, Albalawi S, Wu Q, Chen L, Zhang H, Zhao XJ, Hou H, Hou S, Dong G, Yang Y, Shi J, Lambert CJ, Tan YZ, Hong W. Charge transport through single-molecule bilayer-graphene junctions with atomic thickness. Chem Sci 2022; 13:5854-5859. [PMID: 35685781 PMCID: PMC9132082 DOI: 10.1039/d1sc07024j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
The van der Waals interactions (vdW) between π-conjugated molecules offer new opportunities for fabricating heterojunction-based devices and investigating charge transport in heterojunctions with atomic thickness. In this work, we fabricate sandwiched single-molecule bilayer-graphene junctions via vdW interactions and characterize their electrical transport properties by employing the cross-plane break junction (XPBJ) technique. The experimental results show that the cross-plane charge transport through single-molecule junctions is determined by the size and layer number of molecular graphene in these junctions. Density functional theory (DFT) calculations reveal that the charge transport through molecular graphene in these molecular junctions is sensitive to the angles between the graphene flake and peripheral mesityl groups, and those rotated groups can be used to tune the electrical conductance. This study provides new insight into cross-plane charge transport in atomically thin junctions and highlights the role of through-space interactions in vdW heterojunctions at the molecular scale. Charge transport through single-molecule bilayer-graphene junctions fabricated by a cross-plane break junction technique can be tuned at the atomic level.![]()
Collapse
Affiliation(s)
- Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ze-Ying Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Shadiah Albalawi
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Qingqing Wu
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xin-Jing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hao Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Songjun Hou
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Gang Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Colin J Lambert
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
21
|
Yang D, Chen X, He D, Frommhold A, Shi X, Boden SA, Lebedeva MA, Ershova OV, Palmer RE, Li Z, Shi H, Gao J, Pan M, Khlobystov AN, Chamberlain TW, Robinson APG. A Fullerene-Platinum Complex for Direct Functional Patterning of Single Metal Atom-Embedded Carbon Nanostructures. J Phys Chem Lett 2022; 13:1578-1586. [PMID: 35138106 DOI: 10.1021/acs.jpclett.1c03877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of patterning materials ("resists") at the nanoscale involves two distinct trends: one is toward high sensitivity and resolution for miniaturization, the other aims at functionalization of the resists to realize bottom-up construction of distinct nanoarchitectures. Patterning of carbon nanostructures, a seemingly ideal application for organic functional resists, has been highly reliant on complicated pattern transfer processes because of a lack of patternable precursors. Herein, we present a fullerene-metal coordination complex as a fabrication material for direct functional patterning of sub-10 nm metal-containing carbon structures. The attachment of one platinum atom per fullerene molecule not only leads to significant improvement of sensitivity and resolution but also enables stable atomic dispersion of the platinum ions within the carbon matrix, which may gain fundamentally new interest in functional patterning of hierarchical carbon nanostructures.
Collapse
Affiliation(s)
- Dongxu Yang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, P.R. China
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Xiangyi Chen
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Dongsheng He
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Andreas Frommhold
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Xiaoqing Shi
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K
| | - Stuart A Boden
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K
| | - Maria A Lebedeva
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Olga V Ershova
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Richard E Palmer
- Nanomaterials Laboratory, Mechanical Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, U.K
| | - Ziyou Li
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Haofei Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Jianzhi Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Minghu Pan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | | | - Thomas W Chamberlain
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Alex P G Robinson
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
22
|
Zhu Y, Tan Z, Hong W. Simultaneous Electrical and Mechanical Characterization of Single-Molecule Junctions Using AFM-BJ Technique. ACS OMEGA 2021; 6:30873-30888. [PMID: 34841131 PMCID: PMC8613807 DOI: 10.1021/acsomega.1c04785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The fabrication and characterization of single-molecule junctions provide a unique platform to study the physical phenomena of a single molecule, and the electrical characterization enables us to understand the electrical transport properties of a single molecule and guide the fabrication of molecular electronic devices. However, the electrical characterization of single-molecule junctions is sometimes insufficient to extract the structural information on single-molecule junctions, and an alternate method to address this problem is to characterize the mechanical properties of single-molecule junctions. Simultaneous measurement of mechanical and electrical properties can provide complementary information on single molecules to analyze the correlations of their electrical and mechanical properties in the evolution of single-molecule junctions. In this mini-review, we summarize the progress on the simultaneous characterizations of mechanical and electrical properties for single-molecule junctions, and discuss the challenges and perspectives of this research area.
Collapse
|
23
|
O'Driscoll LJ, Bryce MR. A review of oligo(arylene ethynylene) derivatives in molecular junctions. NANOSCALE 2021; 13:10668-10711. [PMID: 34110337 DOI: 10.1039/d1nr02023d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oligo(arylene ethynylene) (OAE) derivatives are the "workhorse" molecules of molecular electronics. Their ease of synthesis and flexibility of functionalisation mean that a diverse array of OAE molecular wires have been designed, synthesised and studied theoretically and experimentally in molecular junctions using both single-molecule and ensemble methods. This review summarises the breadth of molecular designs that have been investigated with emphasis on structure-property relationships with respect to the electronic conductance of OAEs. The factors considered include molecular length, connectivity, conjugation, (anti)aromaticity, heteroatom effects and quantum interference (QI). Growing interest in the thermoelectric properties of OAE derivatives, which are expected to be at the forefront of research into organic thermoelectric devices, is also explored.
Collapse
Affiliation(s)
- Luke J O'Driscoll
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UKDH1 3LE.
| | - Martin R Bryce
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UKDH1 3LE.
| |
Collapse
|
24
|
Lu Z, Zheng J, Shi J, Zeng BF, Yang Y, Hong W, Tian ZQ. Application of Micro/Nanofabrication Techniques to On-Chip Molecular Electronics. SMALL METHODS 2021; 5:e2001034. [PMID: 34927836 DOI: 10.1002/smtd.202001034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Indexed: 06/14/2023]
Abstract
Molecular electronics is a promising subject to overcome the size limitation of silicon-based electronic devices. In the past decades, various micro/nanofabrication techniques have been developed for constructing molecular junctions, and a number of breakthroughs are made in the characterizations and applications of the single-molecule device. The history and progress are reviewed in this article, laying emphasis on the recent works on the combination of micro/nanofabrication techniques with other techniques such as electrochemical deposition and surface-enhanced Raman spectroscopy (SERS). Some prototypical single-molecule devices such as molecular transistors are presented. Finally, the challenges and prospects in the fabrication of single-molecule devices are discussed.
Collapse
Affiliation(s)
- Zhixing Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Biao-Feng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
25
|
Gao T, Liu Y, Zhang X, Bai J, Hong W. Preparation and Application of Microelectrodes at the Single-Molecule Scale. Chem Asian J 2021; 16:253-260. [PMID: 33378120 DOI: 10.1002/asia.202001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Indexed: 11/10/2022]
Abstract
Molecular electronics offers a potential solution for the miniaturization of electronics beyond conventional silicon electronics. A key goal of molecular electronics is to fabricate the single-molecule junction with the functions of electronic units. The term "molecular junction" means a molecular cluster or a single molecule incorporated between two microelectrodes, and electrons are transported across it. The methods of constructing molecular junctions dynamically were developed, such as STM-BJ, AFM-BJ, and MCBJ, providing precise control of the gap and easy measurement of thousands of junctions. Electrodes based on these techniques are commonly called microelectrodes because at least one dimension is on the micron scale. In this manuscript, we summarize the preparation methods of microelectrodes and their application in single-molecule measurements. In addition, we discuss the electrode factor that influences the molecular electrical properties, such as material, curvature radius and cone angle, and further provide a brief prospect of molecular electronics.
Collapse
Affiliation(s)
- Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuyan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xueqing Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
26
|
Sergeyev D, Ashikov N, Zhanturina N. Electric Transport Properties of a Model Nanojunction “Graphene–Fullerene C60–Graphene”. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x21500071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the framework of the density functional theory and method of nonequilibrium Green functions (DFT [Formula: see text] NEGF), the electric transport properties of the model nanojunction “Graphene–Fullerene C[Formula: see text]–Graphene” were studied. The transmission spectra, the density of states, the current–voltage characteristic (CVC) and the differential conductivity of the nanojunction are determined. The appearance of a feature of the DOS nanotransition is revealed. This is due to the fact that the Lowest Unoccupied Molecular Orbital (LUMO) of C[Formula: see text] becomes closer to the Fermi level of metal substrates than its Highest Occupied Molecular Orbital (HOMO). It is shown that Coulomb stairs associated with the Coulomb blockade effect appear on the CVC of the nanotransition. The same changes are observed on the differential conductivity spectrum in the form of eight distinct peak structures arising with period [Formula: see text][Formula: see text]V. The comparison of the electric transport characteristics of single-fullerene nanodevices with various electrode materials (graphene, gold, platinum) are presented. It was found that the voltage period of Coulomb features [Formula: see text] in a nanodevice with graphene electrodes is less than in nanodevices with platinum and gold electrodes. It was revealed that the considered nanotransition has negative differential conductivity. The results obtained can be useful in calculating promising elements of single-electronics.
Collapse
Affiliation(s)
- D. Sergeyev
- Department of Physics, K. Zhubanov Aktobe Regional State University, 34 Moldagulova avenue, 030000 Aktobe, Kazakhstan
- Department of Radio Electronics, T. Begeldinov Aktobe Avation Institute, 39 Moldagulova avenue, 030012 Aktobe, Kazakhstan
| | - N. Ashikov
- Department of Radio Electronics, T. Begeldinov Aktobe Avation Institute, 39 Moldagulova avenue, 030012 Aktobe, Kazakhstan
| | - N. Zhanturina
- Department of Physics, K. Zhubanov Aktobe Regional State University, 34 Moldagulova avenue, 030000 Aktobe, Kazakhstan
| |
Collapse
|
27
|
Zeng BF, Wang G, Qian QZ, Chen ZX, Zhang XG, Lu ZX, Zhao SQ, Feng AN, Shi J, Yang Y, Hong W. Selective Fabrication of Single-Molecule Junctions by Interface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004720. [PMID: 33155382 DOI: 10.1002/smll.202004720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Recent progress in addressing electrically driven single-molecule behaviors has opened up a path toward the controllable fabrication of molecular devices. Herein, the selective fabrication of single-molecule junctions is achieved by employing the external electric field. For molecular junctions with methylthio (-SMe), thioacetate (-SAc), amine (-NH2 ), and pyridyl (-PY), the evolution of their formation probabilities along with the electric field is extracted from the plateau analysis of individual single-molecule break junction traces. With the increase of the electric field, the SMe-anchored molecules show a different trend in the formation probability compared to the other molecular junctions, which is consistent with the density functional theory calculations. Furthermore, switching from an SMe-anchored junction to an SAc-anchored junction is realized by altering the electric field in a mixed solution. The results in this work provide a new approach to the controllable fabrication and modulation of single-molecule junctions and other bottom-up nanodevices at molecular scales.
Collapse
Affiliation(s)
- Biao-Feng Zeng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Gan Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Qiao-Zan Qian
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Zhi-Xin Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Xia-Guang Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhi-Xing Lu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Shi-Qiang Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - An-Ni Feng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
28
|
Wenjing Hong. Angew Chem Int Ed Engl 2020; 59:17786. [DOI: 10.1002/anie.202004679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Wenjing Hong. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Zhao S, Wu Q, Pi J, Liu J, Zheng J, Hou S, Wei J, Li R, Sadeghi H, Yang Y, Shi J, Chen Z, Xiao Z, Lambert C, Hong W. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. SCIENCE ADVANCES 2020; 6:eaba6714. [PMID: 32524003 PMCID: PMC7259930 DOI: 10.1126/sciadv.aba6714] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/31/2020] [Indexed: 06/01/2023]
Abstract
Two-dimensional van der Waals heterojunctions (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdWHs (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created and that cross-plane charge transport can be tuned by incorporating guest molecules. The M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport.
Collapse
Affiliation(s)
- Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Jiuchan Pi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Junying Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hatef Sadeghi
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zhaobin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
31
|
Jia C, Grace IM, Wang P, Almeshal A, Huang Z, Wang Y, Chen P, Wang L, Zhou J, Feng Z, Zhao Z, Huang Y, Lambert CJ, Duan X. Redox Control of Charge Transport in Vertical Ferrocene Molecular Tunnel Junctions. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Yang C, Qin A, Tang BZ, Guo X. Fabrication and functions of graphene-molecule-graphene single-molecule junctions. J Chem Phys 2020; 152:120902. [PMID: 32241145 DOI: 10.1063/1.5144275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The past two decades have witnessed increasingly rapid advances in the field of single-molecule electronics, which are expected to overcome the limitation of the miniaturization of silicon-based microdevices, thus promoting the development of device manufacturing technologies and characterization means. In addition to this, they can enable us to investigate the intrinsic properties of materials at the atomic- or molecular-length scale and probe new phenomena that are inaccessible in ensemble experiments. In this perspective, we start from a brief introduction on the manufacturing method of graphene-molecule-graphene single-molecule junctions (GMG-SMJs). Then, we make a description on the remarkable functions of GMG-SMJs, especially on the investigation of single-molecule charge transport and dynamics. Finally, we conclude by discussing the main challenges and future research directions of molecular electronics.
Collapse
Affiliation(s)
- Caiyao Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Jaroš A, Bonab EF, Straka M, Foroutan-Nejad C. Fullerene-Based Switching Molecular Diodes Controlled by Oriented External Electric Fields. J Am Chem Soc 2019; 141:19644-19654. [PMID: 31744293 DOI: 10.1021/jacs.9b07215] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Employing multiscale in silico modeling, we propose switching molecular diodes on the basis of endohedral fullerenes (fullerene switching diode, FSD), encapsulated with polar molecules of general type MX (M: metal, X: nonmetal) to be used for data storage and processing. Here, we demonstrate for MX@C70 systems that the relative orientation of enclosed MX with respect to a set of electrodes connected to the system can be controlled by application of oriented external electric field(s). We suggest systems with two- and four-terminal electrodes, in which the source and drain electrodes help the current to pass through the device and help the switching between the conductive states of FSD via applied voltage. The gate electrodes then assist the switching by effectively lowering the energy barrier between local minima via stabilizing the transition state of switching process if the applied voltage between the source and drain is insufficient to switch the MX inside the fullerene. Using nonequilibrium Green's function combined with density functional theory (DFT-NEGF) computations, we further show that conductivity of the studied MX@C70 systems depends on the relative orientation of MX inside the cage with respect to the electrodes. Therefore, the orientation of the MX inside C70 can be both enforced ("written") and retrieved ("read") by applied voltage. The studied systems thus behave like voltage-sensitive switching molecular diodes, which is reminiscent of a molecular memristor.
Collapse
Affiliation(s)
- Adam Jaroš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , CZ-16610 Prague , Czech Republic.,Faculty of Science , Charles University , Albertov 2038/6 , CZ-12843 Prague 2 , Czech Republic
| | - Esmaeil Farajpour Bonab
- CEITEC - Central European Institute of Technology , Masaryk University , Kamenice 5/A4 , CZ-62500 Brno , Czech Republic.,Department of Chemistry, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , CZ-16610 Prague , Czech Republic
| | - Cina Foroutan-Nejad
- CEITEC - Central European Institute of Technology , Masaryk University , Kamenice 5/A4 , CZ-62500 Brno , Czech Republic.,Department of Chemistry, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czech Republic.,National Centre for Biomolecular Research, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czech Republic
| |
Collapse
|