1
|
Tavassoli M, Abedi-Firoozjah R, Bahramian B, Hashemi M, Noori SMA, Oladzadabbasabadi N, Nagdalian A, Jafari SM. Glutaraldehyde cross-linking for improving the techno-functional properties of biopolymeric food packaging films; a comprehensive review. Food Chem 2025; 478:143740. [PMID: 40073600 DOI: 10.1016/j.foodchem.2025.143740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Biodegradable and/or edible films made from polysaccharides and proteins have gained attention for their potential to replace some traditional packaging materials in the food industry due to their abundance, biodegradability, and nutritional value. Glutaraldehyde (GLA), rapidly reacts with free deprotonated ε-amino groups in proteins, leading to crosslinking (CL) reactions. This review delves into the chemistry of GLA and explores the various biopolymeric food packaging materials crosslinked by GLA. Furthermore, it summarizes recent applications of active and intelligent food packaging based on GLA-CL of biopolymers for food preservation. The comprehensive enhancement of biopolymeric films through GLACL is evident, with the impact on their properties depending on the concentration of GLA and reaction state. GLACL with biopolymer molecules enhances the cohesion of the polymer network, with physical and chemical covalent CL being the primary phenomena. Notably, biopolymeric food packaging films/coatings fabricated by GLACL have proven highly effectiveness in preserving fresh foods.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Nutrition, Faculty of Health and Nutrition Sciences, Yasuj University of Medical Science, Yasuj, Iran
| | - Reza Abedi-Firoozjah
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behnam Bahramian
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Andrey Nagdalian
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Nakashima Y, Rakumitsu K, Ishikawa H. Recent advances in the total synthesis of alkaloids using chiral secondary amine organocatalysts. Org Biomol Chem 2024; 22:9319-9341. [PMID: 39512145 DOI: 10.1039/d4ob01590h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Since the early 21st century, organocatalytic reactions have undergone significant advancements. Notably, numerous asymmetric reactions utilizing chiral secondary amine catalysts have been developed and applied in the total synthesis of natural products. In this review, we provide an overview of alkaloid syntheses reported since 2017, categorized by scaffold, with a focus on key steps involving asymmetric reactions catalyzed by secondary amine organocatalysts.
Collapse
Affiliation(s)
- Yuta Nakashima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kenta Rakumitsu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
3
|
Popov AG, Viviani VR, Skumial P, Jefferson TL, Salman SG, Baxter HH, Hull KL. Copper-Catalyzed Three-Component 1,5-Carboamination of Vinylcyclopropanes. Org Lett 2024. [PMID: 38810616 DOI: 10.1021/acs.orglett.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The 1,5-copper-catalyzed carboamination of vinylcyclopropanes is presented. A carbon-centered radical, formed upon reduction of an alkyl halide by Cu(I), adds across the alkene of a vinylcyclopropane, triggering ring opening to generate a benzylic radical, which, finally, undergoes copper-mediated amination to afford a homoallylic amine. The reaction occurs with outstanding regio- and good to very good diastereoselectivities. The scope of the reaction is demonstrated with respect to all three components: alkyl halide, vinylcyclopropane, and amine nucleophile. A total of 38 examples are presented with an average yield of 60%.
Collapse
Affiliation(s)
- Andrei G Popov
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Vincent R Viviani
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Piotr Skumial
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Theodore L Jefferson
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Samer G Salman
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Henry H Baxter
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Garg A, Rendina D, Bendale H, Akiyama T, Ojima I. Recent advances in catalytic asymmetric synthesis. Front Chem 2024; 12:1398397. [PMID: 38783896 PMCID: PMC11112575 DOI: 10.3389/fchem.2024.1398397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Asymmetric catalysis stands at the forefront of modern chemistry, serving as a cornerstone for the efficient creation of enantiopure chiral molecules characterized by their high selectivity. In this review, we delve into the realm of asymmetric catalytic reactions, which spans various methodologies, each contributing to the broader landscape of the enantioselective synthesis of chiral molecules. Transition metals play a central role as catalysts for a wide range of transformations with chiral ligands such as phosphines, N-heterocyclic carbenes (NHCs), etc., facilitating the formation of chiral C-C and C-X bonds, enabling precise control over stereochemistry. Enantioselective photocatalytic reactions leverage the power of light as a driving force for the synthesis of chiral molecules. Asymmetric electrocatalysis has emerged as a sustainable approach, being both atom-efficient and environmentally friendly, while offering a versatile toolkit for enantioselective reductions and oxidations. Biocatalysis relies on nature's most efficient catalysts, i.e., enzymes, to provide exquisite selectivity, as well as a high tolerance for diverse functional groups under mild conditions. Thus, enzymatic optical resolution, kinetic resolution and dynamic kinetic resolution have revolutionized the production of enantiopure compounds. Enantioselective organocatalysis uses metal-free organocatalysts, consisting of modular chiral phosphorus, sulfur and nitrogen components, facilitating remarkably efficient and diverse enantioselective transformations. Additionally, unlocking traditionally unreactive C-H bonds through selective functionalization has expanded the arsenal of catalytic asymmetric synthesis, enabling the efficient and atom-economical construction of enantiopure chiral molecules. Incorporating flow chemistry into asymmetric catalysis has been transformative, as continuous flow systems provide precise control over reaction conditions, enhancing the efficiency and facilitating optimization. Researchers are increasingly adopting hybrid approaches that combine multiple strategies synergistically to tackle complex synthetic challenges. This convergence holds great promise, propelling the field of asymmetric catalysis forward and facilitating the efficient construction of complex molecules in enantiopure form. As these methodologies evolve and complement one another, they push the boundaries of what can be accomplished in catalytic asymmetric synthesis, leading to the discovery of novel, highly selective transformations which may lead to groundbreaking applications across various industries.
Collapse
Affiliation(s)
- Ashna Garg
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | - Dominick Rendina
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | - Hersh Bendale
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | | | - Iwao Ojima
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
- Stony Brook University, Institute of Chemical Biology and Drug Discovery, Stony Brook, NY, United States
| |
Collapse
|
5
|
Li Z, Zhang XM, Zhang FM, Tu YQ. Catalytic Enantioselective Alkylation of Aldehydes with 3-Bromooxindoles. Org Lett 2023; 25:7252-7257. [PMID: 37754207 DOI: 10.1021/acs.orglett.3c02882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
An asymmetric conjugate addition of aldehydes with o-azaxylylene intermediates (indol-2-ones) from 3-bromooxindoles has been developed. The use of a novel spiro-pyrrolidine (SPD)-derived bifunctional N-sulfonylated amide catalyst is essential for a highly diastereo- and enantioselective transformation to provide a wide array of enantioenriched C3 quaternary oxindoles with structurally diverse β-aldehyde appendages. Further application of this synthetic methodology enables the construction of the tricyclic cores of akuammiline-type alkaloids.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Wang AF, Tian JM, Zhao XJ, Li ZH, Zhang Y, Lu K, Wang H, Zhang SY, Tu YQ, Ding TM, Xie YY. Asymmetric Intramolecular Hydroalkylation of Internal Olefin with Cycloalkanone to Directly Access Polycyclic Systems. Angew Chem Int Ed Engl 2023; 62:e202308858. [PMID: 37462217 DOI: 10.1002/anie.202308858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
An asymmetric intramolecular hydroalkylation of unactivated internal olefins with tethered cyclic ketones was realized by the cooperative catalysis of a newly designed chiral amine (SPD-NH2 ) and PdII complex, providing straightforward access to either bridged or fused bicyclic systems containing three stereogenic centers with excellent enantioselectivity (up to 99 % ee) and diastereoselectivity (up to >20 : 1 dr). Notably, the bicyclic products could be conveniently transformed into a diverse range of key structures frequently found in bioactive terpenes, such as Δ6 -protoilludene, cracroson D, and vulgarisins. The steric hindrance between the Ar group of the SPD-NH2 catalyst and the branched chain of the substrate, hydrogen-bonding interactions between the N-H of the enamine motif and the C=O of the directing group MQ, and the counterion of the PdII complex were identified as key factors for excellent stereoinduction in this dual catalytic process by density functional theory calculations.
Collapse
Affiliation(s)
- Ai-Fang Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jin-Miao Tian
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Jing Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Wan J, Huang J. Electrochemical Dearomative Amination of Phenol Derivatives: Access to Spirooxazolidinones. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Jin‐Lin Wan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 People's Republic of China
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 People's Republic of China
| |
Collapse
|
8
|
Recent Advances in Asymmetric Synthesis of Pyrrolidine-Based Organocatalysts and Their Application: A 15-Year Update. Molecules 2023; 28:molecules28052234. [PMID: 36903480 PMCID: PMC10005811 DOI: 10.3390/molecules28052234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
In 1971, chemists from Hoffmann-La Roche and Schering AG independently discovered a new asymmetric intramolecular aldol reaction catalyzed by the natural amino acid proline, a transformation now known as the Hajos-Parrish-Eder-Sauer-Wiechert reaction. These remarkable results remained forgotten until List and Barbas reported in 2000 that L-proline was also able to catalyze intermolecular aldol reactions with non-negligible enantioselectivities. In the same year, MacMillan reported on asymmetric Diels-Alder cycloadditions which were efficiently catalyzed by imidazolidinones deriving from natural amino acids. These two seminal reports marked the birth of modern asymmetric organocatalysis. A further important breakthrough in this field happened in 2005, when Jørgensen and Hayashi independently proposed the use of diarylprolinol silyl ethers for the asymmetric functionalization of aldehydes. During the last 20 years, asymmetric organocatalysis has emerged as a very powerful tool for the facile construction of complex molecular architectures. Along the way, a deeper knowledge of organocatalytic reaction mechanisms has been acquired, allowing for the fine-tuning of the structures of privileged catalysts or proposing completely new molecular entities that are able to efficiently catalyze these transformations. This review highlights the most recent advances in the asymmetric synthesis of organocatalysts deriving from or related to proline, starting from 2008.
Collapse
|
9
|
Moskalik MY, Astakhova VV. Triflamides and Triflimides: Synthesis and Applications. Molecules 2022; 27:5201. [PMID: 36014447 PMCID: PMC9414225 DOI: 10.3390/molecules27165201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Among the variety of sulfonamides, triflamides (CF3SO2NHR, TfNHR) occupy a special position in organic chemistry. Triflamides are widely used as reagents, efficient catalysts or additives in numerous reactions. The reasons for the widespread use of these compounds are their high NH-acidity, lipophilicity, catalytic activity and specific chemical properties. Their strong electron-withdrawing properties and low nucleophilicity, combined with their high NH-acidity, makes it possible to use triflamides in a vast variety of organic reactions. This review is devoted to the synthesis and use of N-trifluoromethanesulfonyl derivatives in organic chemistry, medicine, biochemistry, catalysis and agriculture. Part of the work is a review of areas and examples of the use of bis(trifluoromethanesulfonyl)imide (triflimide, (CF3SO2)2NH, Tf2NH). Being one of the strongest NH-acids, triflimide, and especially its salts, are widely used as catalysts in cycloaddition reactions, Friedel-Crafts reactions, condensation reactions, heterocyclization and many others. Triflamides act as a source of nitrogen in C-amination (sulfonamidation) reactions, the products of which are useful building blocks in organic synthesis, catalysts and ligands in metal complex catalysis, and have found applications in medicine. The addition reactions of triflamide in the presence of oxidizing agents to alkenes and dienes are considered separately.
Collapse
Affiliation(s)
- Mikhail Y. Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | | |
Collapse
|
10
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204516. [DOI: 10.1002/anie.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
11
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
12
|
Sansinenea E, Ortiz A. Asymmetric Organocatalytic Syntheses of Bioactive Compounds. Curr Org Synth 2022; 19:148-165. [DOI: 10.2174/1570179418666210728145206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Background:
The total syntheses of complex natural products have evolved to include new methodologies to save time, simplifying the form to achieve these natural compounds.
Objective:
In this review, we have described the asymmetric synthesis of different natural products and biologically active compounds of the last ten years until the current day.
Results:
An asymmetric organocatalytic reaction is a key to generate stereoselectively the main structure with the required stereochemistry.
Conclusion:
Even more remarkable, the organocatalytic cascade reactions, which are carried out with high stereoselectivity, as well as a possible approximation of the organocatalysts activation with sub-strates are also described.
Collapse
Affiliation(s)
- Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
13
|
Zhang CS, Shao YP, Zhang FM, Han X, Zhang XM, Zhang K, Tu YQ. Cu(II)/SPDO complex-catalyzed asymmetric Baeyer–Villiger oxidation of 2-arylcyclobutanones and its application for the total synthesis of eupomatilones 5 and 6. Chem Sci 2022; 13:8429-8435. [PMID: 35919715 PMCID: PMC9297696 DOI: 10.1039/d2sc02079c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
A novel classical kinetic resolution of 2-aryl-substituted or 2,3-disubstituted cyclobutanones of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex is reported for the first time, producing normal lactones in excellent enantioselectivities (up to 96% ee) and regioselectivities (up to >20/1), along with unreacted ketones in excellent enantioselectivities (up to 99% ee). The current transformation features a wide substrate scope. Moreover, catalytic asymmetric total syntheses of natural eupomatilones 5 and 6 are achieved in nine steps from commercially available 3-methylcyclobutan-1-one. A novel classical kinetic resolution of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex with excellent enantioselectivity, regioselectivity and wide substrate scope is reported for the first time and explore the synthetic application.![]()
Collapse
Affiliation(s)
- Chang-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Ya-Ping Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
14
|
Zhang XY, Shao YP, Guo BK, Zhang K, Zhang FM, Zhang XM, Tu YQ. Catalytic enantioselective synthesis of chiral spirocyclic 1,3-diketones via organo-cation catalysis. Chem Commun (Camb) 2021; 57:11233-11235. [PMID: 34633005 DOI: 10.1039/d1cc05205e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An SPA-triazolium bromide-catalyzed transannular C-acylation of enol lactones is presented. This methodology provides convenient access to a range of enantioenriched spirocyclic 1,3-diketones in moderate to high yields and enantioselectivities and features a broad substrate scope in terms of enol lactones. The catalytic capability of this triazolium salt catalyst is also demonstrated in this enantioselective transformation, which could inspire its further application.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ya-Ping Shao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Bao-Kuan Guo
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
15
|
Costanzo M, Cortigiani M, Gillick‐Healy MW, Kelly BG, Monasterolo C, Adamo MFA. Organocatalytic Desymmetrization of Meso‐Aziridines Via Asymmetric Intramolecular Rearrangement. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Martina Costanzo
- Centre for Synthesis and Chemical Biology Department of Chemistry Royal College of Surgeons in Ireland 123 St. Stephen's Green Dublin 2 Ireland
| | - Mauro Cortigiani
- Centre for Synthesis and Chemical Biology Department of Chemistry Royal College of Surgeons in Ireland 123 St. Stephen's Green Dublin 2 Ireland
| | | | - Brian G. Kelly
- Kelada Pharmachem. Ltd A1.01, Science Centre South, Belfield Dublin 4 Ireland
| | - Claudio Monasterolo
- Centre for Synthesis and Chemical Biology School of Chemistry University College Dublin, Belfield Dublin 4 Ireland
| | - Mauro F. A. Adamo
- Centre for Synthesis and Chemical Biology Department of Chemistry Royal College of Surgeons in Ireland 123 St. Stephen's Green Dublin 2 Ireland
| |
Collapse
|
16
|
Efficient Asymmetric Simmons-Smith Cyclopropanation and Diethylzinc Addition to Aldehydes Promoted by Enantiomeric Aziridine-Phosphines. Catalysts 2021. [DOI: 10.3390/catal11080968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During an implementation of current research, a set of optically pure chiral aziridines and aziridine imines bearing a phosphine moiety was prepared with high values of chemical yield. The above chiral heteroorganic derivatives were tested for catalytic utility as chiral ligands in asymmetric Simmons-Smith cyclopropanation and asymmetric diethylzinc addition to various aldehydes. Most of the desired products were formed in high chemical yields, with satisfactory values of enantiomeric excess (sometimes more than 90%) and diastereomeric ratios (in case of cyclopropanation reaction).
Collapse
|
17
|
Yanagimoto A, Uwabe Y, Wu Q, Muto K, Yamaguchi J. Convergent Azaspirocyclization of Bromoarenes with N-Tosylhydrazones by a Palladium Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aika Yanagimoto
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Yota Uwabe
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Qikun Wu
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
18
|
Elghareeb FH, Kandil EM, Abou-Elzahab M, Abdelmoteleb M, Abozeid MA. Rigid 3D-spiro chromanone as a crux for efficient antimicrobial agents: synthesis, biological and computational evaluation. RSC Adv 2021; 11:21301-21314. [PMID: 35478839 PMCID: PMC9034028 DOI: 10.1039/d1ra03497a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 01/26/2023] Open
Abstract
The development of new and effective antimicrobial agents with novel chemical skeletons and working mechanisms is highly desirable due to the increased number of resistant microbes. Different new compounds based upon a 3D-spiro chromanone scaffold such as Mannich bases 2 and 3 in addition to azo dye 4 were synthesized. Besides, the condensation reactions of the hydrazide-spiro chromanone 8 with different ketonic reagents led to the synthesis of pyrazoles (9 & 10) and anils (11 & 13). Moreover, the methoxyl substituted spiro chromanone 14 was condensed with different hydrazines and hydrazides to give the corresponding hydrazones 15-18 in up to 85% yields. The condensation of the hydrazone 18 with salicylaldehyde yielded coumarinyl spiro chromanone 19 in an excellent yield, whereas its reaction with benzaldehyde followed by hydrazine afforded aminopyrazole derivative 21 in 82% yield. The antimicrobial evaluation suggested that hydrazide 8 has a substantial activity against different microbes (S. aureus: D = 22 mm, MIC = 1.64 μM; E. coli: D = 19 mm, MIC = 1.64 μM; C. albicans: D = 20 mm, MIC = 6.57 μM). Moreover, promising antimicrobial activities were observed for azo dye 4 (D = 13-19 mm, MIC = 5.95-11.89 μM), hydrazone 17 (D = 17-23 mm, MIC = 1.88-3.75 μM), and aminopyrazole 21 (D = 14-19 mm, MIC = 2.24-8.98 μM). The molecular docking revealed that compounds 4, 8, 17, and 21 had good to high binding affinities with different microbial targets such as penicillin-binding proteins (-7.4 to -9.9 kcal), DNA gyrase (-7.8 to -9.0 kcal), lanosterol 14-alpha demethylase (-8.2 to -11.2 kcal), and exo-beta-1,3-glucanase (-8.2 to -11.9 kcal). The QSAR analysis ascertained a good correlation between the antimicrobial activity of 3D-spiro chromanone derivatives and their structural and/or physicochemical parameters.
Collapse
Affiliation(s)
- F H Elghareeb
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| | - E M Kandil
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| | - M Abou-Elzahab
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| | - M Abdelmoteleb
- Department of Botany, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| | - M A Abozeid
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura-35516 Egypt
| |
Collapse
|
19
|
Ronchi E, Paradine SM, Jacobsen EN. Enantioselective, Catalytic Multicomponent Synthesis of Homoallylic Amines Enabled by Hydrogen-Bonding and Dispersive Interactions. J Am Chem Soc 2021; 143:7272-7278. [PMID: 33949857 PMCID: PMC8547772 DOI: 10.1021/jacs.1c03024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a one-step catalytic, enantioselective method for the preparation of homoallylic N-Boc amines directly from acetals. Reactive iminium ion intermediates are generated in situ through the combination of an acetal, a chiral thiourea catalyst, trialkylsilyl triflate, and N-Boc carbamate and are subsequently trapped by a variety of allylsilane nucleophiles. No homoallylic ether byproducts are detected, consistent with allylation of the iminium intermediate being highly favored over allylation of the intermediate oxocarbenium ion. Acetals derived from aromatic aldehydes possessing a variety of functional groups and substitution patterns yield homoallylic amines with excellent levels of enantiomeric enrichment. Experimental and computational data are consistent with an anchoring hydrogen-bond interaction between the protioiminium ion and the amide of the catalyst in the enantiodetermining transition state, and with stereodifferentiation achieved through specific noncovalent interactions (NCIs) with the catalyst pyrenyl moiety. Evidence is provided that the key NCI in the major pathway is a π-stacking interaction, contrasting with the cation-π interactions invoked in previously studied reactions promoted by the same family of aryl-pyrrolidino-H-bond-donor catalysts.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
20
|
Parella R, Jakkampudi S, Zhao JC. Recent Applications of Asymmetric Organocatalytic Methods in Total Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202004196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ramarao Parella
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio, Texas 78249-0698 USA
| | - Satish Jakkampudi
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio, Texas 78249-0698 USA
| | - John C.‐G. Zhao
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio, Texas 78249-0698 USA
| |
Collapse
|
21
|
Zhao XJ, Li ZH, Ding TM, Tian JM, Tu YQ, Wang AF, Xie YY. Enantioselective Synthesis of 3,3'-Disubstituted 2-Amino-2'-hydroxy-1,1'-binaphthyls by Copper-Catalyzed Aerobic Oxidative Cross-Coupling. Angew Chem Int Ed Engl 2021; 60:7061-7065. [PMID: 33369843 DOI: 10.1002/anie.202015001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Indexed: 12/18/2022]
Abstract
A challenging direct asymmetric catalytic aerobic oxidative cross-coupling of 2-naphthylamine and 2-naphthol, using a novel CuI /SPDO system, has been successfully developed for the first time. Enantioenriched 3,3'-disubstituted NOBINs were achieved and could be readily derived to divergent chiral ligands and catalysts. This reaction features high enantioselectivities (up to 96 % ee) and good yields (up to 80 %). The DFT calculations suggest that the F-H interactions between CF3 of L17 and H-1,8 of 2-naphthol, and the π-π stacking between the two coupling partners could play vital roles in the enantiocontrol of this cross-coupling reaction.
Collapse
Affiliation(s)
- Xiao-Jing Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jin-Miao Tian
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ai-Fang Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
22
|
Zhao X, Li Z, Ding T, Tian J, Tu Y, Wang A, Xie Y. Enantioselective Synthesis of 3,3′‐Disubstituted 2‐Amino‐2′‐hydroxy‐1,1′‐binaphthyls by Copper‐Catalyzed Aerobic Oxidative Cross‐Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Jing Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zi‐Hao Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Tong‐Mei Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jin‐Miao Tian
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong‐Qiang Tu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Ai‐Fang Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yu‐Yang Xie
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
23
|
Li HH, Li JQ, Zheng X, Huang PQ. Photoredox-Catalyzed Decarboxylative Cross-Coupling of α-Amino Acids with Nitrones. Org Lett 2021; 23:876-880. [PMID: 33433222 DOI: 10.1021/acs.orglett.0c04101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A decarboxylative cross-coupling reaction of α-amino acids with nitrones via visible-light-induced photoredox catalysis has been established for easy access to β-amino hydroxylamines and vicinal diamines with structural diversity, which is featured with simple operation, mild conditions, readily available α-amino acids, and a broad scope of nitrone substrates. The application of this protocol can furnish efficient synthetic strategies for some valuable vicinal diamine-containing molecules.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jia-Qi Li
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiao Zheng
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
24
|
Xu MH, Yuan YH, Liang DD, Zhang XM, Zhang FM, Tu YQ, Ma AJ, Zhang K, Peng JB. Remote asymmetric conjugate addition catalyzed by a bifunctional spiro-pyrrolidine-derived thiourea catalyst. Org Chem Front 2021. [DOI: 10.1039/d1qo00238d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel spiro-pyrrolidine (SPD)-derived bifunctional thiourea catalyst has been developed and used in a stereoselective conjugate addition of furfurals to β,γ-unsaturated α-ketoesters.
Collapse
Affiliation(s)
- Ming-Hui Xu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yong-Hai Yuan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Dong-Dong Liang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Chemistry & Chemical Engineering
| | - Ai-Jun Ma
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen 529020
- P. R. China
| |
Collapse
|
25
|
Duan SB, Zhang HY, Hao BY, Zhao J, Han YP, Zhang Y, Liang YM. Palladium-catalyzed intramolecular diastereoselective dearomatization reaction of indoles with N-tosylhydrazones. Org Chem Front 2021. [DOI: 10.1039/d1qo00893e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel, highly diastereoselective palladium-catalyzed dearomative reaction of N-halobenzoyl o-haloaniline derivatives has been developed using functionalized N-tosylhydrazones as the coupling partners.
Collapse
Affiliation(s)
- Shao-Bo Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Bo-Ya Hao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
26
|
Li Y, Zhu M, Xu L. A Concise Biogenetically Inspired Formal Synthesis of Camptothecin. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Shennan BDA, Smith PW, Ogura Y, Dixon DJ. A modular and divergent approach to spirocyclic pyrrolidines. Chem Sci 2020; 11:10354-10360. [PMID: 34094297 PMCID: PMC8162384 DOI: 10.1039/d0sc03676e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
An efficient three-step sequence to afford a valuable class of spirocyclic pyrrolidines is reported. A reductive cleavage/Horner-Wadsworth-Emmons cascade facilitates the spirocyclisation of a range of isoxazolines bearing a distal β-ketophosphonate. The spirocyclisation precursors are elaborated in a facile and modular fashion, via a [3 + 2]-cycloaddition followed by the condensation of a phosphonate ester, introducing multiple points of divergence. The synthetic utility of this protocol has been demonstrated in the synthesis of a broad family of 1-azaspiro[4,4]nonanes and in a concise formal synthesis of the natural product (±)-cephalotaxine.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| | - Peter W Smith
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| | - Yusuke Ogura
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
28
|
Xi CC, Zhao XJ, Tian JM, Chen ZM, Zhang K, Zhang FM, Tu YQ, Dong JW. Atroposelective Synthesis of Axially Chiral 3-Arylindoles by Copper-Catalyzed Asymmetric Cross-Coupling of Indoles with Quinones and Naphthoquinones. Org Lett 2020; 22:4995-5000. [PMID: 32610934 DOI: 10.1021/acs.orglett.0c01558] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A copper-catalyzed direct asymmetric coupling of C2 sterically-hindering-group-substituted indoles with quinone and naphthoquinone esters was developed by using the spirocyclic pyrrolidine oxazoline (SPDO) ligand, which was accomplished by metal catalysis for the first time. Diverse structures of axially chiral 3-arylindoles were obtained with good to high enantioselectivities in good to high yields. This protocol can be expanded to implement β-coupling with naphthoquinone esters, providing an alternative way to prepare β-substituted derivatives of both naphthols and naphthoquinones.
Collapse
Affiliation(s)
- Chao-Chao Xi
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiao-Jing Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Miao Tian
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jia-Wei Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
29
|
Ding PG, Zhou F, Wang X, Zhao QH, Yu JS, Zhou J. H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chem Sci 2020; 11:3852-3861. [PMID: 34122853 PMCID: PMC8152593 DOI: 10.1039/d0sc00475h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of catalyst-controlled stereodivergent asymmetric catalysis is important for providing facile access to all stereoisomers of chiral products with multiple stereocenters from the same starting materials. Despite progress, new design strategies for diastereodivergent asymmetric catalysis are still highly desirable. Here we report the potency of H-bond donors as the governing factor to tune diastereoselectivity in a highly diastereoselective switchable enantioselective Michael addition of α-azido ketones to nitroolefins. While a newly developed bifunctional tertiary amine, phosphoramide, preferentially afforded syn-adducts, an analogous squaramide catalyst selectively gave anti-adducts. The resulting multifunctional tertiary azides can be converted to spiro-pyrrolidines with four continuous stereocenters in a one-pot operation. Mechanistic studies cast light on the control of diastereoselectivity by H-bond donors. While the squaramide-catalyzed reaction proceeded with a transition state with both squaramide N–H bonds binding to an enolate intermediate, an unprecedented model was proposed for the phosphoramide-mediated reaction wherein an amide N–H bond and an alkylammonium ion formed in situ interact with nitroolefins, with the enolate stabilized by nonclassical C–H⋯O hydrogen-bonding interactions. We report the successful reversal of the diastereoselectivity in an unprecedented Michael addition of α-azido ketones to nitroolefins catalyzed by bifunctional tertiary amines, simply by varying the H-bond donor from phosphoramide to squaramide.![]()
Collapse
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry, Sichuan University Chengdu Sichuan 610064 China
| | - Qiu-Hua Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
30
|
Anbu N, Hariharan S, Dhakshinamoorthy A. Knoevenagel-Doebner condensation promoted by chitosan as a reusable solid base catalyst. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|