1
|
Akhter Z, Sharma S, Anand R, Samad M, Verma PK, Singh PP. Chemoselective benzylic Csp 3-H bond oxidation reactions catalyzed by the Ag II(bipy) 2S 2O 8 complex. Org Biomol Chem 2025; 23:5224-5233. [PMID: 40331291 DOI: 10.1039/d4ob02074j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Herein, we present a silver-catalyzed method for the selective oxidation of benzylic Csp3-H bonds with high chemo- and regioselectivity. This approach efficiently converts toluenes into aldehydes, benzylic methylenes into ketones, and benzylic alcohols into aldehydes. Notably, the reaction also proceeds under in situ generated catalytic conditions and is scalable. Control experiments further indicate that water serves as the oxygen source in the oxidized products.
Collapse
Affiliation(s)
- Zaheen Akhter
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Sumit Sharma
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Radhika Anand
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Muzamil Samad
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Praveen Kumar Verma
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP-173229, India
| | - Parvinder Pal Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Muldowney BE, Nevonen DE, Jeaydi TI, Ziegler CJ, McNicholas BJ, Nemykin VN. Identifying charge-transfer and trip-multiplet states in Co(I), Co(II), and Co(III) phthalocyanines using (magneto)optical spectroscopy and (TD)DFT calculations. Dalton Trans 2025. [PMID: 40343754 DOI: 10.1039/d5dt00628g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Herein we compare the electronic structures of the Co(I), Co(II), and Co(III) phthalocyanines, which were elucidated using UV-vis-NIR and magnetic circular dichroism (MCD) spectroscopy as well as density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The NIR triplet-multiplet bands in PcR4(2-)CoIIL2 (L = nil, Py, or nBuNH2; R = H or tert-Bu) complexes were studied by MCD spectroscopy for the first time and compared to those reported earlier by us in PcR4(2-)Cu (R = tert-Bu or SO3Na) compounds (J. Porphyrins Phthalocyanines 2025, 29, 110-122). In all cases, a Faraday MCD pseudo A-term was observed for this transition. DFT and TDDFT calculations successfully explained a systematic blue-shift in the metal-to-ligand charge-transfer (MLCT) and B1-band transitions going from [PcR4(2-)CoI]- to PcR4(2-)CoIIL2 to [PcR4(2-)CoIIIX2]- (X = CN- or Br-) complexes. Additionally, absorption bands observed in the 370-530 nm spectral envelope in [PcR4(2-)CoIIIX2]- complexes were assigned with a high level of confidence for the first time. This work provides the first combined systematic experimental and theoretical study that highlights similarities and differences in (magneto)optical spectroscopy of cobalt phthalocyanines spanning three oxidation states at the central metal ion.
Collapse
Affiliation(s)
- Breanna E Muldowney
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA.
| | - Dustin E Nevonen
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA.
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | - Brendon J McNicholas
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA.
| | - Victor N Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA.
| |
Collapse
|
3
|
Kute AD, Kale HB, Gawande MB. Iron N-Doped Carbon Nanoarchitectonics for C─H Bond Activation of Methylarenes and Esterification Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409707. [PMID: 40091378 DOI: 10.1002/smll.202409707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/28/2025] [Indexed: 03/19/2025]
Abstract
Nowadays, selective oxidation of sp3 C-H bond in methylarene to benzaldehyde under eco-friendly conditions is a promising way to produce aldehyde derivatives. In this work, scalable iron nanoparticles adorned on surface engineered nitrogen-doped carbon (FeNP@NC-BA) fabricated via wet chemistry followed by high-temperature pyrolysis. It is observed that nitrogen-coordinated Fe nanoparticles play a crucial role as active sites in facilitating both the toluene oxidation and esterification reaction due to its nitrogen-rich Fe NPs contain and low C/N ratio in FeNP@NC-BA catalyst. The FeNP@NC-BA catalyst and N-hydroxyphthalimide cooperatively converted methylarenes to corresponding aryl aldehydes with 99% conversion and selectivity, without over-oxidation of benzaldehyde to benzoic acid at room temperature. Further, EPR analysis is used to probe the free radical pathway followed in C-H activation. Additionally, FeNP@NC-BA catalyst employed for microwave-assisted esterification of acids with alcohols leads to 99% conversion and selectivity. The compatibility of FeNP@NC-BA nanoarchitectonics employed for the highly efficient synthesis of selective 24 benzaldehyde derivatives and 42 ester products. Furthermore, a gram-scale catalyst reusability study proved the wide applicability of FeNP@NC-BA catalyst. Thus, Fe nanoparticles decorated with N-doped carbon catalysts provide a durable, easily recoverable, and environmentally friendly metal-based catalyst for oxidation and esterification reactions.
Collapse
Affiliation(s)
- Arun D Kute
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, Maharashtra, 431213, India
| | - Hanumant B Kale
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, Maharashtra, 431213, India
| | - Manoj B Gawande
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, Maharashtra, 431213, India
- Centre for Energy and Environmental Technologies (CEET), Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, Poruba, Ostrava, 708 00, Czech Republic
| |
Collapse
|
4
|
Yin Z, Gao Z, Luo L, Zhang X, Hou W, Dai W, Tian S, Qin X, Wang M, Peng M, Li K, Wang S, Zhang L, Wang H, Li J, Zhu Q, Cheng B, Yin Z, Ma D. A Green and Efficient Electrocatalytic Route for the Highly-Selective Oxidation of C-H Bonds in Aromatics over 1D Co 3O 4-Based Nanoarrays. Angew Chem Int Ed Engl 2025; 64:e202415044. [PMID: 39313948 DOI: 10.1002/anie.202415044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Electrocatalytic oxidation of C-H bonds in hydrocarbons represents an efficient and sustainable strategy for the synthesis of value-added chemicals. Herein, a highly selective and continuous-flow electrochemical oxidation process of toluene to various oxygenated products (benzyl alcohol, benzaldehyde, and benzyl acetate) is developed with the electrocatalytic membrane electrodes (ECMEs). The selectivity of target products can be manipulated via surface and interface engineering of Co3O4-based electrocatalysts. We achieved a high benzaldehyde selectivity of 90 % at a toluene conversion of 47.6 % using 1D Co3O4 nanoneedles (NNs) loaded on a microfiltration (MF) titanium (Ti) membrane, i.e, Co3O4 NNs/Ti. In contrast, the main product shifted to benzyl alcohol with a selectivity of 90.1 % at a conversion of 32.1 % after modifying MnO2 nanosheets (NSs) on Co3O4 NNs/Ti (Co3O4@MnO2/Ti) catalyst. Moreover, benzyl acetate product can be obtained with a selectivity of 92 % at a conversion of 58.5 % at high current density (>1.5 mA cm-2), demonstrating that the pathway of toluene oxidation is readily maneuvered. DFT results reveal that modifying MnO2 on Co3O4 optimizes the electron structure of Co3O4@MnO2/Ti and modulates the adsorption behavior of intermediate species. This work demonstrates a sustainable, efficient, and continuous-flow process for precise control over the production selectivity of value-added oxygenated derivatives in the electrochemical oxidation of aromatic hydrocarbons.
Collapse
Affiliation(s)
- Zhaohui Yin
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lan Luo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaohui Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
| | - Wenxiang Hou
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
- Haian Institute of High-Tech Research, Nanjing University, 428 Zhennan Road, Haian, 226600, China
| | - Wenjing Dai
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
| | - Shuheng Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kaihua Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Songbo Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
| | - Lei Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
| | - Hong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Separation Membrane Science and Technology International Joint Research Centre, Tiangong University, 399 Binshui West Road, Tianjin, 300387, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Separation Membrane Science and Technology International Joint Research Centre, Tiangong University, 399 Binshui West Road, Tianjin, 300387, China
| | - Qingjun Zhu
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738, Zeuthen, Germany
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhen Yin
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Haian Institute of High-Tech Research, Nanjing University, 428 Zhennan Road, Haian, 226600, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Amber C, Göttemann LT, Steele RT, Petitjean TM, Sarpong R. Reductive Amination of Carbonyl C-C Bonds Enables Formal Nitrogen Insertion. J Org Chem 2024; 89:17655-17663. [PMID: 39509344 PMCID: PMC11624976 DOI: 10.1021/acs.joc.4c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Given its relevance across numerous fields, reductive amination is one of the oldest and most widely used methods for amine synthesis. As a cornerstone of synthetic chemistry, it has largely remained unchanged since its discovery over a century ago. Herein, we report the mechanistically driven development of a complementary reaction, which reductively aminates the C-C σ-bond of carbonyls, not the carbonyl C-O π-bond, generating value-added linear and cyclic 3° amines in a modular fashion. Critical to our success were mechanistic insights that enabled us to modulate the resting state of a borane catalyst, minimize deleterious disproportionation of a hydroxylamine nitrogen source, and control the migratory selectivity of a key nitrenoid reactive intermediate. Experiments support the reaction occurring through a reductive amination/reductive Stieglitz cascade, via a ketonitrone, which can be interrupted under catalyst control to generate valuable N,N-disubstituted hydroxylamines. The method reported herein enables net transformations that would otherwise require lengthy synthetic sequences using pre-existing technologies. This is highlighted by its application to a two-step protocol for the valorization of hydrocarbon feedstocks, the late-stage C-C amination of complex molecules, diversity-oriented synthesis of isomeric amines from a single precursor, and transposition of nitrogen to different positions within a heterocycle.
Collapse
Affiliation(s)
- Charis Amber
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lucas T Göttemann
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryan T Steele
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Timothée M Petitjean
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Xu C, Fu Y, Wang P, Wang L, Chen J, Li Q, Xia Y, Zhang Z, Tang Y, Liu X, Qiu S, Xue Y, Cao J, Wang Z. Self-Assembled Ultra-Long Hybrid Nanowire Formed by Simple Mixing: An Untapped Feature of Peroxydisulfate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404143. [PMID: 39344520 DOI: 10.1002/smll.202404143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Indexed: 10/01/2024]
Abstract
Peroxydisulfate (PDS), a popular molecule that is able to oxidize organic compounds, is garnering attention across various disciplines of chemistry, materials, pharmaceuticals, environmental remediation, and sustainability. Methylene blue (MB) is a model pollutant that can be readily oxidized by PDS-derived radicals. Unlike the conventional degradation process, here a reversible "dissolution-precipitation" phenomenon is discovered, triggered by a simple mixing of PDS and MB, revealing a novel application of PDS in fabricating self-assembled ultra-long nanowires with MB. This phenomenon is unique to PDS and MB, different from the traditional salting out or self-aggregation of dyes. Formation of nanowires facilitated by electrostatic interaction between S+ and O- moieties and π-π stacking is reversible, controlled by temperature and the solvent polarity. MB1-PDS-MB2 configuration (MB: PDS = 2:1) is theoretically predicted by density functional theory (DFT) calculations and further validated by stoichiometric ratios of carbon, sulfur, and nitrogen in the obtained precipitates (MBO). This untapped feature of PDS enables the development of colorimetric quantitative detection of PDS and sustainable dye recycling. Far more than those demonstrated cases, the potentialities of MBO as a nanomaterial merit further exploration.
Collapse
Affiliation(s)
- Chunxiao Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Pu Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuqi Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Tang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaojing Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Sifan Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanna Xue
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinhui Cao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| |
Collapse
|
7
|
Bone KI, Puleo TR, Delost MD, Shimizu Y, Bandar JS. Direct Benzylic C-H Etherification Enabled by Base-Promoted Halogen Transfer. Angew Chem Int Ed Engl 2024; 63:e202408750. [PMID: 38937258 DOI: 10.1002/anie.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
We disclose a benzylic C-H oxidative coupling reaction with alcohols that proceeds through a synergistic deprotonation, halogenation and substitution sequence. The combination of tert-butoxide bases with 2-halothiophene halogen oxidants enables the first general protocol for generating and using benzyl halides through a deprotonative pathway. In contrast to existing radical-based methods for C-H functionalization, this process is guided by C-H acidity trends. This gives rise to new synthetic capabilities, including the ability to functionalize diverse methyl(hetero)arenes, tolerance of oxidizable and nucleophilic functional groups, precision site-selectivity for polyalkylarenes and use of a double C-H etherification process to controllably oxidize methylarenes to benzaldehydes.
Collapse
Affiliation(s)
- Kendelyn I Bone
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Thomas R Puleo
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Michael D Delost
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Yuka Shimizu
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO-80523, United States
| |
Collapse
|
8
|
Li C, Gu S, Xiao Y, Lin X, Lin X, Zhao X, Nan J, Xiao X. Single-crystal oxygen-rich bismuth oxybromide nanosheets with highly exposed defective {10-1} facets for the selective oxidation of toluene under blue LED irradiation. J Colloid Interface Sci 2024; 668:426-436. [PMID: 38688181 DOI: 10.1016/j.jcis.2024.04.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Reactive radicals are crucial for activating inert and low-polarity C(sp3)-H bonds for the fabrication of high value-added products. Herein, novel single-crystal oxygen-rich bismuth oxybromide nanosheets (Bi4O5Br2 SCNs) with more than 85 % {10-1} facets exposure and oxygen defects were synthesized via a facile solvothermal route. The Bi4O5Br2 SCNs demonstrated excellent photocatalytic performance in the selective oxidation of toluene under blue light. The yield of benzaldehyde was 1876.66 μmol g-1 h-1, with a selectivity of approximately 90 %. Compared to that of polycrystalline Bi4O5Br2 nanosheets (Bi4O5Br2 PCNs), the activity of Bi4O5Br2 SCNs exhibit a 21-fold increase. Experimental studies and density functional theory (DFT) calculations have demonstrated that the defect Bi4O5Br2 (10-1) facets exhibits exceptional adsorption properties for O2 molecules. In addition, the single-crystal structure in the presence of surface defects significantly increases the separation and transport of photogenerated carriers, resulting in the effective activation of adsorbed O2 into superoxide radicals (•O2-). Subsequently, the positively charged phenylmethyl H is readily linked to the negatively charged superoxide radical anion, thereby activating the CH bond. This study offers a fresh perspective and valuable insights into the development of efficient molecular oxygen-activated photocatalysts and their application in the selective catalytic conversion of aromatic C(sp3)-H bonds.
Collapse
Affiliation(s)
- Chenyu Li
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Songting Gu
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yingxi Xiao
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xiaotong Lin
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xinyan Lin
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xiaoyang Zhao
- Department of Environmental Engineering, Henan Polytechnic Institute, Nanyang 473009, PR China
| | - Junmin Nan
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Xin Xiao
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Zhang Z, Lv Y, Ji L, Chen P, Han S, Zhu Y, Li L, Jia Z, Loh TP. Triaryl Carbenium Ion Pair Mediated Electrocatalytic Benzylic C-H Oxygenation in Air. Angew Chem Int Ed Engl 2024; 63:e202406588. [PMID: 38664822 DOI: 10.1002/anie.202406588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 06/05/2024]
Abstract
The selective oxidation of benzylic C-H bonds is a pivotal transformation in organic synthesis. Undoubtedly, achieving efficient and highly selective aerobic oxidation of methylarenes to benzaldehydes has been highly challenging due to the propensity of benzaldehyde to undergo overoxidation under typical aerobic conditions. Herein, we propose an innovative approach to address this issue by leveraging electrocatalytic processes, facilitated by ion-pair mediators [Ph3C]+[B(C6F5)4]-. By harnessing the power of electrochemistry, we successfully demonstrated the effectiveness of our strategy, which enables the selective oxidation of benzylic C-H bonds in benzylic molecules and toluene derivatives. Notably, our approach exhibited high efficiency, excellent selectivity, and compatibility with various functional groups, underscoring the broad applicability of our methodology.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Yongheng Lv
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liang Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Peng Chen
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Shuyan Han
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Yufei Zhu
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Lanyang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenhua Jia
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Teck-Peng Loh
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
10
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
11
|
Bo C, Li M, Chen F, Liu J, Dai B, Liu N. Visible-Light-Initiated Air-Oxygenation of Alkylarenes to Carbonyls Mediated by Carbon Tetrabromide in Water. CHEMSUSCHEM 2024; 17:e202301015. [PMID: 37661194 DOI: 10.1002/cssc.202301015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Synthesizing benzyl skeleton derivatives via direct oxidation of functionalized benzylic C-H bonds has received extensive research attention. Herein, a method was developed to prepare carbonyl compounds via photoinduced aerobic oxidation of ubiquitous benzylic C-H bonds mediated by bromine radicals and tribromomethane radicals. This method employed commercially available CBr4 as a hydrogen atom transfer reagent precursor, air as an oxidant, water as a reaction solvent, and tetrabutylammonium perchlorate (TBAPC) as an additive under mild conditions. A series of substrates bearing different functional groups was converted to aromatic carbonyls in moderate to good yields. Moreover, a low environmental factor (E-factor value=0.45) showed that the proposed method is ecofriendly and environmentally sustainable.
Collapse
Affiliation(s)
- Chunbo Bo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
12
|
Bo C, Chen F, Bu Q, Du ZH, Li M, Dai B, Liu N. Visible-Light-Driven Organocatalytic Alkoxylation of Benzylic C-H Bonds. J Org Chem 2023; 88:3532-3538. [PMID: 36881000 DOI: 10.1021/acs.joc.2c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
A variety of strategies for direct alkoxylation of the benzyl C-H bond have been developed toward the construction of benzyl ethers. The light-induced benzyl C-H bond alkoxylation provides an alternative strategy for the synthesis of these important intermediates. The photocatalyzed alkoxylation of the benzyl C-H bond has dominated by metal-catalyzed methods. Herein, we reported a light-driven organocatalytic approach for alkoxylation of the benzyl C-H bond by the use of 9,10-dibromoanthracene as a photocatalyst and employing N-fluorobenzenesulfonimide as an oxidant. This reaction proceeds at room temperature and is capable of converting a variety of alkyl biphenyl and coupling partners, including a variety of alcohol and carboxylic acid, as well as peroxide, to the desired products under 400 nm light irradiation.
Collapse
Affiliation(s)
- Chunbo Bo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Zhi-Hong Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| |
Collapse
|
13
|
Schrage BR, Zhou W, Harrison LA, Nevonen DE, Thompson JR, Prosser KE, Walsby CJ, Ziegler CJ, Leznoff DB, Nemykin VN. Resolving a Half-Century-Long Controversy between (Magneto)optical and EPR Spectra of Single-Electron-Reduced [PcFe] −, [PcFeL] −, and [PcFeX] 2– Complexes: Story of a Double Flip. Inorg Chem 2022; 61:20177-20199. [DOI: 10.1021/acs.inorgchem.2c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Briana R. Schrage
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Laurel A. Harrison
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Dustin E. Nevonen
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - John R. Thompson
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Kathleen E. Prosser
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Charles J. Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | | | - Daniel B. Leznoff
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Victor N. Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
14
|
Hoque MA, Twilton J, Zhu J, Graaf MD, Harper KC, Tuca E, DiLabio GA, Stahl SS. Electrochemical PINOylation of Methylarenes: Improving the Scope and Utility of Benzylic Oxidation through Mediated Electrolysis. J Am Chem Soc 2022; 144:15295-15302. [PMID: 35972068 PMCID: PMC9420808 DOI: 10.1021/jacs.2c05974] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mediated electrosynthetic method has been developed for selective benzylic oxidation of methylarenes. Phthalimide-N-oxyl (PINO) radical generated by proton-coupled electrochemical oxidation of N-hydroxypthalimide serves as a hydrogen atom-transfer (HAT) mediator and as a radical trap for the benzylic radicals generated in situ. This mediated electrolysis method operates at much lower anode potentials relative to direct electrolysis methods for benzylic oxidation initiated by single-electron transfer (SET). A direct comparison of SET and mediated-HAT electrolysis methods with a common set of substrates shows that the HAT reaction exhibits a significantly improved substrate scope and functional group compatibility. The PINOylated products are readily converted into the corresponding benzylic alcohol or benzaldehyde derivative under photochemical conditions, and the synthetic utility of this method is highlighted by the late-stage functionalization of the non-steroidal anti-inflammatory drug celecoxib.
Collapse
Affiliation(s)
- Md Asmaul Hoque
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jack Twilton
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jieru Zhu
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Matthew D. Graaf
- Abbvie Process Research and Development, 1401 North Sheridan Road, North Chicago, Illinois 60064, United States
| | - Kaid C. Harper
- Abbvie Process Research and Development, 1401 North Sheridan Road, North Chicago, Illinois 60064, United States
| | - Emilian Tuca
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Gino A. DiLabio
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Goncharova IK, Tukhvatshin RS, Novikov RA, Volodin AD, Korlyukov AA, Lakhtin VG, Arzumanyan A. Complementary Cooperative Catalytic Systems in the Aerobic Oxidation of a Wide Range of Si–H‐Reagents to Si–OH‐Products: From Monomers to Oligomers and Polymers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Irina K. Goncharova
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organoelements compounds RUSSIAN FEDERATION
| | - Rinat S. Tukhvatshin
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organoelements compounds RUSSIAN FEDERATION
| | - Roman A. Novikov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Organic chemistry RUSSIAN FEDERATION
| | - Alexander D. Volodin
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organoelements compounds RUSSIAN FEDERATION
| | - Alexander A. Korlyukov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organoelements compounds RUSSIAN FEDERATION
| | - Valentin G. Lakhtin
- A V Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences: Institut neftehimiceskogo sinteza imeni A V Topcieva Rossijskaa akademia nauk Organoelements compounds RUSSIAN FEDERATION
| | - Ashot Arzumanyan
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Chemistry 28 Vavilov str. 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
16
|
Suppajariyawat P, Elie M, Baron M, Gonzalez–Rodriguez J. Effect of metal catalysis in the electrochemical oxidation of petrol on platinum electrodes and its use in petrol brand fingerprinting. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Li S, Li H, Tung CH, Liu L. Practical and Selective Bio-Inspired Iron-Catalyzed Oxidation of Si–H Bonds to Diversely Functionalized Organosilanols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Song Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- School of Ocean, Shandong University, Weihai 264209, China
| | - Haibei Li
- School of Ocean, Shandong University, Weihai 264209, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Hou ZW, Zhang MM, Yang WC, Wang L. Catalyst- and Oxidizing Reagent-Free Electrochemical Benzylic C(sp 3)-H Oxidation of Phenol Derivatives. J Org Chem 2022; 87:7806-7817. [PMID: 35648817 DOI: 10.1021/acs.joc.2c00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A site-selective electrochemical approach for the benzylic C(sp3)-H oxidation reaction of phenol derivatives along with hydrogen evolution has been developed. The protocol proceeds in an easily available undivided cell at room temperature under catalyst- and oxidizing reagent-free conditions. The corresponding aryl aldehydes and ketones are obtained in satisfactory yields, and the gram-scale synthesis is easy to be carried out.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, Taizhou 318000, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, Taizhou 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
19
|
Zhang Y, Mo T, Wang H, Li S, Lu B, Zhao J, Cai Q. Iron and molybdenum modified phosphotungstates towards selective oxidation of styrene to benzaldehyde. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Nevonen DE, Ferch LS, Schrage BR, Nemykin VN. Charge-Transfer Spectroscopy of Bisaxially Coordinated Iron(II) Phthalocyanines through the Prism of the Lever's EL Parameters Scale, MCD Spectroscopy, and TDDFT Calculations. Inorg Chem 2022; 61:8250-8266. [PMID: 35549169 DOI: 10.1021/acs.inorgchem.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The position of the experimentally observed (in the UV-vis and magnetic circular dichroism (MCD) spectra) low-energy metal-to-ligand charge-transfer (MLCT) band in low-spin iron(II) phthalocyanine complexes of general formula PcFeL2, PcFeL'L″, and [PcFeX2]2- (L, L', or L″ are neutral and X- is an anionic axial ligand) was correlated with the Lever's electrochemical EL scale values for the axial ligands. The time-dependent density functional theory (TDDFT)-predicted UV-vis spectra are in very good agreement with the experimental data for all complexes. In the majority of compounds, TDDFT predicts that the first degenerate MLCT band that correlates with the MCD A-term observed between 360 and 480 nm is dominated by an eg (Fe, dπ) → b1u (Pc, π*) single-electron excitation (in traditional D4h point group notation) and agrees well with the previous assignment discussed by Stillman and co-workers[ Inorg. Chem. 1994, 33, 573-583]. The TDDFT calculations also suggest a small energy gap for b1u/b2u (Pc, π*) orbital splitting and closeness of the MLCT1 eg (Fe, dπ) → b1u (Pc, π*) and MLCT2 eg (Fe, dπ) → b2u (Pc, π*) transitions. In the case of the PcFeL2 complexes with phosphines as the axial ligands, additional degenerate charge-transfer transitions were observed between 450 and 500 nm. These transitions are dominated by a2u (Pc + L, π) → eg (Pc, π*) single-electron excitations and are unique for the PcFe(PR3)2 complexes. The energy of the phthalocyanine-based a2u orbital has large axial ligand dependency and is the reason for a large energy deviation for B1 a2u (Pc + L, π) → eg (Pc, π*) transition. The energies of the axial ligand-to-iron, axial ligand-to-phthalocyanine, iron-to-axial ligand, and phthalocyanine-to-axial ligand charge-transfer transitions were discussed on the basis of TDDFT calculations.
Collapse
Affiliation(s)
- Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Briana R Schrage
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
21
|
Tyagi S, McKillican BP, Salvador TK, Gichinga MG, Eberle WJ, Viner R, Makaravage KJ, Johnson TS, Russell CA, Roy S. Bioinspired Synthesis of Pinoxaden Metabolites Using a Site-Selective C-H Oxidation Strategy. J Org Chem 2022; 87:6202-6211. [PMID: 35442682 DOI: 10.1021/acs.joc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A bioinspired synthesis of Pinoxaden metabolites 2-5 is described herein. A site-selective C-H oxidation strategy validated by density functional theory (DFT) calculations was devised for preparing metabolites 2-4. Oxidation of the benzylic C-H bond in tertiary alcohol 7 using K2S2O8 and catalytic AgNO3 formed the desired metabolite 2 that enabled access to metabolites 3 and 4 in a single step. Unlike most metal/persulfate-catalyzed transformations reported for the C-C and C-O bond formation reactions wherein the metal acts as a catalyst, we propose that Ag(I)/K2S2O8 plays the role of an initiator in the oxidation of intermediate 7 to 2. Metabolite 2 was subjected to a ruthenium tetroxide-mediated C-H oxidation to form metabolites 3 and 4 as a mixture that were purified to isolate pure standards of these metabolites. Metabolite 5 was synthesized from readily available advanced intermediate 9 via a House-Meinwald-type rearrangement in one step using a base.
Collapse
Affiliation(s)
- Sameer Tyagi
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Bruce P McKillican
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Tolani K Salvador
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Moses G Gichinga
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - William J Eberle
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Russell Viner
- Research Chemistry, Syngenta Group, Jealott's Hill International Research Center, Bracknell, Berkshire RG 42 6EY, United Kingdom
| | - Katarina J Makaravage
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Trey S Johnson
- Product Metabolism Analytical Sciences, Syngenta Group, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - C Adam Russell
- Product Metabolism Analytical Sciences, Syngenta Group, Jealott's Hill International Research Center, Bracknell, Berkshire RG 42 6EY, United Kingdom
| | - Subho Roy
- TCG Lifesciences, Chembiotek, Block BN, Plot 7, Salt Lake Electronics Complex, Sector V, Kolkata 700091, West Bengal, India
| |
Collapse
|
22
|
Pan W, Tan M, He Y, Wei H, Yang B. Organic Amine-Bridged Quasi-2D Perovskite/PbS Colloidal Quantum Dots Composites for High-Gain Near-Infrared Photodetectors. NANO LETTERS 2022; 22:2277-2284. [PMID: 35258983 DOI: 10.1021/acs.nanolett.1c04569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) II detection at weak flux intensity is required in medical imaging and is especially urgent in light of the low quantum efficiency of NIR-II dyes. The low responsivity of traditional photodetectors in this region limits image quality. Here, we report a NIR-II photodetector with high gain based on perovskite coupled PbS colloidal quantum dots (CQDs). Tailoring the trap density of CQDs by designing surface ligands with dual functionality contributed to control over trap-induced charge-injection upon light illumination. As a result, a detector with high gain is realized, showing external quantum efficiency of 1260% at 1200 nm and achieving the lowest detectable light intensity, that is, as low as 0.67 pW cm-2 with a linear dynamic range of 200 dB. Devices maintain over 90% of responsivity after 150 days of storage. We acquired images of a butterfly wing, showing the skeleton texture with a maximum spatial resolution of 3.9 lp/mm.
Collapse
Affiliation(s)
- Wanting Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Mingrui Tan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yuhong He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130012 P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130012 P.R. China
| |
Collapse
|
23
|
Ju ZY, Song LN, Chong MB, Cheng DG, Hou Y, Zhang XM, Zhang QH, Ren LH. Selective Aerobic Oxidation of C sp3-H Bonds Catalyzed by Yeast-Derived Nitrogen, Phosphorus, and Oxygen Codoped Carbon Materials. J Org Chem 2022; 87:3978-3988. [PMID: 35254832 DOI: 10.1021/acs.joc.1c02641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitrogen, phosphorus, and oxygen codoped carbon catalysts were successfully synthesized using dried yeast powder as a pyrolysis precursor. The yeast-derived heteroatom-doped carbon (yeast@C) catalysts exhibited outstanding performance in the oxidation of Csp3-H bonds to ketones and esters, giving excellent product yields (of up to 98% yield) without organic solvents at low O2 pressure (0.1 MPa). The catalytic oxidation protocol exhibited a broad range of substrates (38 examples) with good functional group tolerance, excellent regioselectivity, and synthetic utility. The yeast-derived heteroatom-doped carbon catalysts showed good reusability and stability after recycling six times without any significant loss of activity. Experimental results and DFT calculations proved the important role of N-oxide (N+-O-) on the surface of yeast@C and a reasonable carbon radical mechanism.
Collapse
Affiliation(s)
- Zhao-Yang Ju
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Li-Na Song
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Ming-Ben Chong
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xi-Ming Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qing-Hua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Lan-Hui Ren
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| |
Collapse
|
24
|
Wu P, Chen C, Zhou J, Bao Z. The Preparation and Application of Diaryliodonium Salts Derived from Gemfibrozil and Gemfibrozil Methyl Ester. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1679-7753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe diaryliodonium salts derived from gemfibrozil and gemfibrozil methyl ester were synthesized from ArI(OH)OTs or bis(4-methoxyphenyl)iodonium diacetate with good regioselectivity. These iodonium salts were successfully used in the derivatization of gemfibrozil or gemfibrozil methyl ester, including fluorination, alkynylation, arylation, etherification, esterification, and iodination reactions.
Collapse
Affiliation(s)
- Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University
- International Healthcare Innovation Institute (Jiangmen)
| | - Chao Chen
- School of Biotechnology and Health Sciences, Wuyi University
- International Healthcare Innovation Institute (Jiangmen)
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University
| | - Jun Zhou
- School of Biotechnology and Health Sciences, Wuyi University
- International Healthcare Innovation Institute (Jiangmen)
| | - Zhiyuan Bao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University
| |
Collapse
|
25
|
Thiruvengetam P, Chand DK. Controlled and Predictably Selective Oxidation of Activated and Unactivated C(sp3)–H Bonds Catalyzed by a Molybdenum-Based Metallomicellar Catalyst in Water. J Org Chem 2022; 87:4061-4077. [DOI: 10.1021/acs.joc.1c02855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
26
|
Amri N, Wirth T. Flow Electrosynthesis of Sulfoxides, Sulfones, and Sulfoximines without Supporting Electrolytes. J Org Chem 2021; 86:15961-15972. [PMID: 34164983 DOI: 10.1021/acs.joc.1c00860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient electrochemical flow process for the selective oxidation of sulfides to sulfoxides and sulfones and of sulfoxides to N-cyanosulfoximines has been developed. In total, 69 examples of sulfoxides, sulfones, and N-cyanosulfoximines have been synthesized in good to excellent yields and with high current efficiencies. The synthesis was assisted and facilitated through a supporting electrolyte-free, fully automated electrochemical protocol that highlights the advantages of flow electrolysis.
Collapse
Affiliation(s)
- Nasser Amri
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
27
|
Nemykin VN, Nevonen DE, Osterloh WR, Ferch LS, Harrison LA, Marx BS, Kadish KM. Application of Lever's EL Parameter Scale toward Fe(II)/Fe(III) versus Pc(2-)/Pc(1-) Oxidation Process Crossover Point in Axially Coordinated Iron(II) Phthalocyanine Complexes. Inorg Chem 2021; 60:16626-16644. [PMID: 34644056 DOI: 10.1021/acs.inorgchem.1c02520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures and, particularly, the nature of the HOMO in a series of PcFeL2, PcFeL'L″, and [PcFeX2]2- complexes (Pc = phthalocyaninato(2-) ligand; L = NH3, n-BuNH2, imidazole (Im), pyridine (Py), PMe3, PBu3, t-BuNC, P(OBu)3, and DMSO; L' = CO; L″ = NH3 or n-BuNH2; X = NCO-, NCS-, CN-, imidazolate (Im-), or 1,2,4-triazolate(Tz-)) were probed by electrochemical, spectroelectrochemical, and chemical oxidation as well as theoretical (density functional theory, DFT) studies. In general, energies of the metal-centered occupied orbitals in various six-coordinate iron phthalocyanine complexes correlate well with Lever Electrochemical Parameter EL and intercross the phthalocyanine-centered a1u orbital in several compounds with moderate-to-strong π-accepting axial ligands. In these cases, an oxidation of the phthalocyanine macrocycle (Pc(2-)/Pc(1-)) rather than the central metal ion (Fe(II)/Fe(III)) was theoretically predicted and experimentally confirmed.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Laurel A Harrison
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Benjamin S Marx
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
28
|
Manna S, Kong WJ, Bäckvall JE. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of N-Heterocycles. Chemistry 2021; 27:13725-13729. [PMID: 34324754 PMCID: PMC8518507 DOI: 10.1002/chem.202102483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Herein, an iron(II)-catalyzed biomimetic oxidation of N-heterocycles under aerobic conditions is described. The dehydrogenation process, involving several electron-transfer steps, is inspired by oxidations occurring in the respiratory chain. An environmentally friendly and inexpensive iron catalyst together with a hydroquinone/cobalt Schiff base hybrid catalyst as electron-transfer mediator were used for the substrate-selective dehydrogenation reaction of various N-heterocycles. The method shows a broad substrate scope and delivers important heterocycles in good-to-excellent yields.
Collapse
Affiliation(s)
- Srimanta Manna
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Wei-Jun Kong
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, 85170, Sundsvall, Sweden
| |
Collapse
|
29
|
Li X, Bai F, Liu C, Ma X, Gu C, Dai B. Selective Electrochemical Oxygenation of Alkylarenes to Carbonyls. Org Lett 2021; 23:7445-7449. [PMID: 34517705 DOI: 10.1021/acs.orglett.1c02651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient electrochemical method for benzylic C(sp3)-H bond oxidation has been developed. A variety of methylarenes, methylheteroarenes, and benzylic (hetero)methylenes could be converted into the desired aryl aldehydes and aryl ketones in moderate to excellent yields in an undivided cell, using O2 as the oxygen source and lutidinium perchlorate as an electrolyte. On the basis of cyclic voltammetry studies, 18O labeling experiments, and radical trapping experiments, a possible single-electron transfer mechanism has been proposed for the electrooxidation reaction.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Fang Bai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Chaogan Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Xiaowei Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Chengzhi Gu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, Uygur Autonomous Region 832000, China
| |
Collapse
|
30
|
|
31
|
Gong PX, Xu F, Cheng L, Gong X, Zhang J, Gu WJ, Han W. Iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabled aldehyde C-H methylation. Chem Commun (Camb) 2021; 57:5905-5908. [PMID: 34008616 DOI: 10.1039/d1cc01536b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A practical and general iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabling aldehyde C-H methylation for the synthesis of methyl ketones has been developed. This mild, operationally simple method uses ambient air as the sole oxidant and tolerates sensitive functional groups for the late-stage functionalization of complex natural-product-derived and polyfunctionalized molecules.
Collapse
Affiliation(s)
- Pei-Xue Gong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Fangning Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Lu Cheng
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xu Gong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jie Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wei-Jin Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wei Han
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing 210023, China
| |
Collapse
|
32
|
Jiang F, Liu S, Zhao W, Yu H, Yan L, Wei Y. An efficient chromium(III)-catalyzed aerobic oxidation of methylarenes in water for the green preparation of corresponding acids. Dalton Trans 2021; 50:12413-12418. [PMID: 34396384 DOI: 10.1039/d1dt01967h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A highly efficient method to oxidize methylarenes to their corresponding acids with a reusable Cr catalyst was developed. The reaction can be carried out in water with 1 atm oxygen and K2S2O8 as cooxidants, proceeds under green and mild conditions, and is suitable for the oxidation of both electron-deficient and electron-rich methylarenes, including heteroaryl methylarenes, even at the gram level. The excellent result, together with its simplicity of operation and the ability to continuously reuse the catalyst, makes this new methodology environmentally benign and cost-effective. The generality of this methodology gives it the potential for use on an industrial scale. Differing from the accepted oxidation mechanism of toluene, GC-MS studies and DFT calculations have revealed that the key benzyl alcohol intermediate is formed under the synergetic effect of the chromium and molybdenum in the Cr catalyst, which can be further oxidized to afford benzaldehyde and finally benzoic acid.
Collapse
Affiliation(s)
- Feng Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Disease Prevention and Control, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China. and Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China.
| | - Shanshan Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Wenshu Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China.
| | - Han Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China. and School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Likai Yan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China.
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
33
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Cheng Z, Gao X, Yao L, Wei Z, Qin G, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Scalable Sulfoxidation of Sulfides with Molecular Oxygen and Water. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhen Cheng
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Xinglian Gao
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Lingling Yao
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Zhaoxin Wei
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Guohui Qin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
35
|
Han W. Meet Our Editorial Board Member. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/221333720801210129104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wei Han
- Nanjing Normal University Nanjing, China
| |
Collapse
|
36
|
Nemykin VN, Nevonen DE, Ferch LS, Shepit M, Herbert DE, van Lierop J. Accurate Prediction of Mössbauer Hyperfine Parameters in Bis-Axially Coordinated Iron(II) Phthalocyanines Using Density Functional Theory Calculations: A Story of a Single Orbital Revealed by Natural Bond Orbital Analysis. Inorg Chem 2021; 60:3690-3706. [PMID: 33651595 DOI: 10.1021/acs.inorgchem.0c03373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Density Functional Theory (DFT) calculations coupled with several exchange-correlation functionals were used for the prediction of Mössbauer hyperfine parameters of 36 bis-axially coordinated iron(II) phthalocyanine complexes with the general formulas PcFeL2, PcFeL'L″, and [PcFeX2]2-, including four new compounds. Both gas-phase and PCM calculations using BPW91 and MN12L exchange-correlation functionals were found to accurately predict both Mössbauer quadrupole splittings and the correct trends in experimentally observed isomer shifts. In comparison, hybrid exchange-correlation functionals underestimated quadrupole splittings, while still accurately predicted isomer shifts. Out of ∼40 exchange-correlation functionals tested, only MN12L was found to correctly reproduce quadrupole splitting trends in the PcFeL2 complexes coordinated with phosphorus-donor axial ligands (i.e., P(OnBu)3 ≈ P(OEt)3 < PMe3 < P[(CH2O)2CH2]-p-C6H4NO2 < PEt3 ≈ PnBu3). Natural Bond Orbital (NBO) analysis was successfully used to explain the general trends in the observed quadrupole splitting for all compounds of interest. In particular, the general trends in the quadrupole splitting correlate well with the axial ligand dependent, NBO-predicted population of the 3dz2 orbital of the Fe ion and are reflective of the hypothesis proposed by Ohya and co-workers ( Inorg. Chem., 1984, 23, 1303) on the adaptability of the phthalocyanine's π-system toward Fe-Lax interactions. The first X-ray crystal structure of a PcFeL2 complex with axial phosphine ligands is also reported.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael Shepit
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David E Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
37
|
Xie J, Li B, Liu H, Li Y, He JB, Zheng Y, Lau KC, Lau TC. Hydrogen atom transfer in the oxidation of alkylbenzenesulfonates by ferrate(VI) in aqueous solutions. Dalton Trans 2021; 50:715-721. [PMID: 33346261 DOI: 10.1039/d0dt03245j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferrate(vi), [FeO4]2-, is a very powerful oxidant that can oxidize a wide variety of inorganic and organic compounds. However, the mechanisms of many of these oxidation reactions have not been studied in detail. In this work, we have investigated the kinetics and mechanism of the oxidation of 4-alkylbenzenesulfonates by ferrate in aqueous solutions at pH 7.45-9.63 by UV/Vis spectrophotometry. The reactions are first order with respect to both [ferrate] and [4-alkylbenzenesulfonate]. The second-order rate constants for the oxidation of 4-isopropylbenzenesulfonate by ferrate at 25 °C and I = 0.3 M are found to be (5.86 ± 0.08) × 10-1 M-1 s-1 and (4.11 ± 1.50) × 10-3 M-1 s-1 for [Fe(O)3(OH)]- and [FeO4]2-, respectively, indicating that [Fe(O)3(OH)]- is two orders of magnitude more reactive than [FeO4]2- and is the predominant oxidant in neutral and slightly alkaline solutions. This is further supported by the effect of the ionic strength on the rate constant. No solvent kinetic isotope effect (KIE) was found but a moderate primary KIE = 1.6 ± 0.1 was observed in the oxidation of 4-ethylbenzenesulfonate and 4-ethylbenzenesulfonate-d9. Alkyl radicals were trapped by CBrCl3 in the oxidation of alkylarenes by ferrate. Combined with DFT calculations, a hydrogen atom transfer (HAT) mechanism was proposed for the reactions between [Fe(O)3(OH)]- and 4-alkylbenzenesulfonates.
Collapse
Affiliation(s)
- Jianhui Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chatterjee S, Makai S, Morandi B. Hydroxylamin‐abgeleitetes Reagenz als duales Oxidationsmittel und Aminogruppendonor für die eisenkatalysierte Herstellung von ungeschützten Sulfinamiden aus Thiolen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sayanti Chatterjee
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Bill Morandi
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| |
Collapse
|
39
|
Chatterjee S, Makai S, Morandi B. Hydroxylamine-Derived Reagent as a Dual Oxidant and Amino Group Donor for the Iron-Catalyzed Preparation of Unprotected Sulfinamides from Thiols. Angew Chem Int Ed Engl 2021; 60:758-765. [PMID: 32955152 PMCID: PMC7839456 DOI: 10.1002/anie.202011138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 11/10/2022]
Abstract
An iron catalyzed reaction for the selective transformation of thiols (-SH) to sulfinamides (-SONH2 ) by a direct transfer of -O and free -NH2 groups has been developed. The reaction operates under mild conditions using a bench stable hydroxylamine derived reagent, exhibits broad functional group tolerance, is scalable and proceeds without the use of any precious metal catalyst or additional oxidant. This novel, practical reaction leads to the formation of two distinct new bonds (S=O and S-N) in a single step to chemoselectively form valuable, unprotected sulfinamide products. Preliminary mechanistic studies implicate the role of the alcoholic solvent as an oxygen atom donor.
Collapse
Affiliation(s)
- Sayanti Chatterjee
- Max-Planck-Institut für KohlenforschungKaiser-Wihelm-Platz 145470Mülheim an der RuhrGermany
| | - Szabolcs Makai
- Laboratorium für Organische ChemieETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Bill Morandi
- Max-Planck-Institut für KohlenforschungKaiser-Wihelm-Platz 145470Mülheim an der RuhrGermany
- Laboratorium für Organische ChemieETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| |
Collapse
|
40
|
Feng X, Pi Y, Song Y, Xu Z, Li Z, Lin W. Integration of Earth-Abundant Photosensitizers and Catalysts in Metal–Organic Frameworks Enhances Photocatalytic Aerobic Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05053] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Yunhong Pi
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
41
|
Wang Y, Li P, Wang J, Liu Z, Wang Y, Lu Y, Liu Y, Duan L, Li W, Sarina S, Zhu H, Liu J. Visible-light photocatalytic selective oxidation of C(sp 3)–H bonds by anion–cation dual-metal-site nanoscale localized carbon nitride. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00328c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anion–cation dual-metal-site nanoscale localized carbon nitride exhibits a significantly enhanced photocatalytic activity for the oxidation of alkanes and alcohols with a high activity and a wide functional group tolerance.
Collapse
|
42
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
43
|
Han W, Cheng L, Zhao H. Iron-Catalyzed Direct Cross-Coupling of Ethers and Thioether with Alcohols for the Synthesis of Mixed Acetals. Synlett 2020. [DOI: 10.1055/s-0040-1707162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
An iron-catalyzed direct O-alkylation of alcohols via α-C(sp3)–H activation of ethers and a thioether has been established that tolerates cyclic and acyclic ethers and alcohols containing aromatic N-heterocyclic moieties, providing an efficient and green method for the synthesis of mixed acetals with good to excellent yields. The robustness of this protocol is demonstrated by the late-stage oxidation of a structurally complex natural product.
Collapse
Affiliation(s)
- Wei Han
- Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| | - Lu Cheng
- Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University
| | - Hongyuan Zhao
- Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University
| |
Collapse
|
44
|
Yang L, Liu P, Zhang HY, Zhang Y, Zhao J. Catalytic Oxidation of o-Chlorotoluene with Oxygen to o-Chlorobenzaldehyde in a Microchannel Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Tianjin Taipu Pharmaceutical Ltd., Tianjin 300193, P. R. China
| | - Peng Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hong-yu Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
45
|
C(sp2)–H/O–H cross-dehydrogenative coupling of quinoxalin-2(1H)-ones with alcohols under visible-light photoredox catalysis. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63526-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Site-selective electrooxidation of methylarenes to aromatic acetals. Nat Commun 2020; 11:2706. [PMID: 32483217 PMCID: PMC7264330 DOI: 10.1038/s41467-020-16519-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
Aldehyde is one of most synthetically versatile functional groups and can participate in numerous chemical transformations. While a variety of simple aromatic aldehydes are commercially available, those with a more complex substitution pattern are often difficult to obtain. Benzylic oxygenation of methylarenes is a highly attractive method for aldehyde synthesis as the starting materials are easy to obtain and handle. However, regioselective oxidation of functionalized methylarenes, especially those that contain heterocyclic moieties, to aromatic aldehydes remains a significant challenge. Here we show an efficient electrochemical method that achieves site-selective electrooxidation of methyl benzoheterocycles to aromatic acetals without using chemical oxidants or transition-metal catalysts. The acetals can be converted to the corresponding aldehydes through hydrolysis in one-pot or in a separate step. The synthetic utility of our method is highlighted by its application to the efficient preparation of the antihypertensive drug telmisartan. Benzylic oxygenation of methylarenes is a direct but challenging method for aldehyde synthesis from simple starting materials. Here, the authors show an electrochemical, site-selective method for the oxidation of methyl benzoheterocycles to aromatic acetals without using chemical oxidants or transition metal catalysts.
Collapse
|
47
|
Shen HM, Qi B, Hu MY, Liu L, Ye HL, She YB. Selective Solvent-Free and Additive-Free Oxidation of Primary Benzylic C–H Bonds with O2 Catalyzed by the Combination of Metalloporphyrin with N-Hydroxyphthalimide. Catal Letters 2020. [DOI: 10.1007/s10562-020-03214-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Weng WZ, Guo JS, Liu KX, Shao TQ, Song LQ, Zhu YP, Sun YY, Meng QG. Metal-free oxidative C(sp3)–H functionalization: a facile route to quinoline formaldehydes from methyl-azaheteroarenes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A facile protocol for the synthesis of quinoline formaldehydes via direct oxidative C–H bonds functionalization of methyl-azaheteroarenes in the presence of I2–DMSO has been described. This method is metal-free and easy to operate. This reaction provided a convenient route for the preparation of a range of important quinoline formaldehydes.
Collapse
Affiliation(s)
- Wei-Zhao Weng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Jiang-Shan Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Kai-Xuan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Tian-Qi Shao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Li-Qun Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Yuan-Yuan Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Qing-Guo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| |
Collapse
|
49
|
Hayashi E, Yamaguchi Y, Kita Y, Kamata K, Hara M. One-pot aerobic oxidative sulfonamidation of aromatic thiols with ammonia by a dual-functional β-MnO 2 nanocatalyst. Chem Commun (Camb) 2020; 56:2095-2098. [PMID: 31995042 DOI: 10.1039/c9cc09411c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-surface-area β-MnO2 (β-MnO2-HS) nanoparticles could act as effective heterogeneous catalysts for the one-pot oxidative sulfonamidation of various aromatic and heteroaromatic thiols to the corresponding sulfonamides using molecular oxygen (O2) and ammonia (NH3) as respective oxygen and nitrogen sources, without the need for any additives.
Collapse
Affiliation(s)
- Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | |
Collapse
|
50
|
Jiménez-Cruz JC, Guzmán-Mejía R, Juaristi E, Sánchez-Antonio O, García-Revilla MA, González-Campos JB, Aviña-Verduzco J. Preparation of aromatic γ-hydroxyketones by means of Heck coupling of aryl halides and 2,3-dihydrofuran, catalyzed by a palladium( ii) glycine complex under microwave irradiation. NEW J CHEM 2020. [DOI: 10.1039/d0nj02630a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis of phenyl-γ-hydroxyketones through Heck coupling and subsequent opening of the tetrahydrofuran ring by the nucleophilic attack of a water molecule catalyzed by PdCl2·Gly2 under microwave irradiation.
Collapse
Affiliation(s)
- Juan C. Jiménez-Cruz
- Instituto de Investigaciones Químico Biológicas
- Universidad Michoacana de San Nicolás de Hidalgo
- 58030 Morelia
- Mexico
| | - Ramón Guzmán-Mejía
- Instituto de Investigaciones Químico Biológicas
- Universidad Michoacana de San Nicolás de Hidalgo
- 58030 Morelia
- Mexico
| | - Eusebio Juaristi
- Departamento de Química
- Centro de Investigación y de Estudios Avanzados
- Avenida Instituto Politécnico
- 07360 Ciudad de México
- Mexico
| | - Omar Sánchez-Antonio
- Departamento de Química
- Centro de Investigación y de Estudios Avanzados
- Avenida Instituto Politécnico
- 07360 Ciudad de México
- Mexico
| | | | - J. Betzabe González-Campos
- Instituto de Investigaciones Químico Biológicas
- Universidad Michoacana de San Nicolás de Hidalgo
- 58030 Morelia
- Mexico
| | - Judit Aviña-Verduzco
- Instituto de Investigaciones Químico Biológicas
- Universidad Michoacana de San Nicolás de Hidalgo
- 58030 Morelia
- Mexico
| |
Collapse
|