1
|
Tang M, Duan T, Lu Y, Liu J, Gao C, Wang R. Tyrosinase-Woven Melanin Nets for Melanoma Therapy through Targeted Mitochondrial Tethering and Enhanced Photothermal Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411906. [PMID: 39285827 DOI: 10.1002/adma.202411906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Indexed: 11/02/2024]
Abstract
Manipulating intracellular biological processes and organelles has emerged as a pivotal strategy to influence cellular physiological functions. Mitochondria, recognized as the powerhouse of cells, play a crucial role in tumorigenesis and progression. Inspired by the Nature's tyrosinase-catalyzed melanin formation within melanoma cells, here an approach is developed using a polysaccharide dually-functionalized with tyrosine and triphenylphosphine (TPP) for targeted mitochondria cross-linking in melanoma cells. This technique intricately weaves melanin nets within the cells, serving as a tether for the mitochondria and effectively decelerating tumor metabolism through nanoparticle-net transformation. Tyrosinase acts as the "needle", while the functionalized polysaccharide serves as the "string" successfully constructing nets within the cell. Furthermore, the tyrosinase-catalyzed cross-linking of tyrosine not only facilitates the production of artificial melanin but also enhances the photothermal conversion efficiency of melanoma cells, leading to decrease of the tumor growth. This study unveils a non-drug method for regulating organelle physiological activity and introduces photothermal treatment. This work not only sheds light on the manipulation of cellular functions but also holds promise for advancing cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mian Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tianshun Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yunfeng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Jinwei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
2
|
Schaudy E, Ibañez-Redín G, Parlar E, Somoza MM, Lietard J. Nonaqueous Oxidation in DNA Microarray Synthesis Improves the Oligonucleotide Quality and Preserves Surface Integrity on Gold and Indium Tin Oxide Substrates. Anal Chem 2024; 96:2378-2386. [PMID: 38285499 PMCID: PMC10867803 DOI: 10.1021/acs.analchem.3c04166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Nucleic acids attached to electrically conductive surfaces are very frequently used platforms for sensing and analyte detection as well as for imaging. Synthesizing DNA on these uncommon substrates and preserving the conductive layer is challenging as this coating tends to be damaged by the repeated use of iodine and water, which is the standard oxidizing medium following phosphoramidite coupling. Here, we thoroughly investigate the use of camphorsulfonyl oxaziridine (CSO), a nonaqueous alternative to I2/H2O, for the synthesis of DNA microarrays in situ. We find that CSO performs equally well in producing high hybridization signals on glass microscope slides, and CSO also protects the conductive layer on gold and indium tin oxide (ITO)-coated slides. DNA synthesis on conductive substrates with CSO oxidation yields microarrays of quality approaching that of conventional glass with intact physicochemical properties.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Gisela Ibañez-Redín
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Etkin Parlar
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, Freising 85354, Germany
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising 85354, Germany
| | - Jory Lietard
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| |
Collapse
|
3
|
Kekić T, Lietard J. A Canvas of Spatially Arranged DNA Strands that Can Produce 24-bit Color Depth. J Am Chem Soc 2023; 145:22293-22297. [PMID: 37787949 PMCID: PMC10591465 DOI: 10.1021/jacs.3c06500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 10/04/2023]
Abstract
Nucleic acid microarray photolithography combines density, throughput, and positional control in DNA synthesis. These surface-bound sequence libraries are conventionally used in large-scale hybridization assays against fluorescently labeled, perfect-match DNA strands. Here, we introduce another layer of control for in situ microarray synthesis─hybridization affinity─to precisely modulate fluorescence intensity upon duplex formation. Using a combination of Cy3-, Cy5-, and fluorescein-labeled targets and an ensemble of truncated DNA probes, we organize 256 shades of red, green, and blue intensities that can be superimposed and merged. In so doing, hybridization alone is able to produce a large palette of 16 million colors or 24-bit color depth. Digital images can be reproduced with high fidelity at the micrometer scale by using a simple process that assigns sequence to any RGB value. Largely automated, this approach can be seen as miniaturized DNA-based painting.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
4
|
Das A, Santhosh S, Giridhar M, Behr J, Michel T, Schaudy E, Ibáñez-Redín G, Lietard J, Somoza MM. Dipodal Silanes Greatly Stabilize Glass Surface Functionalization for DNA Microarray Synthesis and High-Throughput Biological Assays. Anal Chem 2023; 95:15384-15393. [PMID: 37801728 PMCID: PMC10586054 DOI: 10.1021/acs.analchem.3c03399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Glass is by far the most common substrate for biomolecular arrays, including high-throughput sequencing flow cells and microarrays. The native glass hydroxyl surface is modified by using silane chemistry to provide appropriate functional groups and reactivities for either in situ synthesis or surface immobilization of biologically or chemically synthesized biomolecules. These arrays, typically of oligonucleotides or peptides, are then subjected to long incubation times in warm aqueous buffers prior to fluorescence readout. Under these conditions, the siloxy bonds to the glass are susceptible to hydrolysis, resulting in significant loss of biomolecules and concomitant loss of signal from the assay. Here, we demonstrate that functionalization of glass surfaces with dipodal silanes results in greatly improved stability compared to equivalent functionalization with standard monopodal silanes. Using photolithographic in situ synthesis of DNA, we show that dipodal silanes are compatible with phosphoramidite chemistry and that hybridization performed on the resulting arrays provides greatly improved signal and signal-to-noise ratios compared with surfaces functionalized with monopodal silanes.
Collapse
Affiliation(s)
- Arya Das
- Technical
University of Munich, Germany, TUM School
of Natural Sciences, Boltzmannstraße 10, 85748 Garching, Germany
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Santra Santhosh
- Technical
University of Munich, Germany, TUM School
of Natural Sciences, Boltzmannstraße 10, 85748 Garching, Germany
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Maya Giridhar
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Jürgen Behr
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
| | - Timm Michel
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
- Technical
University of Munich, Germany, TUM School
of Life Sciences, Alte
Akademie 8, 85354 Freising, Germany
| | - Erika Schaudy
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Gisela Ibáñez-Redín
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jory Lietard
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Mark M. Somoza
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 30, 85354 Freising, Germany
- Institute
of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Chair
of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
5
|
Schaudy E, Lietard J. In situ enzymatic template replication on DNA microarrays. Methods 2023; 213:33-41. [PMID: 37001684 DOI: 10.1016/j.ymeth.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
DNA microarrays are very useful tools to study the realm of nucleic acids interactions at high throughput. The conventional approach to microarray synthesis employs phosphoramidite chemistry and yields unmodified DNA generally attached to a surface at the 3' terminus. Having a freely accessible 3'-OH instead of 5'-OH is desirable too, and being able to introduce nucleoside analogs in a combinatorial manner is highly relevant in the context of nucleic acid therapeutics and in aptamer research. Here, we describe an enzymatic approach to the synthesis of high-density DNA microarrays that can also contain chemical modifications. The method uses a standard DNA microarray, to which a DNA primer is covalently bound through photocrosslinking. The extension of the primer with a DNA polymerase yields double-stranded DNA but is also amenable to the incorporation of modified dNTPs. Further processing with T7 exonuclease, which catalyzes the degradation of DNA in a specific (5'→3') direction, results in template strand removal. Overall, the method produces surface-bound natural and non-natural DNA oligonucleotides, is applicable to commercial microarrays and paves the way for the preparation of combinatorial, chemically modified aptamer libraries.
Collapse
|
6
|
Bayard CJ, Yingling YG. Computer-Assisted Design and Characterization of RNA Nanostructures. Methods Mol Biol 2023; 2709:31-49. [PMID: 37572271 DOI: 10.1007/978-1-0716-3417-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Molecular dynamics (MD) simulations can aid in the design and characterization of RNA nanomaterials, providing details about structural and dynamical properties as a function of sequence and environment. Here, we describe how to perform explicit and implicit solvent all-atom MD simulations for RNA nanoring systems.
Collapse
Affiliation(s)
- Christina J Bayard
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Kekić T, Lietard J. An 8-bit monochrome palette of fluorescent nucleic acid sequences for DNA-based painting. NANOSCALE 2022; 14:17528-17533. [PMID: 36416340 PMCID: PMC9730302 DOI: 10.1039/d2nr05269e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The ability to regulate, maintain and reproduce fluorogenic properties is a fundamental prerequisite of modern molecular diagnostics, nanotechnology and bioimaging. The sequence-dependence of the fluorescence properties in fluorophores commonly used in nucleic acid labelling is here being exploited to assemble a color scale in 256 shades of green Cy3 fluorescence. Using photolithography, we synthesize microarrays of labeled nucleic acids that can accurately reproduce 8-bit monochrome graphics by mapping color to fluorescence intensity and sequence. This DNA-based painting approach paves the way for a full RGB scale array fabrication process.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Abbasi AD, Hussain Z, Yang KL. Aptamer-Based Gold Nanoparticles-PDMS Composite Stamps as a Platform for Micro-Contact Printing. BIOSENSORS 2022; 12:1067. [PMID: 36551034 PMCID: PMC9775676 DOI: 10.3390/bios12121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
In the present study, a functional template made up of in situ synthesised gold nanoparticles (AuNPs) is prepared on polydimethylsiloxane (PDMS) for patterning of target protein onto the desired solid substrates. Unlike previous studies in which bioreceptor probes are randomly attached to the PDMS stamp through electrostatic interactions, herein, we propose an AuNPs-PDMS stamp, which provides a surface for the attachment of thiol-modified biorecognition probes to link to the stamp surface through a dative bond with a single anchoring point based on thiol chemistry. By using this platform, we have developed the ability for microcontact printing (µCP) to selectively capture and transfer target protein onto solid surfaces for detection purposes. After µCP, we also investigated whether liquid crystals (LCs) could be used as a label-free approach for identifying transfer protein. Our reported approach provides promise for biosensing of various analytes.
Collapse
Affiliation(s)
- Amna Didar Abbasi
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Zakir Hussain
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117576, Singapore
| |
Collapse
|
9
|
Handrea-Dragan IM, Botiz I, Tatar AS, Boca S. Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids Surf B Biointerfaces 2022; 218:112730. [DOI: 10.1016/j.colsurfb.2022.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
10
|
Kekić T, Lietard J. Sequence-dependence of Cy3 and Cy5 dyes in 3' terminally-labeled single-stranded DNA. Sci Rep 2022; 12:14803. [PMID: 36045146 PMCID: PMC9428881 DOI: 10.1038/s41598-022-19069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescence is an ideal tool to see and manipulate nucleic acids, and engage in their rich and complex biophysical properties. Labeling is the preferred approach to track and quantify fluorescence with nucleic acids and cyanine dyes are emblematic in this context. The fluorescent properties of cyanine dyes are known to be sequence-dependent, with purines in the immediate vicinity increasing the fluorescence intensity of Cy3 and Cy5 dyes, and the ability of nucleobases to modulate the photophysical properties of common fluorophores may influence fluorescence measurements in critical assays such as FISH, qPCR or high-throughput sequencing. In this paper, we comprehensively map the sequence-dependence of Cy3 and Cy5 dyes in 3'-fluorescently labeled single-stranded DNA by preparing the complete permutation library of the 5 consecutive nucleotides immediately adjacent to the dye, or 1024 sequences. G-rich motifs dominate the high fluorescence range, while C-rich motifs lead to significant quenching, an observation consistent with 5'-labeled systems. We also uncover GCGC patterns in the extreme top range of fluorescence, a feature specific to 3'-Cy3 and Cy5 oligonucleotides. This study represents the final piece in linking nucleotide identity to fluorescence changes for Cy3, Cy5 and fluorescein in all 3', 5', single-stranded and double-stranded DNA formats.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Li Y, Li W, Xu W, Huang J, Sun Z, Liao T, Kovaleva EG, Xu C, Cheng J, Li H. Specific extraction of nucleic acids employing pillar[6]arene-functionalized nanochannel platforms. Chem Commun (Camb) 2022; 58:9278-9281. [PMID: 35904069 DOI: 10.1039/d2cc02693g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid extraction of high-purity nucleic acids from complex biological samples using conventional methods is complicated. Therefore, in this study, glycine-pillar[6]arene (Gly-P6)-functionalized tapered nanochannels were constructed using 32-mer single-stranded E. coli DNA (ssDNA) as a model sequence, which can selectively transport ssDNA by multiple noncovalent forces (transport flux of 2.65 nM cm-2 h-1) under the interference of amino acids and other substances. In view of these prospective results, the selective transport of nucleic acids with nanochannels could be applied in the design of nucleic acid enrichment and separation systems in the future.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenjie Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinmei Huang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhongyue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Tangbin Liao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, P. R. China
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Ural Federal University, Mira Street, 28, 620002 Yekaterinburg, Russia
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, China
| | - Jing Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
12
|
Schaudy E, Hölz K, Lietard J, Somoza MM. Simple synthesis of massively parallel RNA microarrays via enzymatic conversion from DNA microarrays. Nat Commun 2022; 13:3772. [PMID: 35773271 PMCID: PMC9246885 DOI: 10.1038/s41467-022-31370-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
RNA catalytic and binding interactions with proteins and small molecules are fundamental elements of cellular life processes as well as the basis for RNA therapeutics and molecular engineering. In the absence of quantitative predictive capacity for such bioaffinity interactions, high throughput experimental approaches are needed to sufficiently sample RNA sequence space. Here we report on a simple and highly accessible approach to convert commercially available customized DNA microarrays of any complexity and density to RNA microarrays via a T7 RNA polymerase-mediated extension of photocrosslinked methyl RNA primers and subsequent degradation of the DNA templates.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Kathrin Hölz
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Mark M Somoza
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany.
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354, Freising, Germany.
| |
Collapse
|
13
|
Lietard J, Ameur D, Somoza MM. Sequence-dependent quenching of fluorescein fluorescence on single-stranded and double-stranded DNA. RSC Adv 2022; 12:5629-5637. [PMID: 35425544 PMCID: PMC8982050 DOI: 10.1039/d2ra00534d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Fluorescein is commonly used to label macromolecules, particularly proteins and nucleic acids, but its fluorescence is known to be strongly dependent on its direct chemical environment.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Dominik Ameur
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
14
|
Lietard J, Leger A, Erlich Y, Sadowski N, Timp W, Somoza MM. Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucleic Acids Res 2021; 49:6687-6701. [PMID: 34157124 PMCID: PMC8266620 DOI: 10.1093/nar/gkab505] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Nucleic acid microarrays are the only tools that can supply very large oligonucleotide libraries, cornerstones of the nascent fields of de novo gene assembly and DNA data storage. Although the chemical synthesis of oligonucleotides is highly developed and robust, it is not error free, requiring the design of methods that can correct or compensate for errors, or select for high-fidelity oligomers. However, outside the realm of array manufacturers, little is known about the sources of errors and their extent. In this study, we look at the error rate of DNA libraries synthesized by photolithography and dissect the proportion of deletion, insertion and substitution errors. We find that the deletion rate is governed by the photolysis yield. We identify the most important substitution error and correlate it to phosphoramidite coupling. Besides synthetic failures originating from the coupling cycle, we uncover the role of imperfections and limitations related to optics, highlight the importance of absorbing UV light to avoid internal reflections and chart the dependence of error rate on both position on the array and position within individual oligonucleotides. Being able to precisely quantify all types of errors will allow for optimal choice of fabrication parameters and array design.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Adrien Leger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Norah Sadowski
- Johns Hopkins University, Department of Molecular Biology and Genetics, Baltimore, MD, USA
| | - Winston Timp
- Johns Hopkins University, Department of Molecular Biology and Genetics, Baltimore, MD, USA.,Johns Hopkins University, Departments of Biomedical Engineering, Molecular Biology and Genetics and Medicine, Division of Infectious Disease, Baltimore, MD, USA
| | - Mark M Somoza
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.,Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany.,Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
15
|
Schaudy E, Lietard J, Somoza MM. Sequence Preference and Initiator Promiscuity for De Novo DNA Synthesis by Terminal Deoxynucleotidyl Transferase. ACS Synth Biol 2021; 10:1750-1760. [PMID: 34156829 PMCID: PMC8291772 DOI: 10.1021/acssynbio.1c00142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The untemplated activity
of terminal deoxynucleotidyl transferase
(TdT) represents its most appealing feature. Its use is well established
in applications aiming for extension of a DNA initiator strand, but
a more recent focus points to its potential in enzymatic de
novo synthesis of DNA. Whereas its low substrate specificity
for nucleoside triphosphates has been studied extensively, here we
interrogate how the activity of TdT is modulated by the nature of
the initiating strands, in particular their length, chemistry, and
nucleotide composition. Investigation of full permutational libraries
of mono- to pentamers of d-DNA, l-DNA, and 2′O-methyl-RNA
of differing directionality immobilized to glass surfaces, and generated via photolithographic in situ synthesis,
shows that the efficiency of extension strongly depends on the nucleobase
sequence. We also show TdT being catalytically active on a non-nucleosidic
substrate, hexaethylene glycol. These results offer new perspectives
on constraints and strategies for de novo synthesis
of DNA using TdT regarding the requirements for initiation of enzymatic
generation of DNA.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
16
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
17
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
18
|
Lim CK, Nirantar S, Yew WS, Poh CL. Novel Modalities in DNA Data Storage. Trends Biotechnol 2021; 39:990-1003. [PMID: 33455842 DOI: 10.1016/j.tibtech.2020.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The field of storing information in DNA has expanded exponentially. Most common modalities involve encoding information from bits into synthesized nucleotides, storage in liquid or dry media, and decoding via sequencing. However, limitations to this paradigm include the cost of DNA synthesis and sequencing, along with low throughput. Further unresolved questions include the appropriate media of storage and the scalability of such approaches for commercial viability. In this review, we examine various storage modalities involving the use of DNA from a systems-level perspective. We compare novel methods that draw inspiration from molecular biology techniques that have been devised to overcome the difficulties posed by standard workflows and conceptualize potential applications that can arise from these advances.
Collapse
Affiliation(s)
- Cheng Kai Lim
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | | | - Wen Shan Yew
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
19
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
20
|
Schaudy E, Somoza MM, Lietard J. l-DNA Duplex Formation as a Bioorthogonal Information Channel in Nucleic Acid-Based Surface Patterning. Chemistry 2020; 26:14310-14314. [PMID: 32515523 PMCID: PMC7702103 DOI: 10.1002/chem.202001871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/02/2023]
Abstract
Photolithographic in situ synthesis of nucleic acids enables extremely high oligonucleotide sequence density as well as complex surface patterning and combined spatial and molecular information encoding. No longer limited to DNA synthesis, the technique allows for total control of both chemical and Cartesian space organization on surfaces, suggesting that hybridization patterns can be used to encode, display or encrypt informative signals on multiple chemically orthogonal levels. Nevertheless, cross-hybridization reduces the available sequence space and limits information density. Here we introduce an additional, fully independent information channel in surface patterning with in situ l-DNA synthesis. The bioorthogonality of mirror-image DNA duplex formation prevents both cross-hybridization on chimeric l-/d-DNA microarrays and also results in enzymatic orthogonality, such as nuclease-proof DNA-based signatures on the surface. We show how chimeric l-/d-DNA hybridization can be used to create informative surface patterns including QR codes, highly counterfeiting resistant authenticity watermarks, and concealed messages within high-density d-DNA microarrays.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| | - Mark M. Somoza
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
- Chair of Food Chemistry and Molecular and Sensory ScienceTechnical University of MunichLise-Meitner-Straße 3485354FreisingGermany
- Leibniz-Institute for Food Systems BiologyTechnical University of MunichLise-Meitner-Straße 3485354FreisingGermany
| | - Jory Lietard
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| |
Collapse
|
21
|
Xie Z, Gan T, Fang L, Zhou X. Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. SOFT MATTER 2020; 16:8736-8759. [PMID: 32969442 DOI: 10.1039/d0sm01043j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-grafted macromolecules, including polymers, DNA, peptides, etc., are versatile modifications to tailor the interfacial functions in a wide range of fields. In this review, we aim to provide an overview of the most recent progress in engineering surface-grafted chains for the creation of complex and multiplexed surface architectures over micro- to macro-scopic areas. A brief introduction to surface grafting is given first. Then the fabrication of complex surface architectures is summarized with a focus on controlled chain conformations, grafting densities and three-dimensional structures. Furthermore, recent advances are highlighted for the generation of multiplexed arrays with designed chemical composition in both horizontal and vertical dimensions. The applications of such complicated macromolecular architectures are then briefly discussed. Finally, some perspective outlooks for future studies and challenges are suggested. We hope that this review will be helpful to those just entering this field and those in the field requiring quick access to useful reference information about the progress in the properties, processing, performance, and applications of functional surface-grafted architectures.
Collapse
Affiliation(s)
- Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| | - Lvye Fang
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| |
Collapse
|
22
|
Nuthanakanti A, Srivatsan SG. Multi-stimuli responsive heterotypic hydrogels based on nucleolipids show selective dye adsorption. NANOSCALE ADVANCES 2020; 2:4161-4171. [PMID: 34286214 PMCID: PMC7611312 DOI: 10.1039/d0na00509f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/11/2020] [Indexed: 06/13/2023]
Abstract
Analogous to nucleic acids, the building blocks of nucleic acids and their derivatives are widely used to create supramolecular architectures for application mainly in the field of biomedicine. Here, we describe the construction of a multi-stimuli responsive and toxic dye adsorbing heterotypic hydrogel system formed using simple nucleoside-fatty acid conjugates. The nucleolipids are derived by coupling fatty acid chains of different lengths at the 5' position of ribothymidine and uridine. The nucleolipids in the presence of a strong base (e.g. NaOH) undergo partial hydrolysis, which triggers the self-assembly of the hydrolysed components resulting in the formation of heterotypic hydrogels. Notably, the gels are formed specifically in the presence of Na+ ions as other ions such as Li+ and K+ did not support the hydrogelation process. Systematic analysis by microscopy, NMR, single crystal and powder X-ray diffraction and rheology indicated that the deprotonated nucleolipid and fatty acid salt interdigitate and provide necessary electrostatic interactions supported by Na+ ions to set the path for the hierarchical assembly process. Notably, the hydrogels are highly sensitive to external stimuli, wherein gel-sol transition can be reversibly controlled by using temperature, pH and host-guest interaction. One of the hydrogels made of 5'-O-myristate-conjugated ribothymidine was found to selectively adsorb cationic dyes such as methylene blue and rhodamine 6G in a recyclable fashion. Taken together, the easily scalable assembly, multi-stimuli responsiveness and ability to capture and release dyes highlight the potential of our nucleolipid hydrogel system in material applications and in the treatment of dye industry wastes.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and ResearchDr Homi Bhabha Road, PashanPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and ResearchDr Homi Bhabha Road, PashanPune 411008India
| |
Collapse
|
23
|
Wang Y, Jin S, Wang Q, Wu M, Yao S, Liao P, Kim MJ, Cheng GJ, Wu W. Parallel Nanoimprint Forming of One-Dimensional Chiral Semiconductor for Strain-Engineered Optical Properties. NANO-MICRO LETTERS 2020; 12:160. [PMID: 34138155 PMCID: PMC7770755 DOI: 10.1007/s40820-020-00493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/22/2020] [Indexed: 05/28/2023]
Abstract
The low-dimensional, highly anisotropic geometries, and superior mechanical properties of one-dimensional (1D) nanomaterials allow the exquisite strain engineering with a broad tunability inaccessible to bulk or thin-film materials. Such capability enables unprecedented possibilities for probing intriguing physics and materials science in the 1D limit. Among the techniques for introducing controlled strains in 1D materials, nanoimprinting with embossed substrates attracts increased attention due to its capability to parallelly form nanomaterials into wrinkled structures with controlled periodicities, amplitudes, orientations at large scale with nanoscale resolutions. Here, we systematically investigated the strain-engineered anisotropic optical properties in Te nanowires through introducing a controlled strain field using a resist-free thermally assisted nanoimprinting process. The magnitude of induced strains can be tuned by adjusting the imprinting pressure, the nanowire diameter, and the patterns on the substrates. The observed Raman spectra from the chiral-chain lattice of 1D Te reveal the strong lattice vibration response under the strain. Our results suggest the potential of 1D Te as a promising candidate for flexible electronics, deformable optoelectronics, and wearable sensors. The experimental platform can also enable the exquisite mechanical control in other nanomaterials using substrate-induced, on-demand, and controlled strains.
Collapse
Affiliation(s)
- Yixiu Wang
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Flex Laboratory, Purdue University, West Lafayette, IN, 47907, USA
| | - Shengyu Jin
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Flex Laboratory, Purdue University, West Lafayette, IN, 47907, USA
| | - Qingxiao Wang
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Min Wu
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Flex Laboratory, Purdue University, West Lafayette, IN, 47907, USA
| | - Shukai Yao
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Peilin Liao
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Moon J Kim
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, IN, 47907, USA.
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
Hölz K, Pavlic A, Lietard J, Somoza MM. Specificity and Efficiency of the Uracil DNA Glycosylase-Mediated Strand Cleavage Surveyed on Large Sequence Libraries. Sci Rep 2019; 9:17822. [PMID: 31780717 PMCID: PMC6883067 DOI: 10.1038/s41598-019-54044-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Uracil-DNA glycosylase (UDG) is a critical DNA repair enzyme that is well conserved and ubiquitous in nearly all life forms. UDG protects genomic information integrity by catalyzing the excision from DNA of uracil nucleobases resulting from misincorporation or spontaneous cytosine deamination. UDG-mediated strand cleavage is also an important tool in molecular biotechnology, allowing for controlled and location-specific cleavage of single- and double DNA chemically or enzymatically synthesized with single or multiple incorporations of deoxyuridine. Although the cleavage mechanism is well-understood, detailed knowledge of efficiency and sequence specificity, in both single and double-stranded DNA contexts, has so far remained incomplete. Here we use an experimental approach based on the large-scale photolithographic synthesis of uracil-containing DNA oligonucleotides to comprehensively probe the context-dependent uracil excision efficiency of UDG.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Angelina Pavlic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354, Freising, Germany.
| |
Collapse
|
25
|
Lietard J, Damha MJ, Somoza MM. Large-Scale Photolithographic Synthesis of Chimeric DNA/RNA Hairpin Microarrays To Explore Sequence Specificity Landscapes of RNase HII Cleavage. Biochemistry 2019; 58:4389-4397. [PMID: 31631649 PMCID: PMC6838787 DOI: 10.1021/acs.biochem.9b00806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Ribonuclease HII (RNase HII) is an essential endoribonuclease that binds to double-stranded DNA with RNA nucleotide incorporations and cleaves 5' of the ribonucleotide at RNA-DNA junctions. Thought to be present in all domains of life, RNase HII protects genomic integrity by initiating excision repair pathways that protect the encoded information from rapid degradation. There is sparse evidence that the enzyme cleaves some substrates better than others, but a large-scale study is missing. Such large-scale studies can be carried out on microarrays, and we employ chemical photolithography to synthesize very large combinatorial libraries of fluorescently labeled DNA/RNA chimeric sequences that self-anneal to form hairpin structures that are substrates for Escherichia coli RNase HII. The relative activity is determined by the loss of fluorescence upon cleavage. Each substrate includes a double-stranded 5 bp variable region with one to five consecutive ribonucleotide substitutions. We also examined the effect of all possible single and double mismatches, for a total of >9500 unique structures. Differences in cleavage efficiency indicate some level of substrate preference, and we identified the 5'-dC/rC-rA-dX-3' motif in well-cleaved substrates. The results significantly extend known patterns of RNase HII sequence specificity and serve as a template using large-scale photolithographic synthesis to comprehensively map landscapes of substrate specificity of nucleic acid-processing enzymes.
Collapse
Affiliation(s)
- Jory Lietard
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Masad J. Damha
- Department
of Chemistry, McGill University, 801 Rue Sherbrooke Ouest, Montreal, QC H3A
0B8, Canada
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| |
Collapse
|