1
|
Mills K, Sosdian S, Muir DD, John EH, Santodomingo N, Johnson K, Buse B, Waheed Z. Crystallographic and geochemical responses of giant clams on turbid reefs. Sci Rep 2025; 15:7365. [PMID: 40025147 PMCID: PMC11873261 DOI: 10.1038/s41598-025-90614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
Marine calcifying organisms on coral reefs face significant threats from various anthropogenic stressors. To better understand how these organisms will respond to a rapidly changing ocean, it is crucial to investigate their biomineralization across different reef environments. Despite their resilience and potential as conservation hotspots, turbid reefs-projected to expand throughout the 21st century-remain understudied, including a limited knowledge of biomineralization processes within these environments. Herein, for the first time, we assess the crystallographic and geochemical signatures of aragonite giant clam shells Tridacna squamosa from high and low turbid reefs in the Coral Triangle. Shell composition is strongly influenced by turbidity and biominerals formed in a high turbid reef show a more organized crystal orientation and significantly lower element-to-calcium ratios (magnesium/calcium, strontium/calcium). We hypothesize that these variations are driven by physiological changes related to the trophic flexibility of T. squamosa, utilizing both autotrophic and heterotrophic mechanisms. Observed differences may have implications for biomechanical and defense responses of shells, important in their ability to survive future change.
Collapse
Affiliation(s)
- Kimberley Mills
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK.
| | - Sindia Sosdian
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Duncan D Muir
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Eleanor H John
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | | | | | - Ben Buse
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Zarinah Waheed
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
2
|
Gardella G, Castillo Alvarez MC, Presslee S, Finch AA, Penkman K, Kröger R, Clog M, Allison N. Contrasting the Effects of Aspartic Acid and Glycine in Free Amino Acid and Peptide Forms on the Growth Rate, Morphology, Composition, and Structure of Synthetic Aragonites. CRYSTAL GROWTH & DESIGN 2024; 24:9379-9390. [PMID: 39583629 PMCID: PMC11583211 DOI: 10.1021/acs.cgd.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Corals and mollusks produce aragonite skeletons and shells containing highly acidic proteins, rich in aspartic acid (Asp) and glycine (Gly). These biomolecules are pivotal in controlling biomineral formation. We explore the effects of l-Asp, Gly, and two peptides: glycyl-l-aspartic acid (Gly-Asp) and tetra-aspartic acid (Asp4) on the precipitation rate, crystal morphology, and CO3 group rotational disorder (inferred from Raman spectroscopy) in aragonite precipitated in vitro at the approximate pH, [Ca2+], and Ωar occurring in coral calcification media. All of the biomolecules, except Gly, inhibit aragonite precipitation. Biomolecules are incorporated into the aragonite and create CO3 group rotational disorder in the following order: Asp4 > Asp = Gly-Asp > Gly. Asp4 inhibits aragonite precipitation more than Asp at comparable solution concentrations, but Asp reduces aragonite precipitation more effectively than Asp4 for each Asp residue incorporated into the aragonite. At the highest solution concentration, the molar ratio of Asp4:CaCO3 in the aragonite is 1:690. We observe a significant inverse relationship between the aragonite precipitation rate and aragonite Raman spectrum ν1 peak fwhm across the entire data set. Tetra-aspartic acid inhibits aragonite precipitation at all concentrations, suggesting that the aspartic acid-rich domains of coral skeletal proteins influence biomineralization by suppressing mineral formation, thereby shaping skeletal morphology and preventing uncontrolled precipitation.
Collapse
Affiliation(s)
- Giacomo Gardella
- School
of Earth and Environmental Sciences, University
of St. Andrews, St Andrews KY16 9TS, U.K.
- Scottish
Oceans Institute, University of St. Andrews, St Andrews KY16 8LB, U.K.
| | - Maria Cristina Castillo Alvarez
- School
of Earth and Environmental Sciences, University
of St. Andrews, St Andrews KY16 9TS, U.K.
- Scottish
Oceans Institute, University of St. Andrews, St Andrews KY16 8LB, U.K.
| | - Sam Presslee
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Adrian A. Finch
- School
of Earth and Environmental Sciences, University
of St. Andrews, St Andrews KY16 9TS, U.K.
| | - Kirsty Penkman
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Roland Kröger
- Department
of Physics, University of York, York YO10 5DD, U.K.
| | | | - Nicola Allison
- School
of Earth and Environmental Sciences, University
of St. Andrews, St Andrews KY16 9TS, U.K.
- Scottish
Oceans Institute, University of St. Andrews, St Andrews KY16 8LB, U.K.
| |
Collapse
|
3
|
Grenier C, Griesshaber E, Schmahl W, Berning B, Checa AG. Skeletal microstructures of cheilostome bryozoans (phylum Bryozoa, class Gymnolaemata): crystallography and secretion patterns. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:405-424. [PMID: 39219676 PMCID: PMC11358562 DOI: 10.1007/s42995-024-00233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 09/04/2024]
Abstract
Gymnolaemata bryozoans produce CaCO3 skeletons of either calcite, aragonite, or both. Despite extensive research, their crystallography and biomineralization patterns remain unclear. We present a detailed study of the microstructures, mineralogy, and crystallography of eight extant cheilostome species using scanning electron microscopy, electron backscatter diffraction, atomic force microscopy, and micro-computed tomography. We distinguished five basic microstructures, three calcitic (tabular, irregularly platy, and granular), and two aragonitic (granular-platy and fibrous). The calcitic microstructures consist of crystal aggregates that transition from tabular or irregularly platy to granular assemblies. Fibrous aragonite consists of fibers arranged into spherulites. In all cases, the crystallographic textures are axial, and stronger in aragonite than in calcite, with the c-axis as the fiber axis. We reconstruct the biomineralization sequence in the different species by considering the distribution and morphology of the growth fronts of crystals and the location of the secretory epithelium. In bimineralic species, calcite formation always predates aragonite formation. In interior compound walls, growth proceeds from the cuticle toward the zooecium interior. We conclude that, with the exception of tabular calcite, biomineralization is remote and occurs within a relatively wide extrapallial space, which is consistent with the inorganic-like appearance of the microstructures. This biomineralization mode is rare among invertebrates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00233-1.
Collapse
Affiliation(s)
- Christian Grenier
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
| | - Erika Griesshaber
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, 80333 Munich, Germany
| | - Wolfgang Schmahl
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, 80333 Munich, Germany
| | - Björn Berning
- Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
| | - Antonio G. Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
- Instituto Andaluz de Ciencias de La Tierra, CSIC-Universidad de Granada, 18100 Armilla, Spain
| |
Collapse
|
4
|
Titelboim D, Rothwell NJ, Lord OT, Harniman RL, Melbourne LA, Schmidt DN. Unexpected increase in structural integrity caused by thermally induced dwarfism in large benthic foraminifera. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231280. [PMID: 38601028 PMCID: PMC11004679 DOI: 10.1098/rsos.231280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/02/2024] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
Climate change is predicted to negatively impact calcification and change the structural integrity of biogenic carbonates, influencing their protective function. We assess the impacts of warming on the morphology and crystallography of Amphistegina lobifera, an abundant benthic foraminifera species in shallow environments. Specimens from a thermally disturbed field area, mimicking future warming, are about 50% smaller compared with a control location. Differences in the position of the ν1 Raman mode of shells between the sites, which serves as a proxy for Mg content and calcification temperature, indicate that calcification is negatively impacted when temperatures are below the thermal range facilitating calcification. To test the impact of thermal stress on the Young's modulus of calcite which contributes to structural integrity, we quantify elasticity changes in large benthic foraminifera by applying atomic force microscopy to a different genus, Operculina ammonoides, cultured under optimal and high temperatures. Building on these observations of size and the sensitivity analysis for temperature-induced change in elasticity, we used finite element analysis to show that structural integrity is increased with reduced size and is largely insensitive to calcite elasticity. Our results indicate that warming-induced dwarfism creates shells that are more resistant to fracture because they are smaller.
Collapse
Affiliation(s)
- Danna Titelboim
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Oliver T. Lord
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Leanne A. Melbourne
- School of Earth Sciences, University of Bristol, Bristol, UK
- Earth and Planetary Sciences Department, American Museum of Natural History, New York, NY, USA
| | | |
Collapse
|
5
|
Tan CD, Hähner G, Fitzer S, Cole C, Finch AA, Hintz C, Hintz K, Allison N. The response of coral skeletal nano structure and hardness to ocean acidification conditions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230248. [PMID: 37538739 PMCID: PMC10394408 DOI: 10.1098/rsos.230248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Ocean acidification typically reduces coral calcification rates and can fundamentally alter skeletal morphology. We use atomic force microscopy (AFM) and microindentation to determine how seawater pCO2 affects skeletal structure and Vickers hardness in a Porites lutea coral. At 400 µatm, the skeletal fasciculi are composed of tightly packed bundles of acicular crystals composed of quadrilateral nanograins, approximately 80-300 nm in dimensions. We interpret high adhesion at the nanograin edges as an organic coating. At 750 µatm the crystals are less regular in width and orientation and composed of either smaller/more rounded nanograins than observed at 400 µatm or of larger areas with little variation in adhesion. Coral aragonite may form via ion-by-ion attachment to the existing skeleton or via conversion of amorphous calcium carbonate precursors. Changes in nanoparticle morphology could reflect variations in the sizes of nanoparticles produced by each crystallization pathway or in the contributions of each pathway to biomineralization. We observe no significant variation in Vickers hardness between skeletons cultured at different seawater pCO2. Either the nanograin size does not affect skeletal hardness or the effect is offset by other changes in the skeleton, e.g. increases in skeletal organic material as reported in previous studies.
Collapse
Affiliation(s)
- Chao Dun Tan
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Georg Hähner
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Susan Fitzer
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Catherine Cole
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Adrian A. Finch
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Chris Hintz
- Department of Marine and Environmental Sciences, Savannah State University, Savannah, GA USA
| | - Ken Hintz
- Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA
| | - Nicola Allison
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| |
Collapse
|
6
|
First paleoproteome study of fossil fish otoliths and the pristine preservation of the biomineral crystal host. Sci Rep 2023; 13:3822. [PMID: 36882485 PMCID: PMC9992438 DOI: 10.1038/s41598-023-30537-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Otoliths are calcium carbonate components of the stato-acoustical organ responsible for hearing and maintenance of the body balance in teleost fish. During their formation, control over, e.g., morphology and carbonate polymorph is influenced by complex insoluble collagen-like protein and soluble non-collagenous protein assemblages; many of these proteins are incorporated into their aragonite crystal structure. However, in the fossil record these proteins are considered lost through diagenetic processes, hampering studies of past biomineralization mechanisms. Here we report the presence of 11 fish-specific proteins (and several isoforms) in Miocene (ca. 14.8-14.6 Ma) phycid hake otoliths. These fossil otoliths were preserved in water-impermeable clays and exhibit microscopic and crystallographic features indistinguishable from modern representatives, consistent with an exceptionally pristine state of preservation. Indeed, these fossil otoliths retain ca. 10% of the proteins sequenced from modern counterparts, including proteins specific to inner ear development, such as otolin-1-like proteins involved in the arrangement of the otoliths into the sensory epithelium and otogelin/otogelin-like proteins that are located in the acellular membranes of the inner ear in modern fish. The specificity of these proteins excludes the possibility of external contamination. Identification of a fraction of identical proteins in modern and fossil phycid hake otoliths implies a highly conserved inner ear biomineralization process through time.
Collapse
|
7
|
Diagenetic and Biological Overprints in Geochemical Signatures of the Gigantoproductus Tertiary Layer (Brachiopoda): Assessing the Paleoclimatic Interpretation. Life (Basel) 2023; 13:life13030714. [PMID: 36983867 PMCID: PMC10057505 DOI: 10.3390/life13030714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Variations in the geochemical signatures of fossil brachiopod shells may be due to diagenesis and/or biological processes (i.e., ‘vital effects’). It is critical to characterise them in order to identify reliable shell areas suitable for paleoclimate studies. This investigation contributes to an in-depth understanding of geochemical variations in Gigantoproductus sp. shells (SW Spain, Serpukhovian age), throwing light onto the Late Paleozoic Ice Age interpretation. Microstructural, crystallographic, cathodoluminescence and geochemical (minor and trace elements, δ18O, δ13C, and strontium isotopes) characterisations have been performed on the tertiary layer of the ventral valve, to assess the preservation state. Poorly preserved areas exhibit microstructural and geochemical changes such as recrystallisation, fracturing and higher Mn and Fe enrichment. Moreover, these areas have a higher dispersion of ⁸⁶Sr, ⁸⁷Sr, δ18O and δ13C than well-preserved areas. Three structural regions have been identified in well-preserved areas of the ventral valve by differences in valve curvature and thickness, such as the umbonal and thick and thin regions. These regions have different proportions of Mg, S, Na, δ18O, and δ13C, which are interpreted as ‘vital effects’ and probably related to growth-rate differences during shell growth. The Gigantoproductus tertiary layer seems the most suitable for paleoclimate studies, because it retains the original microstructure and geochemical composition.
Collapse
|
8
|
Chandra Rajan K, Li Y, Dang X, Lim YK, Suzuki M, Lee SW, Vengatesen T. Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification. Proc Biol Sci 2023; 290:20221216. [PMID: 36651043 PMCID: PMC9979777 DOI: 10.1098/rspb.2022.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Biomineralization is one of the key biochemical processes in calcifying bivalve species such as oysters that is affected by ocean acidification (OA). Larval life stages of oysters are made of aragonite crystals whereas the adults are made of calcite and/or aragonite. Though both calcite and aragonite are crystal polymorphs of calcium carbonate, they have different mechanical properties and hence it is important to study the micro and nano structure of different life stages of oyster shells under OA to understand the mechanisms by which OA affects biomineralization ontogeny. Here, we have studied the larval and juvenile life stages of an economically and ecologically important estuarine oyster species, Crassostrea hongkongensis, under OA with focus over shell fabrication under OA (pHNBS 7.4). We also look at the effect of parental exposure to OA on larvae and juvenile microstructure. The micro and nanostructure characterization reveals directional fabrication of oyster shells, with more organized structure as biomineralization progresses. Under OA, both the larval and juvenile stages show directional dissolution, i.e. the earlier formed shell layers undergo dissolution at first, owing to longer exposure time. Despite dissolution, the micro and nanostructure of the shell remains unaffected under OA, irrespective of parental exposure history.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yang Li
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Xin Dang
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yong Kian Lim
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Centre for Aquaculture and Veterinary Science & School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Seung Woo Lee
- Korea Institute of Geoscience and Mineral Resources, Daejeon, Republic of South Korea
| | - Thiyagarajan Vengatesen
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| |
Collapse
|
9
|
Optimising a method for aragonite precipitation in simulated biogenic calcification media. PLoS One 2022; 17:e0278627. [PMID: 36459517 PMCID: PMC9718392 DOI: 10.1371/journal.pone.0278627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
Resolving how factors such as temperature, pH, biomolecules and mineral growth rate influence the geochemistry and structure of biogenic CaCO3, is essential to the effective development of palaeoproxies. Here we optimise a method to precipitate the CaCO3 polymorph aragonite from seawater, under tightly controlled conditions that simulate the saturation state (Ω) of coral calcification fluids. We then use the method to explore the influence of aspartic acid (one of the most abundant amino acids in coral skeletons) on aragonite structure and morphology. Using ≥200 mg of aragonite seed (surface area 0.84 m2), to provide a surface for mineral growth, in a 330 mL seawater volume, generates reproducible estimates of precipitation rate over Ωaragonite = 6.9-19.2. However, unseeded precipitations are highly variable in duration and do not provide consistent estimates of precipitation rate. Low concentrations of aspartic acid (1-10 μM) promote aragonite formation, but high concentrations (≥ 1 mM) inhibit precipitation. The Raman spectra of aragonite precipitated in vitro can be separated from the signature of the starting seed by ensuring that at least 60% of the analysed aragonite is precipitated in vitro (equivalent to using a seed of 200 mg and precipitating 300 mg aragonite in vitro). Aspartic acid concentrations ≥ 1mM caused a significant increase in the full width half maxima of the Raman aragonite v1 peak, reflective of increased rotational disorder in the aragonite structure. Changes in the organic content of coral skeletons can drive variations in the FWHM of the Raman aragonite ν1 peak, and if not accounted for, may confuse the interpretation of calcification fluid saturation state from this parameter.
Collapse
|
10
|
Moynihan MA, Amini S, Oalmann J, Chua JQI, Tanzil JTI, Fan TY, Miserez A, Goodkin NF. Crystal orientation mapping and microindentation reveal anisotropy in Porites skeletons. Acta Biomater 2022; 151:446-456. [PMID: 35963519 DOI: 10.1016/j.actbio.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Structures made by scleractinian corals support diverse ocean ecosystems. Despite the importance of coral skeletons and their predicted vulnerability to climate change, few studies have examined the mechanical and crystallographic properties of coral skeletons at the micro- and nano-scales. Here, we investigated the interplay of crystallographic and microarchitectural organization with mechanical anisotropy within Porites skeletons by measuring Young's modulus and hardness along surfaces transverse and longitudinal to the primary coral growth direction. We observed micro-scale anisotropy, where the transverse surface had greater Young's modulus and hardness by ∼ 6 GPa and 0.2 GPa, respectively. Electron backscatter diffraction (EBSD) revealed that this surface also had a higher percentage of crystals oriented with the a-axis between ± 30-60∘, relative to the longitudinal surface, and a broader grain size distribution. Within a region containing a sharp microscale gradient in Young's modulus, nanoscale indentation mapping, energy dispersive spectroscopy (EDS), EBSD, and Raman crystallography were performed. A correlative trend showed higher Young's modulus and hardness in regions with individual crystal bases (c-axis) facing upward, and in crystal fibers relative to centers of calcification. These relationships highlight the difference in mechanical properties between scales (i.e. crystals, crystal bundles, grains). Observations of crystal orientation and mechanical properties suggest that anisotropy is driven by microscale organization and crystal packing, rather than intrinsic crystal anisotropy. In comparison with previous observations of nanoscale isotropy in corals, our results illustrate the role of hierarchical architecture in coral skeletons and the influence of biotic and abiotic factors on mechanical properties at different scales. STATEMENT OF SIGNIFICANCE: Coral biomineralization and the ability of corals' skeletal structure to withstand biotic and abiotic forces underpins the success of reef ecosystems. At the microscale, we show increased skeletal stiffness and hardness perpendicular to the coral growth direction. By comparing nano- and micro-scale indentation results, we also reveal an effect of hierarchical architecture on the mechanical properties of coral skeletons and hypothesize that crystal packing and orientation result in microscale anisotropy. In contrast to previous findings, we demonstrate that mechanical and crystallographic properties of coral skeletons can vary between surface planes, within surface planes, and at different analytical scales. These results improve our understanding of biomineralization and the effects of scale and direction on how biomineral structures respond to environmental stimuli.
Collapse
Affiliation(s)
- Molly A Moynihan
- Earth Observatory of Singapore, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore, Singapore; Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Shahrouz Amini
- Center for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - Jeffrey Oalmann
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore
| | - J Q Isaiah Chua
- Center for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jani T I Tanzil
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore; St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - T Y Fan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Ali Miserez
- Center for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nathalie F Goodkin
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore; American Museum of Natural History, New York, NY, USA
| |
Collapse
|
11
|
Wolfram U, Peña Fernández M, McPhee S, Smith E, Beck RJ, Shephard JD, Ozel A, Erskine CS, Büscher J, Titschack J, Roberts JM, Hennige SJ. Multiscale mechanical consequences of ocean acidification for cold-water corals. Sci Rep 2022; 12:8052. [PMID: 35577824 PMCID: PMC9110400 DOI: 10.1038/s41598-022-11266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45-67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.
Collapse
Affiliation(s)
- Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK.
| | - Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Ewan Smith
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Rainer J Beck
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Jonathan D Shephard
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Ali Ozel
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Craig S Erskine
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Janina Büscher
- Biological Oceanography Research Group, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jürgen Titschack
- Marum Center for Marine Sciences, University of Bremen, Bremen, Germany
- Marine Research Department, Senckenberg am Meer, Wilhelmshaven, Germany
| | - J Murray Roberts
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Sebastian J Hennige
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Luo Y, Huang L, Lei X, Yu X, Liu C, Jiang L, Sun Y, Cheng M, Gan J, Zhang Y, Zhou G, Liu S, Lian J, Huang H. Light availability regulated by particulate organic matter affects coral assemblages on a turbid fringing reef. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105613. [PMID: 35429821 DOI: 10.1016/j.marenvres.2022.105613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Recently, increasing evidence suggests that reef-building corals exposed to elevated suspended solids (SS) are largely structured by changes in underwater light availability (ULA). However, there are few direct and quantitative observations in situ support for this hypothesis; in particular, the contribution of SS to the diffuse attenuation coefficient of the photosynthetically active radiation (Kd-PAR) variations is not yet fully understood. Here, we investigated the variations in ULA, the structure of coral assemblages, and the concentration and composition of SS on the Luhuitou fringing reef, Sanya, China. Light attenuation was rapid (Kd-PAR: 0.60 ± 0.39 m-1) resulting in a shallow euphotic depth (Zeu-PAR) (<11 m). Benthic PAR showed significant positive correlations with branching and corymbose corals (e.g. Acropora spp.), while massive and encrusting species (e.g. Porites spp.) dominated the coral communities and showed no significant correlations with PAR. These results indicate that the depth range available for coral growth is shallow and the tolerance to low-light stress differs among coral species. Notably, Kd-PAR showed no significant correlations with the grain size fractions of SS, whereas significant positive correlations were found with its organic fraction content, demonstrating that the light attenuation of SS is mainly regulated by particulate organic matter (POM). Intriguingly, our isotopic evidence revealed that POM concentration contributed the most to changes in Kd-PAR, with its source being slightly less important. Combined, our results highlight ULA regulated by POM is an important factor in contributing to changes in coral assemblages on inshore turbid reefs, and reducing the input of terrestrial materials, especially POM, is an effective measure to alleviate the low-light stress on sensitive coral species.
Collapse
Affiliation(s)
- Yong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lintao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Lei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou, 511458, China
| | - Xiaolei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou, 511458, China
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou, 511458, China
| | - Youfang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou, 511458, China
| | - Meng Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfeng Gan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou, 511458, China
| | - Guowei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou, 511458, China
| | - Sheng Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou, 511458, China
| | - Jiansheng Lian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Southern Marine Science and Engineering Guangdong Laboratory Guangzhou, Guangzhou, 511458, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Meziere Z, Rich WA, Carvalho S, Benzoni F, Morán XAG, Berumen ML. Stylophora under stress: A review of research trends and impacts of stressors on a model coral species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151639. [PMID: 34780827 DOI: 10.1016/j.scitotenv.2021.151639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Sometimes called the "lab rat" of coral research, Stylophora pistillata (Esper, 1797) has been extensively used in coral biology in studies ranging from reef ecology to coral metabolic processes, and has been used as a model for investigations into molecular and cellular biology. Previously thought to be a common species spanning a wide distribution through the Indo-Pacific region, "S. pistillata" is in fact four genetically distinct lineages (clades) with different evolutionary histories and geographical distributions. Here, we review the studies of stress responses of S. pistillatasensulato (clades 1-4) and highlight research trends and knowledge gaps. We identify 126 studies on stress responses including effects of temperature, acidification, eutrophication, pollutants and other local impacts. We find that most studies have focused on the effect of single stressors, especially increased temperature, and have neglected the combined effects of multiple stressors. Roughly 61% of studies on S. pistillata come from the northern Red Sea (clade 4), at the extreme limit of its current distribution; clades 2 and 3 are virtually unstudied. The overwhelming majority of studies were conducted in laboratory or mesocosm conditions, with field experiments constituting only 2% of studies. We also note that a variety of experimental designs and treatment conditions makes it difficult to draw general conclusions about the effects of particular stressors on S. pistillata. Given those knowledge gaps and limitations in the published research, we suggest a more standardized approach to compare responses across geographically disparate populations and more accurately anticipate responses to predicted future climate conditions.
Collapse
Affiliation(s)
- Zoe Meziere
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia; School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Walter A Rich
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia; Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Spain
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Drake JL, Benayahu Y, Polishchuk I, Pokroy B, Pinkas I, Mass T. Sclerites of the soft coral Ovabunda macrospiculata (Xeniidae) are predominantly the metastable CaCO 3 polymorph vaterite. Acta Biomater 2021; 135:663-670. [PMID: 34492373 DOI: 10.1016/j.actbio.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
Soft corals (Cnidaria, Anthozoa, Octocorallia, Alcyonacea) produce internal sclerites of calcium carbonate previously shown to be composed of calcite, the most stable calcium carbonate polymorph. Here we apply multiple imaging and physical chemistry analyses to extracted and in-vivo sclerites of the abundant Red Sea soft coral, Ovabunda macrospiculata, to detail their mineralogy. We show that this species' sclerites are comprised predominantly of the less stable calcium carbonate polymorph vaterite (> 95%), with much smaller components of aragonite and calcite. Use of this mineral, which is typically considered to be metastable, by these soft corals has implications for how it is formed as well as how it will persist during the anticipated anthropogenic climate change in the coming decades. This first documentation of vaterite dominating the mineral composition of O. macrospiculata sclerites is likely just the beginning of establishing its presence in other soft corals. STATEMENT OF SIGNIFICANCE: Vaterite is typically considered to be a metastable polymorph of calcium carbonate. While calcium carbonate structures formed within the tissues of octocorals (phylum Cnidaria), have previously been reported to be composed of the more stable polymorphs aragonite and calcite, we observed that vaterite dominates the mineralogy of sclerites of Ovabunda macrospiculata from the Red Sea. Based on electron microscopy, Raman spectroscopy, and X-ray diffraction analysis, vaterite appears to be the dominant polymorph in sclerites both in the tissue and after extraction and preservation. Although this is the first documentation of vaterite in soft coral sclerites, it likely will be found in sclerites of other related taxa as well.
Collapse
|
15
|
Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO 2 vents in Papua New Guinea. Sci Rep 2021; 11:19927. [PMID: 34620911 PMCID: PMC8497495 DOI: 10.1038/s41598-021-98976-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
This study investigates the effects of long-term exposure to OA on skeletal parameters of four tropical zooxanthellate corals naturally living at CO2 seeps and adjacent control sites from two locations (Dobu and Upa Upasina) in the Papua New Guinea underwater volcanic vent system. The seeps are characterized by seawater pH values ranging from 8.0 to about 7.7. The skeletal porosity of Galaxea fascicularis, Acropora millepora, massive Porites, and Pocillopora damicornis was higher (up to ~ 40%, depending on the species) at the seep sites compared to the control sites. Pocillopora damicornis also showed a decrease of micro-density (up to ~ 7%). Thus, further investigations conducted on this species showed an increase of the volume fraction of the larger pores (up to ~ 7%), a decrease of the intraskeletal organic matrix content (up to ~ 15%), and an increase of the intraskeletal water content (up to ~ 59%) at the seep sites. The organic matrix related strain and crystallite size did not vary between seep and control sites. This multi-species study showed a common phenotypic response among different zooxanthellate corals subjected to the same environmental pressures, leading to the development of a more porous skeletal phenotype under OA.
Collapse
|
16
|
Li X, Wan R, Zha Y, Chen Y, Zheng X, Su Y. Identification of CO 2 induces oxidative stress to change bacterial surface properties. CHEMOSPHERE 2021; 277:130336. [PMID: 34384185 DOI: 10.1016/j.chemosphere.2021.130336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 06/13/2023]
Abstract
The surface properties of bacteria play an essential role in their abilities to perform transmembrane communication, adherence, immobilization, flocculation, etc. However, the responsiveness of bacterial surfaces to elevated atmospheric CO2 remains unknown. In this study, using the model bacteria, Paracoccus denitrificans, the effect of CO2 on the primary bacterial surface properties, specifically hydrophobicity and surface charge, has been explored. We found that hydrophilicity and negative surface charge both rose in conjunction with increased atmospheric CO2 concentrations. Studies of the potential mechanisms involved have illustrated that elevated CO2 significantly increases the production of polysaccharides in extracellular polymeric substances (EPS). Various hydrophilic groups and negative charges in these polysaccharides prompt hydrophilicity and surface charge variations in bacteria. Further research has identified that elevations in CO2 result in the accumulation of reactive species, specifically reactive nitrogen species (RNS). In this study, it was found that RNS damaged the permeability of bacterial membranes by inducing lipid peroxidation and then caused the leakage of intracellular substrate, which ultimately led to an increase in EPS polysaccharides. Our findings suggest that changes in bacterial surface properties due to atmospheric CO2 elevation, as well as the reactions these trigger, merit widespread attention.
Collapse
Affiliation(s)
- Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China.
| | - Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinglong Su
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
17
|
Chandra Rajan K, Meng Y, Yu Z, Roberts SB, Vengatesen T. Oyster biomineralization under ocean acidification: From genes to shell. GLOBAL CHANGE BIOLOGY 2021; 27:3779-3797. [PMID: 33964098 DOI: 10.1111/gcb.15675] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuan Meng
- State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziniu Yu
- South China Sea Institute of Oceanology, Guangzhou, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Thiyagarajan Vengatesen
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
18
|
Servetto N, de Aranzamendi MC, Bettencourt R, Held C, Abele D, Movilla J, González G, Bustos DM, Sahade R. Molecular mechanisms underlying responses of the Antarctic coral Malacobelemnon daytoni to ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105430. [PMID: 34340030 DOI: 10.1016/j.marenvres.2021.105430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Benthic organisms of the Southern Ocean are particularly vulnerable to ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. OA most strongly affects animals with calcium carbonate skeletons or shells, such as corals and mollusks. We exposed the abundant cold-water coral Malacobelemnon daytoni from an Antarctic fjord to low pH seawater (LpH) (7.68 ± 0.17) to test its physiological responses to OA, at the level of gene expression (RT-PCR) and enzyme activity. Corals were exposed in short- (3 days) and long-term (54 days) experiments to two pCO2 conditions (ambient and elevated pCO2 equaling RCP 8.5, IPCC 2019, approximately 372.53 and 956.78 μatm, respectively). Of the eleven genes studied through RT-PCR, six were significantly upregulated compared with control in the short-term in the LpH condition, including the antioxidant enzyme superoxide dismutase (SOD), Heat Shock Protein 70 (HSP70), Toll-like receptor (TLR), galaxin and ferritin. After long-term exposure to low pH conditions, RT-PCR analysis showed seven genes were upregulated. These include the mannose-binding C-Lectin and HSP90. Also, the expression of TLR and galaxin, among others, continued to be upregulated after long-term exposure to LpH. Expression of carbonic anhydrase (CA), a key enzyme involved in calcification, was also significantly upregulated after long-term exposure. Our results indicated that, after two months, M. daytoni is not acclimatized to this experimental LpH condition. Gene expression profiles revealed molecular impacts that were not evident at the enzyme activity level. Consequently, understanding the molecular mechanisms behind the physiological processes in the response of a coral to LpH is critical to understanding the ability of polar species to cope with future environmental changes. Approaches integrating molecular tools into Antarctic ecological and/or conservation research make an essential contribution given the current ongoing OA processes.
Collapse
Affiliation(s)
- N Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales.,Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina.
| | - M C de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales.,Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - R Bettencourt
- OKEANOS Marine Research Center/Department of Oceanography and Fisheries, Faculty of Science and Technology, University of the Azores, 9900-862, Horta, Portugal
| | - C Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - D Abele
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - J Movilla
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Estación de Investigación Jaume Ferrer, La Mola s/n 07720, Menorca, Spain
| | - G González
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales.,Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - D M Bustos
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM CONICET-UNCUYO), and Facultad de Ciencias Exactas y Naturales (UNCUYO), Mendoza, Argentina
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales.,Cátedra de Ecología Marina, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina.
| |
Collapse
|
19
|
Roger LM, Reich HG, Lawrence E, Li S, Vizgaudis W, Brenner N, Kumar L, Klein-Seetharaman J, Yang J, Putnam HM, Lewinski NA. Applying model approaches in non-model systems: A review and case study on coral cell culture. PLoS One 2021; 16:e0248953. [PMID: 33831033 PMCID: PMC8031391 DOI: 10.1371/journal.pone.0248953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.
Collapse
Affiliation(s)
- Liza M. Roger
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: ,
| | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Evan Lawrence
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shuaifeng Li
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Whitney Vizgaudis
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Nathan Brenner
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Jinkyu Yang
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Nastassja A. Lewinski
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
20
|
Abstract
Biominerals such as seashells, coral skeletons, bone, and tooth enamel are optically anisotropic crystalline materials with unique nanoscale and microscale organization that translates into exceptional macroscopic mechanical properties, providing inspiration for engineering new and superior biomimetic structures. Using Seriatopora aculeata coral skeleton as a model, here, we experimentally demonstrate X-ray linear dichroic ptychography and map the c-axis orientations of the aragonite (CaCO3) crystals. Linear dichroic phase imaging at the oxygen K-edge energy shows strong polarization-dependent contrast and reveals the presence of both narrow (<35°) and wide (>35°) c-axis angular spread in the coral samples. These X-ray ptychography results are corroborated by four-dimensional (4D) scanning transmission electron microscopy (STEM) on the same samples. Evidence of co-oriented, but disconnected, corallite subdomains indicates jagged crystal boundaries consistent with formation by amorphous nanoparticle attachment. We expect that the combination of X-ray linear dichroic ptychography and 4D STEM could be an important multimodal tool to study nano-crystallites, interfaces, nucleation, and mineral growth of optically anisotropic materials at multiple length scales.
Collapse
|
21
|
Sun CY, Stifler CA, Chopdekar RV, Schmidt CA, Parida G, Schoeppler V, Fordyce BI, Brau JH, Mass T, Tambutté S, Gilbert PUPA. From particle attachment to space-filling coral skeletons. Proc Natl Acad Sci U S A 2020; 117:30159-30170. [PMID: 33188087 PMCID: PMC7720159 DOI: 10.1073/pnas.2012025117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reef-building corals and their aragonite (CaCO3) skeletons support entire reef ecosystems, yet their formation mechanism is poorly understood. Here we used synchrotron spectromicroscopy to observe the nanoscale mineralogy of fresh, forming skeletons from six species spanning all reef-forming coral morphologies: Branching, encrusting, massive, and table. In all species, hydrated and anhydrous amorphous calcium carbonate nanoparticles were precursors for skeletal growth, as previously observed in a single species. The amorphous precursors here were observed in tissue, between tissue and skeleton, and at growth fronts of the skeleton, within a low-density nano- or microporous layer varying in thickness from 7 to 20 µm. Brunauer-Emmett-Teller measurements, however, indicated that the mature skeletons at the microscale were space-filling, comparable to single crystals of geologic aragonite. Nanoparticles alone can never fill space completely, thus ion-by-ion filling must be invoked to fill interstitial pores. Such ion-by-ion diffusion and attachment may occur from the supersaturated calcifying fluid known to exist in corals, or from a dense liquid precursor, observed in synthetic systems but never in biogenic ones. Concomitant particle attachment and ion-by-ion filling was previously observed in synthetic calcite rhombohedra, but never in aragonite pseudohexagonal prisms, synthetic or biogenic, as observed here. Models for biomineral growth, isotope incorporation, and coral skeletons' resilience to ocean warming and acidification must take into account the dual formation mechanism, including particle attachment and ion-by-ion space filling.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Ganesh Parida
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Jack H Brau
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Tali Mass
- Marine Biology Department, University of Haifa, 31905 Haifa, Israel
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706;
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
- Department of Geoscience, University of Wisconsin, Madison, WI 53706
- Department of Materials Science, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
22
|
The role of aspartic acid in reducing coral calcification under ocean acidification conditions. Sci Rep 2020; 10:12797. [PMID: 32733044 PMCID: PMC7393068 DOI: 10.1038/s41598-020-69556-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Biomolecules play key roles in regulating the precipitation of CaCO3 biominerals but their response to ocean acidification is poorly understood. We analysed the skeletal intracrystalline amino acids of massive, tropical Porites spp. corals cultured over different seawater pCO2. We find that concentrations of total amino acids, aspartic acid/asparagine (Asx), glutamic acid/glutamine and alanine are positively correlated with seawater pCO2 and inversely correlated with seawater pH. Almost all variance in calcification rates between corals can be explained by changes in the skeletal total amino acid, Asx, serine and alanine concentrations combined with the calcification media pH (a likely indicator of the dissolved inorganic carbon available to support calcification). We show that aspartic acid inhibits aragonite precipitation from seawater in vitro, at the pH, saturation state and approximate aspartic acid concentrations inferred to occur at the coral calcification site. Reducing seawater saturation state and increasing [aspartic acid], as occurs in some corals at high pCO2, both serve to increase the degree of inhibition, indicating that biomolecules may contribute to reduced coral calcification rates under ocean acidification.
Collapse
|
23
|
Byrne M, Fitzer S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. CONSERVATION PHYSIOLOGY 2019; 7:coz062. [PMID: 31737270 PMCID: PMC6846232 DOI: 10.1093/conphys/coz062] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 05/20/2023]
Abstract
Ocean acidification (OA), from seawater uptake of anthropogenic CO2, has a suite of negative effects on the ability of marine invertebrates to produce and maintain their skeletons. Increased organism pCO2 causes hypercapnia, an energetically costly physiological stress. OA alters seawater carbonate chemistry, limiting the carbonate available to form the calcium carbonate (CaCO3) minerals used to build skeletons. The reduced saturation state of CaCO3 also causes corrosion of CaCO3 structures. Global change is also accelerating coastal acidification driven by land-run off (e.g. acid soil leachates, tannic acid). Building and maintaining marine biomaterials in the face of changing climate will depend on the balance between calcification and dissolution. Overall, in response to environmental acidification, many calcifiers produce less biomineral and so have smaller body size. Studies of skeleton development in echinoderms and molluscs across life stages show the stunting effect of OA. For corals, linear extension may be maintained, but at the expense of less dense biomineral. Conventional metrics used to quantify growth and calcification need to be augmented by characterisation of the changes to biomineral structure and mechanical integrity caused by environmental acidification. Scanning electron microscopy and microcomputed tomography of corals, tube worms and sea urchins exposed to experimental (laboratory) and natural (vents, coastal run off) acidification show a less dense biomineral with greater porosity and a larger void space. For bivalves, CaCO3 crystal deposition is more chaotic in response to both ocean and coastal acidification. Biomechanics tests reveal that these changes result in weaker, more fragile skeletons, compromising their vital protective roles. Vulnerabilities differ among taxa and depend on acidification level. Climate warming has the potential to ameliorate some of the negative effects of acidification but may also make matters worse. The integrative morphology-ecomechanics approach is key to understanding how marine biominerals will perform in the face of changing climate.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Science and School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia
- Corresponding author: School of Medical Science and School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia.
| | - Susan Fitzer
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|