1
|
Zhou X, Chu Y, Wang C, Wang Q, Hu M, Xu J, Deng F. Unveiling Active Al 3+ Sites for Ethanol Dehydration on γ-Al 2O 3 with Solid-State Nuclear Magnetic Resonance Spectroscopy. J Phys Chem Lett 2025; 16:53-59. [PMID: 39696823 DOI: 10.1021/acs.jpclett.4c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
γ-Al2O3 is a crucial catalyst widely used in industrial alcohol dehydration processes. However, the specific nature of its active sites has remained unclear. In this study, we utilize two-dimensional heteronuclear correlation solid-state nuclear magnetic resonance and density functional theory calculations to uncover the active Al sites on the surface of γ-Al2O3 that facilitate ethanol dehydration. We show the formation of stable pentacoordinated AlV-ethanol complexes upon the adsorption of ethanol on the tetracoordinated AlIV sites. This interaction significantly enhances synergy with adjacent AlV-OH sites, resulting in a marked reduction of the activation energy barrier for ethene production. Furthermore, we reveal an interchange between AlIV and AlV-OH species, allowing hexacoordinated AlVI-OH sites to participate in the dehydration pathway through the migration of ethanol between these coordination sites.
Collapse
Affiliation(s)
- Xue Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Chao Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Min Hu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
2
|
Kumar D, Sauer J, Airi A, Bordiga S, Galimberti DR. Assignment of IR spectra of ethanol at Brønsted sites of H-ZSM-5 to monomer adsorption using a Fermi resonance model. Phys Chem Chem Phys 2024; 27:550-563. [PMID: 39655396 DOI: 10.1039/d4cp03861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Understanding how alcohol molecules interact with the Brønsted acid sites (BAS) of zeolites is a prerequisite to the design of zeolite catalysts and catalytic processes. Here, we report IR spectra for the adsorption of ethanol on a highly crystalline sample of H-ZSM-5 zeolites exposed to ethanol gas at increasing pressure. We use density functional theory in combination with a FERMI resonance model to assign the measured spectra to a single adsorbed ethanol molecule per BAS. Specifically, we assign the bands at 2450 cm-1 and 1670 cm-1 to a FERMI resonance between the fundamental (Z)O-H stretching band of a single-ethanol-loaded BAS and the first overtone of the (Z)O-H out-of-plane bending. We conclude that adsorbed dimers do not contribute in a noticeable way up to a concentration of almost one ethanol molecule per BAS site. We further show that hybrid functionals (B3LYP) are required to get a close match between the predicted and experimental spectra, whereas commonly used generalized gradient type functionals such as PBE incorrectly describe the potential energy surface. They overestimate the redshift of the OH stretching band on hydrogen bond formation which results in an erroneous assignment of the IR bands.
Collapse
Affiliation(s)
- Dipanshu Kumar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität, Unter den Linden 6, 10117 Berlin, Germany
| | - Alessia Airi
- INRiM Istituto Nazionale di Ricerca Metrologica, Strada delle cacce 91, I-10135 Turin, Italy.
- Chemistry Department, University of Turin, via Gioacchino Quarello 15/A, I-10135 Turin, Italy
| | - Silvia Bordiga
- Chemistry Department, University of Turin, via Gioacchino Quarello 15/A, I-10135 Turin, Italy
| | - Daria Ruth Galimberti
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Ouayloul L, Agirrezabal-Telleria I, Sebastien P, El Doukkali M. Trend and Progress in Catalysis for Ethylene Production from Bioethanol Using ZSM-5. ACS Catal 2024; 14:17360-17397. [DOI: 10.1021/acscatal.4c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- L. Ouayloul
- Department of Chemistry, University of Sultan Moulay Slimane (USMS), 23000, Beni-Mellal, Morocco
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), 45013 Bilbao, Spain
| | - I. Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), 45013 Bilbao, Spain
| | - Paul Sebastien
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - M. El Doukkali
- Department of Chemistry, University of Sultan Moulay Slimane (USMS), 23000, Beni-Mellal, Morocco
| |
Collapse
|
4
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
5
|
Coupling Ethane Dehydrogenation with Benzene Alkylation Over Bifunctional Pt Supported HZSM-5 Catalyst. Catal Letters 2023. [DOI: 10.1007/s10562-023-04307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Wang W, Xu J, Deng F. Recent advances in solid-state NMR of zeolite catalysts. Natl Sci Rev 2022; 9:nwac155. [PMID: 36131885 PMCID: PMC9486922 DOI: 10.1093/nsr/nwac155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites are important inorganic crystalline microporous materials with a broad range of applications in the areas of catalysis, ion exchange, and adsorption/separations. Solid-state nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful tool in the study of zeolites and relevant catalytic reactions because of its advantage in providing atomic-level insights into molecular structure and dynamic behavior. In this review, we provide a brief discussion on the recent progress in exploring framework structures, catalytically active sites and intermolecular interactions in zeolites and metal-containing ones by using various solid-state NMR methods. Advances in the mechanistic understanding of zeolite-catalysed reactions including methanol and ethanol conversions are presented as selected examples. Finally, we discuss the prospect of the solid-state NMR technique for its application in zeolites.
Collapse
Affiliation(s)
- Weiyu Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Zhang Z, Su Y, Xiao H, Yang J. Selective Nuclear Magnetic Resonance Method for Enhancing Long-Range Heteronuclear Correlations in Solids. J Phys Chem Lett 2022; 13:6376-6382. [PMID: 35796704 DOI: 10.1021/acs.jpclett.2c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The long-range heteronuclear correlation remains a significant challenge in solid-state nuclear magnetic resonance (NMR), which is critical in the structural elucidation of biomolecular, material, and pharmaceutical solids. We propose a selective NMR method, heteronuclear selective phase-optimized recoupling (hetSPR), to selectively enhance long-range correlations of interest by utilizing characteristic chemical shifts. Compared to conventional methods, hetSPR can selectively enhance desired heteronuclear correlations (e.g., 1H-13C and 1H-19F) by factors up to 5 and largely suppress the unwanted ones. The method proves useful by enhancing the long-range correlation from an intermolecular 1H-19F distance of 4.8 Å by a factor of 2.4 in a fluorinated pharmaceutical drug, bicalutamide, under fast magic-angle spinning. It does not use selective pulses and is thus user-friendly even for nonexperts. The new method is expected to boost solid-state NMR to elucidate the structures of various solids.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongchao Su
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas 78712, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
9
|
Zeng S, Zhang W, Li J, Lin S, Xu S, Wei Y, Liu Z. Revealing the Roles of Hydrocarbon Pool Mechanism in Ethanol-to-Hydrocarbons Reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Mechanistic Insight into Ethanol Dehydration over SAPO-34 Zeolite by Solid-state NMR Spectroscopy. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Zhou L, Lin W, Wang X, Wang Z, Yang Y, Zhang L, Cheng H, Arai M, Zhao F. Influence of Brønsted acid sites on the product distribution in the hydrodeoxygenation of methyl laurate over supported Ru catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00011c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brønsted acid sites rather than Lewis acid sites play an important role in controlling the product selectivity in the hydrodeoxygenation of n-C11H23COOCH3 over supported Ru catalysts.
Collapse
Affiliation(s)
- Leilei Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| | - Weiwei Lin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| | - Xinchao Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| | - Zhuangqing Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| | - Yinze Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| | - Liyan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| | - Haiyang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| | - Masahiko Arai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| | - Fengyu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Rd., Changchun, 130022, China
| |
Collapse
|
13
|
Adsorption and dehydration of ethanol on isomorphously B, Al, and Ga substituted H-ZSM-5 zeolite: an embedded ONIOM study. J Mol Model 2021; 27:354. [PMID: 34786608 DOI: 10.1007/s00894-021-04979-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Dehydration reactions are important in the petroleum and petrochemical industries, especially for the feedstock production. In this work, the catalytic activity of zeolites with different acidities for the dehydration of ethanol to ethylene and diethylether is investigated by density functional calculations on cluster models of three isomorphous B, Al, and Ga substituted H-ZSM-5 zeolites. Both unimolecular and bimolecular mechanisms are investigated. Detailed reaction profiles for the dehydration reaction, assuming either a stepwise or a concerted mechanism, were calculated by using the ONIOM(MP2:M06-2X) + SCREEP method. The adsorption energies of ethanol are -21.6, -28.1, and -27.7 kcal mol-1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The activation energies for the rate-determining step of the unimolecular concerted mechanism for the ethylene formation are 48.5, 42.6, and 43.6 kcal mol-1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The activation energies for the ethoxy formation as the rate-determining step for the bimolecular formation of diethylether are 42.3, 40.0, and 41.1 kcal mol-1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The results indicate that the catalytic activities for the dehydration of ethanol decrease in the order H-[Al]-ZSM-5 ~ H-[Ga]-ZSM-5 > H-[B]-ZSM-5. Besides the acid strength, the zeolite framework affects the reaction by stabilizing the reaction intermediates, leading to more stable adsorption complexes and lower activation barriers.
Collapse
|
14
|
Bioethanol Upgrading to Renewable Monomers Using Hierarchical Zeolites: Catalyst Preparation, Characterization, and Catalytic Studies. Catalysts 2021. [DOI: 10.3390/catal11101162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bioethanol is one of the most promising renewable resources for the production of important monomers. To date, there have been various processes proposed for bioethanol conversion to renewable monomers. In this review, the catalytic bioethanol upgrading to various types of monomers using hierarchical zeolites as catalysts is illustrated, including the recent design and preparation of hierarchical zeolites for these catalytic processes. The characterizations of catalysts including textural properties, pore architectures, acidic properties, and active species are also exemplified. Moreover, the catalytic studies with various processes of monomer production from bioethanol including bioethanol dehydration, bioethanol to hydrocarbons, and bioethanol to butadiene are revealed in terms of catalytic activities and mechanistic studies. In addition, the future perspectives of these catalytic circumstances are proposed in both economic and sustainable development contexts.
Collapse
|
15
|
Sun T, Chen W, Xu S, Zheng A, Wu X, Zeng S, Wang N, Meng X, Wei Y, Liu Z. The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Qi G, Wang Q, Xu J, Deng F. Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Chem Soc Rev 2021; 50:8382-8399. [PMID: 34115080 DOI: 10.1039/d0cs01130d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding the nature of heterogeneous catalysts is critical for the rational design of highly active catalysts, which necessitates in-depth characterization of the structure and properties of catalysts as well as reaction mechanisms. Solid-state NMR correlation spectroscopy is becoming increasingly recognized as a powerful tool in the study of catalysts and catalytic reactions because of its capability to provide atomic-level insights into the structure, interaction and dynamics of molecules by establishing connectivity and proximity between the same or distinct nuclei. This tutorial review focuses on the fundamentals and state-of-the-art applications of solid-state NMR correlation techniques to structural characterization of catalytic materials including zeolites, metal oxides, organometallic complexes and MOFs as well as relevant studies regarding synthesis, synergistic catalysis, host-guest interactions and reaction mechanisms. Various correlation NMR methods that have been employed to address the challenging issues in heterogeneous catalysis are highlighted. This review concludes with outlooks on the promising applications and potential developments of solid-state NMR correlation spectroscopy in catalytic materials.
Collapse
Affiliation(s)
- Guodong Qi
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | |
Collapse
|
17
|
Abstract
Benzene is a widely used commodity chemical, which is currently produced from fossil resources. Lignin, a waste from lignocellulosic biomass industry, is the most abundant renewable source of benzene ring in nature. Efficient production of benzene from lignin, which requires total transformation of Csp2-Csp3/Csp2-O into C-H bonds without side hydrogenation, is of great importance, but has not been realized. Here, we report that high-silica HY zeolite supported RuW alloy catalyst enables in situ refining of lignin, exclusively to benzene via coupling Bronsted acid catalyzed transformation of the Csp2-Csp3 bonds on the local structure of lignin molecule and RuW catalyzed hydrogenolysis of the Csp2-O bonds using the locally abstracted hydrogen from lignin molecule, affording a benzene yield of 18.8% on lignin weight basis in water system. The reaction mechanism is elucidated in detail by combination of control experiments and density functional theory calculations. The high-performance protocol can be readily scaled up to produce 8.5 g of benzene product from 50.0 g lignin without any saturation byproducts. This work opens the way to produce benzene using lignin as the feedstock efficiently. Efficient production of benzene from lignin is attractive and of great importance, but has not been realized. Here, the authors develop a strategy to transform lignin into benzene over a RuW/zeolite catalyst in water, and the yield of benzene can be as high as 18.8% on lignin weight basis.
Collapse
|
18
|
Yan J, Meng Q, Shen X, Chen B, Sun Y, Xiang J, Liu H, Han B. Selective valorization of lignin to phenol by direct transformation of C sp2-C sp3 and C-O bonds. SCIENCE ADVANCES 2020; 6:6/45/eabd1951. [PMID: 33158871 PMCID: PMC7673717 DOI: 10.1126/sciadv.abd1951] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/16/2020] [Indexed: 05/23/2023]
Abstract
Phenol is an important commodity chemical in the industry, which is currently produced using fossil feedstocks. Here, we report a strategy to produce phenol from lignin by directly deconstructing Csp2-Csp3 and C-O bonds under mild conditions. It was found that zeolite catalyst could efficiently catalyze both the direct Csp2-Csp3 bond breakage to remove propyl structure and aliphatic β carbon-oxygen (Cβ-O) bond hydrolysis to form OH group on the aromatic ring. The yield of phenol could reach 10.9 weight % with a selectivity of 91.8%. In this unique route, water was the only reactant besides lignin. A scale-up experiment showed that 4.1 g of pure phenol could be obtained from 50.0 g of lignin. The reaction pathway was proposed by a combination of control experiments and density functional theory studies. This work opens the way for producing phenol from lignin by direct transformation of Csp2-Csp3 and C-O bonds in lignin.
Collapse
Affiliation(s)
- Jiang Yan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiaojun Shen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Sun
- Center for Physicochemical Analysis and Measurement, Chinese Academy of Sciences, Beijing 100190, China
| | - Junfeng Xiang
- Center for Physicochemical Analysis and Measurement, Chinese Academy of Sciences, Beijing 100190, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
| |
Collapse
|
19
|
Li S, Lafon O, Wang W, Wang Q, Wang X, Li Y, Xu J, Deng F. Recent Advances of Solid-State NMR Spectroscopy for Microporous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002879. [PMID: 32902037 DOI: 10.1002/adma.202002879] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/29/2020] [Indexed: 05/25/2023]
Abstract
Microporous materials have attracted a rapid growth of research interest in materials science and the multidisciplinary area because of their wide applications in catalysis, separation, ion exchange, gas storage, drug release, and sensing. A fundamental understanding of their diverse structures and properties is crucial for rational design of high-performance materials and technological applications in industry. Solid-state NMR (SSNMR), capable of providing atomic-level information on both structure and dynamics, is a powerful tool in the scientific exploration of solid materials. Here, advanced SSNMR instruments and methods for characterization of microporous materials are briefly described. The recent progress of the application of SSNMR for the investigation of microporous materials including zeolites, metal-organic frameworks, covalent organic frameworks, porous aromatic frameworks, and layered materials is discussed with representative work. The versatile SSNMR techniques provide detailed information on the local structure, dynamics, and chemical processes in the confined space of porous materials. The challenges and prospects in SSNMR study of microporous and related materials are discussed.
Collapse
Affiliation(s)
- Shenhui Li
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181- UCCS - Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
- Institut Universitaire de France, Paris, 75231, France
| | - Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Wu Z, Zhang J, Su Z, Wang P, Tan T, Xiao FS. Low-Temperature Dehydration of Ethanol to Ethylene over Cu–Zeolite Catalysts Synthesized from Cu–Tetraethylenepentamine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhiyi Wu
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zerui Su
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pingzhou Wang
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianwei Tan
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng-Shou Xiao
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
21
|
Xia H. Monomolecular Dehydration of Ethanol into Ethylene over H-MOR Studied by Density Functional Theory. ACS OMEGA 2020; 5:9707-9713. [PMID: 32391457 PMCID: PMC7203697 DOI: 10.1021/acsomega.9b03984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
The framework effect of H-mordenite (H-MOR) zeolite on monomolecular dehydration of ethanol to ethylene has been simulated based on density functional theory. It is indicated that both the reaction mechanism and the activation energy barriers are significantly affected by the pore-confinement effect. In the 12-membered ring (12-MR), the energy barriers of the stepwise mechanism and the concerted mechanism are 35.0 and 42.4 kcal mol-1, respectively, suggesting that ethylene can be competitively formed through both pathways. While in the 8-membered ring (8-MR), the barrier of the concerted mechanism is 43.4 kcal mol-1, which is much lower than that of the stepwise mechanism with the ethoxy intermediate formation barrier of 53.7 kcal mol-1. Furthermore, the water molecule acts as the intermediate to stabilize the transition states (TSs) for both stepwise and concerted mechanisms and helps to transport protons during the reaction.
Collapse
|
22
|
Wang Z, O'Dell LA, Zeng X, Liu C, Zhao S, Zhang W, Gaborieau M, Jiang Y, Huang J. Insight into Three‐Coordinate Aluminum Species on Ethanol‐to‐Olefin Conversion over ZSM‐5 Zeolites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Luke A. O'Dell
- Institute for Frontier Materials Deakin University Geelong VIC 3220 Australia
| | - Xin Zeng
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Can Liu
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Shufang Zhao
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Wenwen Zhang
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Marianne Gaborieau
- School of Science and Health Western Sydney University Parramatta NSW 2150 Australia
| | - Yijiao Jiang
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
23
|
Wang Z, O'Dell LA, Zeng X, Liu C, Zhao S, Zhang W, Gaborieau M, Jiang Y, Huang J. Insight into Three‐Coordinate Aluminum Species on Ethanol‐to‐Olefin Conversion over ZSM‐5 Zeolites. Angew Chem Int Ed Engl 2019; 58:18061-18068. [DOI: 10.1002/anie.201910987] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Luke A. O'Dell
- Institute for Frontier Materials Deakin University Geelong VIC 3220 Australia
| | - Xin Zeng
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Can Liu
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Shufang Zhao
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Wenwen Zhang
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Marianne Gaborieau
- School of Science and Health Western Sydney University Parramatta NSW 2150 Australia
| | - Yijiao Jiang
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
24
|
Dutta Chowdhury A, Yarulina I, Abou-Hamad E, Gurinov A, Gascon J. Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process. Chem Sci 2019; 10:8946-8954. [PMID: 32190235 PMCID: PMC7068724 DOI: 10.1039/c9sc02215e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023] Open
Abstract
After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' (via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (i.e., via the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.
Collapse
Affiliation(s)
- Abhishek Dutta Chowdhury
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| | - Irina Yarulina
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology , KAUST Core Labs , Thuwal 23955 , Saudi Arabia .
| | - Andrei Gurinov
- King Abdullah University of Science and Technology , KAUST Core Labs , Thuwal 23955 , Saudi Arabia .
| | - Jorge Gascon
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| |
Collapse
|
25
|
Chmelka BF. Materializing opportunities for NMR of solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:91-97. [PMID: 31377152 DOI: 10.1016/j.jmr.2019.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 05/04/2023]
Abstract
Advancements in sensitivity and resolution of NMR of solids are opening a bonanza of fundamental and technological opportunities in materials science. Many of these are at the boundaries of related disciplines that provide creative inputs to motivate the development of new methodologies and possibilities for new applications. As Boltzmann limitations are surmounted by dynamic-nuclear-polarization- and laser-enhanced hyperpolarization techniques, the correlative benefits of multidimensional NMR are becoming more and more impactful. Nevertheless, there are limits, and the atomic-level information provided by solid-state NMR will be most useful in combination with state-of-the-art diffraction, microscopy, computational, and materials synthesis methods. Collectively these can be expected to lead to design criteria that will promote discovery of new materials, lead to novel or improved material properties, catalyze new applications, and motivate further methodological advancements.
Collapse
Affiliation(s)
- Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|