1
|
Schichtl ZG, Carvalho OQ, Tan J, Saund SS, Ghoshal D, Wilder LM, Gish MK, Nielander AC, Stevens MB, Greenaway AL. Chemistry of Materials Underpinning Photoelectrochemical Solar Fuel Production. Chem Rev 2025; 125:4768-4839. [PMID: 40327786 PMCID: PMC12123630 DOI: 10.1021/acs.chemrev.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 05/08/2025]
Abstract
Since its inception, photoelectrochemistry has sought to power the generation of fuels, particularly hydrogen, using energy from sunlight. Efficient and durable photoelectrodes, however, remain elusive. Here we review the current state of the art, focusing our discussion on advances in photoelectrodes made in the past decade. We open by briefly discussing fundamental photoelectrochemical concepts and implications for photoelectrode function. We next review a broad range of semiconductor photoelectrodes broken down by material class (oxides, nitrides, chalcogenides, and mature photovoltaic semiconductors), identifying intrinsic properties and discussing their influence on performance. We then identify innovative in situ and operando techniques to directly probe the photoelectrode|electrolyte interface, enabling direct assessment of structure-property relationships for catalytic surfaces in active reaction environments. We close by considering more complex photoelectrochemical fuel-forming reactions (carbon dioxide and nitrogen reduction, as well as alternative oxidation reactions), where product selectivity imposes additional criteria on electrochemical driving force and photoelectrode architecture. By contextualizing recent literature within a fundamental framework, we seek to provide direction for continued progress toward achieving efficient and stable fuel-forming photoelectrodes.
Collapse
Affiliation(s)
- Zebulon G. Schichtl
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - O. Quinn Carvalho
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Jeiwan Tan
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Simran S. Saund
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Debjit Ghoshal
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Logan M. Wilder
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Melissa K. Gish
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Adam C. Nielander
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California94025, United States
| | - Michaela Burke Stevens
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California94025, United States
| | - Ann L. Greenaway
- Materials
Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| |
Collapse
|
2
|
Shekarabi S, Zare Pour MA, Su H, Zhang W, He C, Hanke KD, Romanyuk O, Paszuk A, Jaegermann W, Hu S, Hannappel T. Photoemission Study of GaN Passivation Layers and Band Alignment at GaInP(100) Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7087-7097. [PMID: 39808804 PMCID: PMC11788992 DOI: 10.1021/acsami.4c17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose. The band alignment between such a protection layer and the III-V semiconductor should be aligned to minimize corrosion and nonradiative interfacial recombination and to promote selective charge carrier transport. Here, we investigate the band alignment between GaN passivation layers and n-type doped GaInP(100) photoabsorbers and grew n-type GaInP(100) epitaxially by metalorganic vapor phase epitaxy on oxidized GaAs(100) substrates to mimic a realistic preparation sequence. We prepared 1-20 nm GaN films on top employing atomic layer deposition and studied the band alignment at the GaN/GaInP(100) heterointerface by X-ray and ultraviolet photoelectron spectroscopy. Due to the limited emission depth of photoelectrons, we determined the band alignment by a series of measurements, in which we increased the thickness of the GaN films successively. The n-GaInP(100) surfaces, prepared with a well-known phosphorus-terminated p(2 × 2)/c(4 × 2) reconstruction, show an upward surface band bending (BB) of 0.38 eV and a Fermi level pinning due to the present surface states. Upon oxidation, the surface states are partially passivated, resulting in a reduction of the BB to 0.16 eV and a valence band offset (VBO) between the GaInP(100) and the thin oxide layer of 2.01 eV. Applying Kraut's approach, we identified a VBO of 1.90 eV and a conduction band offset of 0.44 eV between GaInP(100) with a thin oxide layer and the GaN passivation layer. We conclude that the GaN is a well-suited passivation layer for PEC cells and facilitates selective transport of photogenerated electrons.
Collapse
Affiliation(s)
- Sahar Shekarabi
- Grundlagen
von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Mohammad Amin Zare Pour
- Grundlagen
von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Haoqing Su
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Wentao Zhang
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Chengxing He
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Kai Daniel Hanke
- Grundlagen
von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Oleksandr Romanyuk
- FZU
- Institute of Physics of the Czech Academy of Sciences, Prague 16200, Czech Republic
| | - Agnieszka Paszuk
- Grundlagen
von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Wolfram Jaegermann
- Surface
Science Laboratory, Department of Materials and Earth Sciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Shu Hu
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Thomas Hannappel
- Grundlagen
von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
3
|
Butson JD, Tournet J, Gupta B, Sharma A, Lysevych M, Haggren T, Jagadish C, Tan HH, Karuturi S. AlGaAs as an Alternative Solar Water Splitting Material: Insights into Performance, Stability, and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45180-45188. [PMID: 39148235 DOI: 10.1021/acsami.4c09538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This study offers an in-depth examination of aluminum gallium arsenide (AlGaAs) as a high-performance and durable material for photoelectrochemical water splitting, a key method of cost-effective renewable hydrogen production. Purpose-designed pin-AlGaAs photocathodes are demonstrated to yield a remarkable photocurrent density of over 15 mA/cm2 and an impressive onset potential of 1.11 V vs RHE. These results significantly outperform those achieved with other materials, marking a considerable advancement in the field. Moreover, this work addresses the long-standing issue of AlGaAs corrosion in an aqueous electrolyte. An innovative approach using a 60 nm TiO2 protection layer is introduced, providing substantial corrosion resistance in acidic environments and thereby enhancing material durability. This research also provides valuable insights into the role of passivation layers on charge transfer. It was found that an n-GaAs passivation layer further enhances the onset potential, whereas an n-InGaP layer contributes to a decline in the overall performance. These findings pave the way for new applications of AlGaAs in solar water splitting technology, offering a promising pathway toward the development of efficient AlGaAs/Si tandem water splitting devices.
Collapse
Affiliation(s)
- Joshua D Butson
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Julie Tournet
- School of Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | - Bikesh Gupta
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Astha Sharma
- School of Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | - Mykhaylo Lysevych
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Tuomas Haggren
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Siva Karuturi
- School of Engineering, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
4
|
Liang J, Liu P, Xie S, Liu Q, Wang J, Guo J, Wu H, Wang W, Li G. Anodic Reconstructed p +-GaAs/a-InAsN for Stable and Efficient Photoelectrochemical Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400096. [PMID: 38516956 DOI: 10.1002/smll.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/01/2024] [Indexed: 03/23/2024]
Abstract
The extremely poor solution stability and massive carrier recombination have seriously prevented III-V semiconductor nanomaterials from efficient and stable hydrogen production. In this work, an anodic reconstruction strategy based on group III-V active semiconductors is proposed for the first time, resulting in 19-times photo-gain. What matters most is that the device after anodic reconstruction shows very superior stability under the protracted photoelectrochemical (PEC) test over 8100 s, while the final photocurrent density does not decrease but rather increases by 63.15%. Using the experiment and DFT theoretical calculation, the anodic reconstruction mechanism is elucidated: through the oxidation of indium clusters and the migration of arsenic atoms, the reconstruction formed p+-GaAs/a-InAsN. The hole concentration of the former is increased by 10 times (5.64 × 1018 cm-1 increases up to 5.95 × 1019 cm-1) and the band gap of the latter one is reduced to a semi-metallic state, greatly strengthening the driving force of PEC water splitting. This work turns waste into treasure, transferring the solution instability into better efficiency.
Collapse
Affiliation(s)
- Jiehui Liang
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Peixin Liu
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shaohua Xie
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qianhu Liu
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Junkun Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Jiansen Guo
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Haoyang Wu
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Abdelmoneim A, Elfayoumi MAK, Abdel-Wahab MS, Al-Enizi AM, Lee JK, Tawfik WZ. Enhanced solar-driven photoelectrochemical water splitting using nanoflower Au/CuO/GaN hybrid photoanodes. RSC Adv 2024; 14:16846-16858. [PMID: 38784418 PMCID: PMC11114097 DOI: 10.1039/d4ra01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Harnessing solar energy for large-scale hydrogen fuel (H2) production shows promise in addressing the energy crisis and ecological degradation. This study focuses on the development of GaN-based photoelectrodes for efficient photoelectrochemical (PEC) water splitting, enabling environmentally friendly H2 production. Herein, a novel nanoflower Au/CuO/GaN hybrid structure was successfully synthesized using a combination of methods including successive ionic layer adsorption and reaction (SILAR), RF/DC sputtering, and metal-organic chemical vapour deposition (MOCVD) techniques. Structural, morphological, and optical characteristics and elemental composition of the prepared samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy, and energy-dispersive X-ray (EDX) spectroscopy, respectively. PEC and electrochemical impedance measurements were performed for all samples. The nanoflower Au/CuO/GaN hybrid structure exhibited the highest photocurrent density of ∼4 mA cm-2 at 1.5 V vs. RHE in a Na2SO4 electrolyte with recorded moles of H2 of about 3246 μmol h-1 cm-2. By combining these three materials in a unique structure, we achieved improved performance in the conversion of solar energy into chemical energy. The nanoflower structure provides a large surface area and promotes light absorption while the Au, CuO, and GaN components contribute to efficient charge separation and transfer. This study presents a promising strategy for advancing sustainable H2 production via efficient solar-driven water splitting.
Collapse
Affiliation(s)
- Alhoda Abdelmoneim
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - M A K Elfayoumi
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Mohamed Sh Abdel-Wahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - June Key Lee
- Department of Materials Science and Engineering, Chonnam National University Gwangju 61186 Republic of Korea
| | - Wael Z Tawfik
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
6
|
Zhao Y, Niu Z, Zhao J, Xue L, Fu X, Long J. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Zhang J, Zhu Y, Njel C, Liu Y, Dallabernardina P, Stevens MM, Seeberger PH, Savateev O, Loeffler FF. Metal-free photoanodes for C-H functionalization. Nat Commun 2023; 14:7104. [PMID: 37925550 PMCID: PMC10625597 DOI: 10.1038/s41467-023-42851-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Organic semiconductors, such as carbon nitride, when employed as powders, show attractive photocatalytic properties, but their photoelectrochemical performance suffers from low charge transport capability, charge carrier recombination, and self-oxidation. High film-substrate affinity and well-designed heterojunction structures may address these issues, achieved through advanced film generation techniques. Here, we introduce a spin coating pretreatment of a conductive substrate with a multipurpose polymer and a supramolecular precursor, followed by chemical vapor deposition for the synthesis of dual-layer carbon nitride photoelectrodes. These photoelectrodes are composed of a porous microtubular top layer and an interlayer between the porous film and the conductive substrate. The polymer improves the polymerization degree of carbon nitride and introduces C-C bonds to increase its electrical conductivity. These carbon nitride photoelectrodes exhibit state-of-the-art photoelectrochemical performance and achieve high yield in C-H functionalization. This carbon nitride photoelectrode synthesis strategy may be readily adapted to other reported processes to optimize their performance.
Collapse
Affiliation(s)
- Junfang Zhang
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yuntao Zhu
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Christian Njel
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yuxin Liu
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Pietro Dallabernardina
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Oleksandr Savateev
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
8
|
Chen Y, Jia B, Qin G, Zhao H, Han L, Lu P. Photocatalysis screening for group III-V vdW heterostructures constructed by MX (M = Ga, In and X = P, As) monolayers. RSC Adv 2023; 13:15055-15062. [PMID: 37207096 PMCID: PMC10189248 DOI: 10.1039/d3ra01429k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
To harvest solar energy for water splitting and produce pollution-free hydrogen and oxygen, high-performance photocatalysts are essential. Here, by combining different two-dimensional (2D) group III-V MX (M = Ga, In and X = P, As) monolayers, we designed 144 van der Waals (vdW) heterostructures to identify efficient photoelectrochemical materials. Using first-principles calculations, we investigated the stabilities, electronic properties, and optical properties of these heterostructures. After a careful screening process, we elected GaP/InP in a BB-II stacking configuration as the most promising candidate. This specific GaP/InP configuration has a type-II band alignment with a gap value of 1.83 eV. The conduction band minimum (CBM) is located at -4.276 eV, and the valence band maximum (VBM) is located at -6.217 eV, fully satisfying the requirements of the catalytic reaction under pH = 0. Additionally, light absorption has been improved through the construction of the vdW heterostructure. These results could help in understanding the properties of the III-V heterostructures and guide the experimental synthesis of these materials for photocatalysis applications.
Collapse
Affiliation(s)
- Yingjie Chen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Baonan Jia
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications Beijing 100876 China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Guoying Qin
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Huiyan Zhao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Lihong Han
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Pengfei Lu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications Beijing 100876 China
- School of Integrated Circuits, Beijing University of Posts and Telecommunications Beijing 100876 China
| |
Collapse
|
9
|
Wang Q, Liu J, Li Q, Yang J. Stability of Photocathodes: A Review on Principles, Design, and Strategies. CHEMSUSCHEM 2023; 16:e202202186. [PMID: 36789473 DOI: 10.1002/cssc.202202186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/06/2023]
Abstract
Photoelectrochemical devices based on semiconductor photoelectrode can directly convert and store solar energy into chemical fuels. Although the efficient photoelectrodes with commercially valuable solar-to-fuel energy conversion efficiency have been reported over past decades, one of the most enormous challenges is the stability of the photoelectrode due to corrosion during operation. Thus, it is of paramount importance for developing a stable photoelectrode to deploy solar-fuel production. This Review commences with a fundamental understanding of thermodynamics for photoelectrochemical reactions and the fundamentals of photocathodes. Then, the commercial application of photoelectrochemical technology is prospected. We specifically focus on recent strategies for designing photocathodes with long-term stability, including energy band alignment, hole transport/storage/blocking layer, spatial decoupling, grafting molecular catalysts, protective/passivation layer, surface element reconstruction, and solvent effects. Based on the insights gained from these effective strategies, we propose an outlook of key aspects that address the challenges for development of stable photoelectrodes in future work.
Collapse
Affiliation(s)
- Qinglong Wang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Jinfeng Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qiuye Li
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
10
|
Xiao Y, Kong X, Vanka S, Dong WJ, Zeng G, Ye Z, Sun K, Navid IA, Zhou B, Toma FM, Guo H, Mi Z. Oxynitrides enabled photoelectrochemical water splitting with over 3,000 hrs stable operation in practical two-electrode configuration. Nat Commun 2023; 14:2047. [PMID: 37041153 PMCID: PMC10090041 DOI: 10.1038/s41467-023-37754-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Solar photoelectrochemical reactions have been considered one of the most promising paths for sustainable energy production. To date, however, there has been no demonstration of semiconductor photoelectrodes with long-term stable operation in a two-electrode configuration, which is required for any practical application. Herein, we demonstrate the stable operation of a photocathode comprising Si and GaN, the two most produced semiconductors in the world, for 3,000 hrs without any performance degradation in two-electrode configurations. Measurements in both three- and two-electrode configurations suggest that surfaces of the GaN nanowires on Si photocathode transform in situ into Ga-O-N that drastically enhances hydrogen evolution and remains stable for 3,000 hrs. First principles calculations further revealed that the in-situ Ga-O-N species exhibit atomic-scale surface metallization. This study overcomes the conventional dilemma between efficiency and stability imposed by extrinsic cocatalysts, offering a path for practical application of photoelectrochemical devices and systems for clean energy.
Collapse
Affiliation(s)
- Yixin Xiao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Xianghua Kong
- Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada
| | - Srinivas Vanka
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Wan Jae Dong
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Guosong Zeng
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Zhengwei Ye
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
| | - Ishtiaque Ahmed Navid
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Baowen Zhou
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Francesca M Toma
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Hong Guo
- Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada.
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Lee HE, Lee D, Lee TI, Jang J, Jang J, Lim YW, Shin JH, Kang SM, Choi GM, Joe DJ, Kim JH, Lee SH, Park SH, Park CB, Kim TS, Lee KJ, Bae BS. Siloxane Hybrid Material-Encapsulated Highly Robust Flexible μLEDs for Biocompatible Lighting Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28258-28269. [PMID: 35674729 DOI: 10.1021/acsami.2c03922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible micro-light-emitting diodes (f-μLEDs) have been regarded as an attractive light source for the next-generation human-machine interfaces, thanks to their noticeable optoelectronic performances. However, when it comes to their practical utilizations fulfilling industrial standards, there have been unsolved reliability and durability issues of the f-μLEDs, despite previous developments in the high-performance f-μLEDs for various applications. Herein, highly robust flexible μLEDs (f-HμLEDs) with 20 × 20 arrays, which are realized by a siloxane-based organic-inorganic hybrid material (SHM), are reported. The f-HμLEDs are created by combining the f-μLED fabrication process with SHM synthesis procedures (i.e., sol-gel reaction and successive photocuring). The outstanding mechanical, thermal, and environmental stabilities of our f-HμLEDs are confirmed by a host of experimental and theoretical examinations, including a bending fatigue test (105 bending/unbending cycles), a lifetime accelerated stress test (85 °C and 85% relative humidity), and finite element method simulations. Eventually, to demonstrate the potential of our f-HμLEDs for practical applications of flexible displays and/or biomedical devices, their white light emission due to quantum dot-based color conversion of blue light emitted by GaN-based f-HμLEDs is demonstrated, and the biocompatibility of our f-HμLEDs is confirmed via cytotoxicity and cell proliferation tests with muscle, bone, and neuron cell lines. As far as we can tell, this work is the first demonstration of the flexible μLED encapsulation platform based on the SHM, which proved its mechanical, thermal, and environmental stabilities and biocompatibility, enabling us to envisage biomedical and/or flexible display applications using our f-HμLEDs.
Collapse
Affiliation(s)
- Han Eol Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Division of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Daewon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae-Ik Lee
- Joining R&D Group, Root Industry Technology Center, Korea Institute of Industrial Technology (KITECH), 156 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Junho Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Woo Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung Ho Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung-Mo Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gwang-Mun Choi
- ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34141, Republic of Korea
| | - Daniel J Joe
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jeong Hyeon Kim
- Division of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Seung Hyung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byeong-Soo Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Yu W, Young JL, Deutsch TG, Lewis NS. Understanding the Stability of Etched or Platinized p-GaInP Photocathodes for Solar-Driven H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57350-57361. [PMID: 34821500 DOI: 10.1021/acsami.1c18243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The long-term stability in acidic or alkaline aqueous electrolytes of p-Ga0.52In0.48P photocathodes, with a band gap of ∼1.8 eV, for the solar-driven hydrogen-evolution reaction (HER) has been evaluated from a thermodynamic, kinetic, and mechanistic perspective. At either pH 0 or pH 14, etched p-GaInP electrodes corroded cathodically under illumination and formed metallic In0 on the photoelectrode surface. In contrast, under the same conditions, electrodeposition of Pt facilitated the HER kinetics and stabilized p-GaInP/Pt photoelectrodes against such cathodic decomposition. When held at 0 V versus the reversible hydrogen electrode, p-GaInP/Pt electrodes in either pH = 0 or pH = 14 exhibited stable current densities (J) of ∼-9 mA cm-2 for hundreds of hours under simulated 1 sun illumination. During the stability tests, the current density-potential (J-E) characteristics of the p-GaInP/Pt photoelectrodes degraded due to pH-dependent changes in the surface chemistry of the photocathode. This work provides a fundamental understanding of the stability and corrosion mechanisms of p-GaInP photocathodes that constitute a promising top light absorber for tandem solar-fuel generators.
Collapse
Affiliation(s)
- Weilai Yu
- Division of Chemistry and Chemical Engineering and Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - James L Young
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Todd G Deutsch
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Nathan S Lewis
- Division of Chemistry and Chemical Engineering and Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Liu H, Wang J, Zhang G, Han Y, Wu B, Gao C. Pressure effects on the metallization and dielectric properties of GaP. Phys Chem Chem Phys 2021; 23:26829-26836. [PMID: 34817490 DOI: 10.1039/d1cp03889c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ impedance measurement, resistivity measurements and first-principles calculations have been performed to investigate the effect of high pressure (up to 30.2 GPa) on the metallization and dielectric properties of GaP. It is found that the carrier transport process changes from mixed grain and grain boundary conduction to pure grain conduction at 5.8 GPa, and due to pressure-induced structural phase transition, the resistance drops drastically by three orders of magnitude at 25.5 GPa. Temperature dependence of resistivity measurements and band structure calculations suggest the occurrence of a semiconductor-metal transition. Combining differential charge density and dielectric analysis, it is observed that the electron localization is weakened, which leads to increased polarization and larger relative permittivity in the zb structure. After the phase transition, both the polarization and the relative permittivity decrease. Pressure increases the complex dielectric constant and dielectric loss factor, due to the increase in relaxation polarization and the scattering effect of carriers. Moreover, by comparing the high-pressure behavior of GaP, GaAs and GaSb, the changes in the electronic structure and electric transport process caused by the phase transition can be understood, which can enable us to better understand the metallization behavior and dielectric properties of Ga-based III-V family semiconductors under pressure, and stimulate the design and modification of other related group III-V semiconductors for optoelectronic devices and sensors.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012, China. .,Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002, China.
| | - Jia Wang
- State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012, China. .,Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| | - Guozhao Zhang
- State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012, China. .,Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Yonghao Han
- State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012, China.
| | - Baojia Wu
- Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002, China.
| | - Chunxiao Gao
- State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012, China.
| |
Collapse
|
14
|
Narangari PR, Butson JD, Tan HH, Jagadish C, Karuturi S. Surface-Tailored InP Nanowires via Self-Assembled Au Nanodots for Efficient and Stable Photoelectrochemical Hydrogen Evolution. NANO LETTERS 2021; 21:6967-6974. [PMID: 34397217 DOI: 10.1021/acs.nanolett.1c02205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With a band gap close to the Shockley-Quiesser limit and excellent conduction band alignment with the water reduction potential, InP is an ideal photocathode material for photoelectrochemical (PEC) water reduction. Here, we develop facile self-assembled Au nanodots based on dewetting phenomena as a masking technique to fabricate wafer-scale InP nanowires (NWs) via a top-down approach. In addition, we report dual-function wet treatment using sulfur-dissolved oleylamine (S-OA) to remove a plasma-damaged surface in a controlled manner and stabilize InP NWs against surface corrosion in harsh electrolyte solutions. The resulting InP NW photocathodes exhibit an excellent photocurrent density of 33 mA/cm2 under 1 sun illumination in 1 M HCl with a highly stabilized performance without needing additional protection layers. Our approach combining large-area NW fabrication and surface engineering synergistically enhances light harvesting and PEC performance and stability, thereby providing a pathway for the development of efficient and durable InP photoelectrodes in a scalable manner.
Collapse
|
15
|
Zeng G, Pham TA, Vanka S, Liu G, Song C, Cooper JK, Mi Z, Ogitsu T, Toma FM. Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H 2 production. NATURE MATERIALS 2021; 20:1130-1135. [PMID: 33820963 DOI: 10.1038/s41563-021-00965-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
Development of an efficient yet durable photoelectrode is of paramount importance for deployment of solar-fuel production. Here, we report the photoelectrochemically self-improving behaviour of a silicon/gallium nitride photocathode active for hydrogen production with a Faradaic efficiency approaching ~100%. By using a correlative approach based on different spectroscopic and microscopic techniques, as well as density functional theory calculations, we provide a mechanistic understanding of the chemical transformation that is the origin of the self-improving behaviour. A thin layer of gallium oxynitride forms on the side walls of the gallium nitride grains, via a partial oxygen substitution at nitrogen sites, and displays a higher density of catalytic sites for the hydrogen-evolving reaction. This work demonstrates that the chemical transformation of gallium nitride into gallium oxynitride leads to sustained operation and enhanced catalytic activity, thus showing promise for oxynitride layers as protective catalytic coatings for hydrogen evolution.
Collapse
Affiliation(s)
- Guosong Zeng
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tuan Anh Pham
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Srinivas Vanka
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Guiji Liu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jason K Cooper
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
| | - Tadashi Ogitsu
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Francesca M Toma
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
16
|
Scalable, highly stable Si-based metal-insulator-semiconductor photoanodes for water oxidation fabricated using thin-film reactions and electrodeposition. Nat Commun 2021; 12:3982. [PMID: 34172754 PMCID: PMC8233328 DOI: 10.1038/s41467-021-24229-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Metal-insulator-semiconductor (MIS) structures are widely used in Si-based solar water-splitting photoelectrodes to protect the Si layer from corrosion. Typically, there is a tradeoff between efficiency and stability when optimizing insulator thickness. Moreover, lithographic patterning is often required for fabricating MIS photoelectrodes. In this study, we demonstrate improved Si-based MIS photoanodes with thick insulating layers fabricated using thin-film reactions to create localized conduction paths through the insulator and electrodeposition to form metal catalyst islands. These fabrication approaches are low-cost and highly scalable, and yield MIS photoanodes with low onset potential, high saturation current density, and excellent stability. By combining this approach with a p+n-Si buried junction, further improved oxygen evolution reaction (OER) performance is achieved with an onset potential of 0.7 V versus reversible hydrogen electrode (RHE) and saturation current density of 32 mA/cm2 under simulated AM1.5G illumination. Moreover, in stability testing in 1 M KOH aqueous solution, a constant photocurrent density of ~22 mA/cm2 is maintained at 1.3 V versus RHE for 7 days. Authors demonstrate Si-based MIS photoanodes using Al thin-film reactions to create localized conduction paths through the insulator and Ni electrodeposition to form metal catalyst islands. These approaches yielded low onset potential, high saturation current density, and excellent stability.
Collapse
|
17
|
Zhang Y, Lv H, Zhang Z, Wang L, Wu X, Xu H. Stable Unbiased Photo-Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008264. [PMID: 33690954 DOI: 10.1002/adma.202008264] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Photo-electrochemical (PEC) water splitting systems using oxide-based photoelectrodes are highly attractive for solar-to-chemical energy conversion. However, despite decades-long efforts, it is still challenging to develop efficient and stable photoelectrodes for practical applications. Here, thin layers of covalent triazine frameworks (CTF-BTh) containing a bithiophene moiety are conformably deposited onto the surfaces of a Cu2 O photocathode and a Mo-doped BiVO4 photoanode via electropolymerization to construct new hybrid photoelectrodes, successfully addressing the efficiency and stability issues. The CTF-BTh possesses a suitable band structure to form favorable band edge alignment with each metal oxide, creating a p-n junction and a staggered type-II heterojunction with Cu2 O and Mo-doped BiVO4 , respectively. Thus, the as-fabricated hybrid photoelectrodes exhibit substantially increased PEC performances. Meanwhile, the CTF-BTh film also serves as an effective corrosion-resistant overlayer for both photoelectrodes to inhibit photocorrosion and enable long-term operation for 150 h with only ≈10% loss in photocurrent densities. Furthermore, a stand-alone unbiased PEC tandem device comprising CTF-BTh-coated photoelectrodes exhibits 3.70% solar-to-hydrogen conversion efficiency. Even after continuous operation for 120 h, the efficiency can still retain at 3.24%.
Collapse
Affiliation(s)
- Ying Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haifeng Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Zhang
- School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Tian Z, Yuan X, Zhang Z, Jia W, Zhou J, Huang H, Meng J, He J, Du Y. Thermodynamics Controlled Sharp Transformation from InP to GaP Nanowires via Introducing Trace Amount of Gallium. NANOSCALE RESEARCH LETTERS 2021; 16:49. [PMID: 33743092 PMCID: PMC7981363 DOI: 10.1186/s11671-021-03505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Growth of high-quality III-V nanowires at a low cost for optoelectronic and electronic applications is a long-term pursuit of research. Still, controlled synthesis of III-V nanowires using chemical vapor deposition method is challenge and lack theory guidance. Here, we show the growth of InP and GaP nanowires in a large area with a high density using a vacuum chemical vapor deposition method. It is revealed that high growth temperature is required to avoid oxide formation and increase the crystal purity of InP nanowires. Introduction of a small amount of Ga into the reactor leads to the formation of GaP nanowires instead of ternary InGaP nanowires. Thermodynamic calculation within the calculation of phase diagrams (CALPHAD) approach is applied to explain this novel growth phenomenon. Composition and driving force calculations of the solidification process demonstrate that only 1 at.% of Ga in the catalyst is enough to tune the nanowire formation from InP to GaP, since GaP nucleation shows a much larger driving force. The combined thermodynamic studies together with III-V nanowire growth studies provide an excellent example to guide the nanowire growth.
Collapse
Affiliation(s)
- Zhenzhen Tian
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Xiaoming Yuan
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Ziran Zhang
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Wuao Jia
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Jian Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Han Huang
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Jianqiao Meng
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Jun He
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
19
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
20
|
Abed J, Rajput NS, Moutaouakil AE, Jouiad M. Recent Advances in the Design of Plasmonic Au/TiO 2 Nanostructures for Enhanced Photocatalytic Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2260. [PMID: 33203122 PMCID: PMC7697928 DOI: 10.3390/nano10112260] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023]
Abstract
Plasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron-hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties leading to efficient water splitting such as production and transport of hot electrons through advanced analytical techniques used to probe the photoactivity of plasmonics in engineered Au/TiO2 devices. This work also discusses the emerging strategies to better design plasmonic photocatalysts and understand the underlying mechanisms behind the enhanced photoactivity of plasmon-assisted catalysts.
Collapse
Affiliation(s)
- Jehad Abed
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
| | - Nitul S Rajput
- Department of Mechanical Engineering, Masdar Institute part of Khalifa University of Science and Technology, Abu Dhabi 54224, UAE;
| | | | - Mustapha Jouiad
- Laboratory of Physics of Condensed Mater, University of Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
21
|
Zhang P, Wang W, Wang H, Li Y, Cui C. Tuning Hole Accumulation of Metal Oxides Promotes the Oxygen Evolution Rate. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Wei Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | | | | |
Collapse
|