1
|
He D, Wu X, Liu Z, Yang Q, Shi X, Song Q, Shi A, Li D, Yan L. Genome-Wide Association Study and Genomic Prediction of Soybean Mosaic Virus Resistance. Int J Mol Sci 2025; 26:2106. [PMID: 40076727 PMCID: PMC11900104 DOI: 10.3390/ijms26052106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Soybean mosaic virus (SMV), a pathogen responsible for inducing leaf mosaic or necrosis symptoms, significantly compromises soybean seed yield and quality. According to the classification system in the United States, SMV is categorized into seven distinct strains (G1 to G7). In this study, we performed a genome-wide association study (GWAS) in GAPIT3 using four analytical models (MLM, MLMM, FarmCPU, and BLINK) on 218 soybean accessions. We identified 22 SNPs significantly associated with G1 resistance across chromosomes 1, 2, 3, 12, 13, 17, and 18. Notably, a major quantitative trait locus (QTL) spanning 873 kb (29.85-30.73 Mb) on chromosome 13 exhibited strong association with SMV G1 resistance, including the four key SNP markers: Gm13_29459954_ss715614803, Gm13_29751552_ss715614847, Gm13_30293949_ss715614951, and Gm13_30724301_ss715615024. Within this QTL, four candidate genes were identified: Glyma.13G194100, Glyma.13G184800, Glyma.13G184900, and Glyma.13G190800 (3Gg2). The genomic prediction (GP) accuracies ranged from 0.60 to 0.83 across three GWAS-derived SNP sets using five models, demonstrating the feasibility of GP for SMV-G1 resistance. These findings could provide a useful reference in soybean breeding targeting SMV-G1 resistance.
Collapse
Affiliation(s)
- Di He
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China; (D.H.); (X.W.); (Z.L.); (Q.Y.); (X.S.)
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Xintong Wu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China; (D.H.); (X.W.); (Z.L.); (Q.Y.); (X.S.)
| | - Zhi Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China; (D.H.); (X.W.); (Z.L.); (Q.Y.); (X.S.)
| | - Qing Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China; (D.H.); (X.W.); (Z.L.); (Q.Y.); (X.S.)
| | - Xiaolei Shi
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China; (D.H.); (X.W.); (Z.L.); (Q.Y.); (X.S.)
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Dexiao Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Long Yan
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China; (D.H.); (X.W.); (Z.L.); (Q.Y.); (X.S.)
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Raza MM, Jia H, Razzaq MK, Li B, Li K, Gai J. Identification and functional validation of a new gene conferring resistance to Soybean Mosaic Virus strains SC4 and SC20 in soybean. FRONTIERS IN PLANT SCIENCE 2025; 15:1518829. [PMID: 39935688 PMCID: PMC11811538 DOI: 10.3389/fpls.2024.1518829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025]
Abstract
Soybean Mosaic Virus (SMV) poses a serious threat to soybean production, often resulting in considerable yield losses or complete crop failure, particularly if infection occurs during early growth stages. While several SMV resistance genes have been identified, the genetic basis of resistance to certain strains remains poorly understood. Among the 22 SMV strains, SC4 and SC20 are considered pathogenic in Central China. Dominant genes resistant to SC4 (Rsc4) on Chr.14 in Dabaima and to SC20 (Rsc20) on Chr.13 in Qihuang-1 have been identified. Kefeng-1 is resistant to SC4 and SC20. This study aimed to determine whether the resistance to SC4 and SC20 in Kefeng-1 was identical and whether Rsc4 and Rsc20 in Dabaima and Qihuang-1 are also present in Kefeng-1 due to translocation. Mendelian experiments using F1, F2, and recombinant inbred lines (RIL3:8) of Kefeng-1 (resistant) and NN1138-2 (susceptible) indicated a single dominant gene inheritance pattern in SC4 and SC20, respectively. Linkage mapping showed two loci for SC4 and SC20 in neighboring single nucleotide polymorphism linkage disequilibrium blocks (SNPLDB) marker regions of 253 kb and 375 kb, respectively, in Kefeng-1. Association between SNPs in possible gene regions of Kefeng-1 and resistance data showed SNP11692903 jointly as the most significant SNP, exhibiting the highest χ2 value. By comparing SNP11692903 to possible gene sequences in the coding region, Glyma02g13380 was identified as a joint candidate gene. The results were validated using qRT-PCR, virus induced gene silencing (VIGS), and gene-sequence. Therefore, the two Mendelian genes on chromosome 2 in Kefeng-1 responsible for SC4 and SC20 resistance are unique genes, different from Rsc4 in Dabaima and Rsc20 in Qihuang-1. Hence, one gene is involved in resistance toward two SMV strains resistance. This result challenged our previous hypothesis of a single dominant gene responsible for resistance against a single strain and underscored the potential for using multiple resistance sources aimed at enhancing SMV resistance in breeding practices.
Collapse
Affiliation(s)
| | | | | | | | - Kai Li
- Soybean Research Institute & MARA National Center for Soybean Improvement & Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junyi Gai
- *Correspondence: Kai Li, ; Junyi Gai,
| |
Collapse
|
3
|
Kang B, Liu L, Liu L, Liu M, Wu H, Peng B, Liang Z, Liu F, Zang Y, Gu Q. A Bifunctional Nuclease Promotes the Infection of Zucchini Yellow Mosaic Virus in Watermelon by Targeting P3. PLANTS (BASEL, SWITZERLAND) 2024; 13:3431. [PMID: 39683224 DOI: 10.3390/plants13233431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Potyviral P3 is involved in viral replication, movement, and pathogenicity; however, its biochemical function is unknown. In this study, the P3 of the zucchini yellow mosaic virus (ZYMV) interacted with ClBBD, a protein with high ortholog bifunctional nuclease activity, in watermelon. The binding site was shown via yeast two-hybrid screening and BiFC assay to be located at the N-terminus of P3 rather than P3N-PIPO. ClBBD localized predominantly to the chloroplast and plasma membrane. ZYMV P3 was also present in the nucleus and cytoplasm as aggregates. When co-expressed with P3 in tobacco, ClBBD formed aggregates with P3 in the cytoplasm. The knockdown of ClBBD using the VIGS vector pV190 and challenge with ZYMV revealed a positive correlation between viral accumulation and ClBBD expression, indicating that ClBBD reduces the resistance of watermelon to ZYMV. Furtherly, we found that when P3 and ClBBD were transiently co-expressed in tobacco, the level of P3 was significantly higher than that when it was expressed alone or co-expressed with GUS. It inferred that ClBBD may be able to stabilize the expression of P3. Overall, the results suggest that the interaction of P3 with ClBBD promotes virus infection, and ClBBD may be involved in stabilizing the expression level of P3.
Collapse
Affiliation(s)
- Baoshan Kang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453500, China
| | - Lifeng Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Liming Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Mei Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Huijie Wu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Bin Peng
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Zhiling Liang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Fengnan Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Yaoxing Zang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Qinsheng Gu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| |
Collapse
|
4
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2617-2634. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Xue Q, Li J, Vereecken S, Li Q, Zhi Z, Dubruel P, Taning CNT, De Schutter K. Functionally Modified Graphene Oxide as an Alternative Nanovehicle for Enhanced dsRNA Delivery in Improving RNAi-Based Insect Pest Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39365919 DOI: 10.1021/acs.jafc.4c05215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
RNA interference (RNAi) has shown substantial promise as a sustainable pest management solution. However, the efficacy of RNAi-based insecticides heavily relies on advanced nanocarrier-mediated delivery systems. In this study, we modified raw graphene oxide into positively charged nanocarriers (GONs) tailored to bind with double-stranded RNA (dsRNA). The resulting GONs@dsRNA complexes demonstrated a small particle size (106 nm) and maintained stability under various conditions, including insect gut extracts, extreme pH, and extreme temperature. Furthermore, GONs efficiently transported dsRNA molecules into Drosophila S2 cells and Lepidoptera Sf9 cells, leading to an enhanced target transcript knockdown. Targeting the vacuolar ATPase gene, vha26, induced significant mortality and target transcript knockdown in D. suzukii adults but not in S. exigua. Finally, GONs@dsRNA complexes exhibited negligible cytotoxicity at both the cellular and organismal levels. This study demonstrates the potential of GONs as a biosafe nanovehicle for efficient dsRNA delivery into insects, presenting an alternative strategy for advancing RNAi applications in fundamental studies and pest control.
Collapse
Affiliation(s)
- Qi Xue
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Jiangjie Li
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Sven Vereecken
- Polymer Chemistry and Biomaterials group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Zijian Zhi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Clauvis Nji Tizi Taning
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Kristof De Schutter
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
6
|
Sun P, Han X, Milne RJ, Li G. Trans-crop applications of atypical R genes for multipathogen resistance. TRENDS IN PLANT SCIENCE 2024; 29:1103-1112. [PMID: 38811244 DOI: 10.1016/j.tplants.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Genetic resistance to plant diseases is essential for global food security. Significant progress has been achieved for plant disease-resistance (R) genes comprising nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs), and membrane-localized receptor-like kinases or proteins (RLKs/RLPs), which we refer to as typical R genes. However, there is a knowledge gap in how non-receptor-type or atypical R genes contribute to plant immunity. Here, we summarize resources and technologies facilitating the study of atypical R genes, examine diverse atypical R proteins for broad-spectrum resistance, and outline potential approaches for trans-crop applications of atypical R genes. Studies of atypical R genes are important for a holistic understanding of plant immunity and the development of novel strategies in disease control and crop improvement.
Collapse
Affiliation(s)
- Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Latif MF, Tan J, Zhang W, Yang W, Zhuang T, Lu W, Qiu Y, Du X, Zhuang X, Zhou T, Kundu JK, Yin J, Xu K. Transgenic expression of artificial microRNA targeting soybean mosaic virus P1 gene confers virus resistance in plant. Transgenic Res 2024; 33:149-157. [PMID: 38842603 DOI: 10.1007/s11248-024-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
RNA silencing is an innate immune mechanism of plants against invasion by viral pathogens. Artificial microRNA (amiRNA) can be engineered to specifically induce RNA silencing against viruses in transgenic plants and has great potential for disease control. Here, we describe the development and application of amiRNA-based technology to induce resistance to soybean mosaic virus (SMV), a plant virus with a positive-sense single-stranded RNA genome. We have shown that the amiRNA targeting the SMV P1 coding region has the highest antiviral activity than those targeting other SMV genes in a transient amiRNA expression assay. We transformed the gene encoding the P1-targeting amiRNA and obtained stable transgenic Nicotiana benthamiana lines (amiR-P1-3-1-2-1 and amiR-P1-4-1-2-1). Our results have demonstrated the efficient suppression of SMV infection in the P1-targeting amiRNA transgenic plants in an expression level-dependent manner. In particular, the amiR-P1-3-1-2-1 transgenic plant showed high expression of amiR-P1 and low SMV accumulation after being challenged with SMV. Thus, a transgenic approach utilizing the amiRNA technology appears to be effective in generating resistance to SMV.
Collapse
Affiliation(s)
- Muhammad Faizan Latif
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingquan Tan
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Wang Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Wenxuan Yang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tinghui Zhuang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Wenlong Lu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xinying Du
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xinjian Zhuang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jiban K Kundu
- Plant Virus and Vector Interactions-Centre for Plant Virus Research, Crop Research Institute, Drnovská 507, 161 06, Prague, Czech Republic
- Laboratory of Virology-Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague, Czech Republic
| | - Jinlong Yin
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Kai Xu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Pu Y, Yan R, Jia D, Che Z, Yang R, Yang C, Wang H, Cheng H, Yu D. Identification of soybean mosaic virus strain SC7 resistance loci and candidate genes in soybean [Glycine max (L.) Merr.]. Mol Genet Genomics 2024; 299:54. [PMID: 38758218 DOI: 10.1007/s00438-024-02151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Soybean [Glycine max (L.) Merr.] is an important legume crop worldwide, which provides abundant plant protein and oil for human beings. Soybean mosaic virus (SMV) can cause serious damage to the yield and quality of soybean, but it is difficult to control SMV with chemicals, breeding SMV-resistant varieties has become the most effective way to control the disease. Therefore, it is important to identify SMV resistance genes from soybean resources and apply them to soybean breeding. In this study, the disease rates (DRs) of 219 soybean accessions to SMV strain SC7 in two environments were investigated. A high-density NJAU 355 K SoySNP array was used for genome-wide association study (GWAS) of DR. A 274 kb region on chromosome 15 (1,110,567 bp to 1,384,173 bp) was repeatedly detected in two environments. Six new significant single nucleotide polymorphisms (SNPs) on chromosome 15 were identified. Four of these six SNPs were located within two candidate genes, Glyma.15G015700 and Glyma.15G015800. The elite haplotype Glyma.15G015700Hap I with low DR exhibited strong resistance to SC7. The expression of Glyma.15G015700 in the SMV-resistant accession increased significantly after inoculation with SC7. Furthermore, most of the proteins predicted to interact with Glyma.15G015700 are heat shock proteins, which have been shown to be related to disease resistance. In summary, new SMV resistance loci and a new candidate gene, Glyma.15G015700, were identified and might be utilized in further soybean disease resistance breeding.
Collapse
Affiliation(s)
- Yixiang Pu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Rujuan Yan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dongbing Jia
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhijun Che
- School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, People's Republic of China
| | - Rufei Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Changyun Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
9
|
Zhang Y, Fan X, Cheng X. Analysis of Virus-Induced Double-Stranded RNA in Living Plant Cells by the dRBFC Assay. Methods Mol Biol 2024; 2771:27-33. [PMID: 38285387 DOI: 10.1007/978-1-0716-3702-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Double-stranded RNA (dsRNA) is the replicate intermediate of all RNA viruses, and is also recognized by their host cells as a virus-invading molecule signal. Analysis of the localization and dynamic of virus-induced dsRNA can reveal crucial information concerning the molecular mechanism of virus replication and host responses to viral infection. In this chapter, we provide an easy and efficient protocol called dsRNA binding-dependent fluorescence complementation (dRBFC) assay for labeling the dsRNAs in living plant cells using two different plant RNA viruses, namely potato virus X and turnip mosaic virus. Moreover, both YFP- and mRFP-based dRBFC plasmids are available for the flexibility of experiment design.
Collapse
Affiliation(s)
- Ying Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinyue Fan
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Jha UC, Nayyar H, Chattopadhyay A, Beena R, Lone AA, Naik YD, Thudi M, Prasad PVV, Gupta S, Dixit GP, Siddique KHM. Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration. FRONTIERS IN PLANT SCIENCE 2023; 14:1183505. [PMID: 37229109 PMCID: PMC10204772 DOI: 10.3389/fpls.2023.1183505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Grain legumes play a crucial role in human nutrition and as a staple crop for low-income farmers in developing and underdeveloped nations, contributing to overall food security and agroecosystem services. Viral diseases are major biotic stresses that severely challenge global grain legume production. In this review, we discuss how exploring naturally resistant grain legume genotypes within germplasm, landraces, and crop wild relatives could be used as promising, economically viable, and eco-environmentally friendly solution to reduce yield losses. Studies based on Mendelian and classical genetics have enhanced our understanding of key genetic determinants that govern resistance to various viral diseases in grain legumes. Recent advances in molecular marker technology and genomic resources have enabled us to identify genomic regions controlling viral disease resistance in various grain legumes using techniques such as QTL mapping, genome-wide association studies, whole-genome resequencing, pangenome and 'omics' approaches. These comprehensive genomic resources have expedited the adoption of genomics-assisted breeding for developing virus-resistant grain legumes. Concurrently, progress in functional genomics, especially transcriptomics, has helped unravel underlying candidate gene(s) and their roles in viral disease resistance in legumes. This review also examines the progress in genetic engineering-based strategies, including RNA interference, and the potential of synthetic biology techniques, such as synthetic promoters and synthetic transcription factors, for creating viral-resistant grain legumes. It also elaborates on the prospects and limitations of cutting-edge breeding technologies and emerging biotechnological tools (e.g., genomic selection, rapid generation advances, and CRISPR/Cas9-based genome editing tool) in developing virus-disease-resistant grain legumes to ensure global food security.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, Pulse Research Station, S.D. Agricultural University SK Nagar, SK Nagar, Gujarat, India
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University (KAU), Thiruvananthapuram, Kerala, India
| | - Ajaz A. Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST)-Kashmir, Srinagar, India
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | | | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Girish Prasad Dixit
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Che Z, Zhang S, Pu Y, Yang Y, Liu H, Yang H, Wang L, Zhang Y, Liu B, Zhang H, Wang H, Cheng H, Yu D. A novel soybean malectin-like receptor kinase-encoding gene, GmMLRK1, provides resistance to soybean mosaic virus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2692-2706. [PMID: 36728590 DOI: 10.1093/jxb/erad046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Soybean mosaic virus (SMV) severely damages soybean [Glycine max (L.) Merr.] yield and seed quality. Moreover, the underlying genetic determinants of resistance to SMV remain largely unknown. Here, we performed a genome-wide association study (GWAS) of SMV resistance in a panel of 219 diverse soybean accessions across four environments and identified a new resistance-related gene, GmMLRK1, at the major resistance locus Rsv4 on chromosome 2. GmMLRK1 encodes a malectin-like receptor kinase (RK) that was induced earlier and to a greater degree in leaves of the SMV-resistant cultivar Kefeng No. 1 than in those of the susceptible cultivar Nannong 1138-2 after inoculation. We demonstrated that soybean plants overexpressing GmMLRK1 show broad-spectrum resistance to both strains SC7 and SC3 on the basis of reduced viral accumulation, increased reactive oxygen species production, and local cell death associated with the hypersensitive response. In contrast, GmMLRK1 knockout mutants were more susceptible to both pathotypes. Haplotype analysis revealed the presence of five haplotypes (H1-H5) within the soybean population, and only H1 provided SMV resistance, which was independent of its tightly linked SMV resistance gene RNase-H at the same locus. These results report a novel gene that adds new understanding of SMV resistance and can be used for breeding resistant soybean accessions.
Collapse
Affiliation(s)
- Zhijun Che
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuyu Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yixiang Pu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hailun Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yuhang Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
13
|
Jin T, Yin J, Wang T, Xue S, Li B, Zong T, Yang Y, Liu H, Liu M, Xu K, Wang L, Xing G, Zhi H, Li K. R SC3 K of soybean cv. Kefeng No.1 confers resistance to soybean mosaic virus by interacting with the viral protein P3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:838-853. [PMID: 36330964 DOI: 10.1111/jipb.13401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Soybean mosaic virus (SMV) is one of the most devastating viral pathogens of soybean (Glycine max (L.) Merr). In total, 22 Chinese SMV strains (SC1-SC22) have been classified based on the responses of 10 soybean cultivars to these pathogens. However, although several SMV-resistance loci in soybean have been identified, no gene conferring SMV resistance in the resistant soybean cultivar (cv.) Kefeng No.1 has been cloned and verified. Here, using F2 -derived F3 (F2:3 ) and recombinant inbred line (RIL) populations from a cross between Kefeng No.1 and susceptible soybean cv. Nannong 1138-2, we localized the gene in Kefeng No.1 that mediated resistance to SMV-SC3 strain to a 90-kb interval on chromosome 2. To study the functions of candidate genes in this interval, we performed Bean pod mottle virus (BPMV)-induced gene silencing (VIGS). We identified a recombinant gene (which we named RSC3 K) harboring an internal deletion of a genomic DNA fragment partially flanking the LOC100526921 and LOC100812666 reference genes as the SMV-SC3 resistance gene. By shuffling genes between infectious SMV DNA clones based on the avirulent isolate SC3 and virulent isolate 1129, we determined that the viral protein P3 is the avirulence determinant mediating SMV-SC3 resistance on Kefeng No.1. P3 interacts with RNase proteins encoded by RSC3 K, LOC100526921, and LOC100812666. The recombinant RSC3 K conveys much higher anti-SMV activity than LOC100526921 and LOC100812666, although those two genes also encode proteins that inhibit SMV accumulation, as revealed by gene silencing in a susceptible cultivar and by overexpression in Nicotiana benthamiana. These findings demonstrate that RSC3 K mediates the resistance of Kefeng No.1 to SMV-SC3 and that SMV resistance of soybean is determined by the antiviral activity of RNase proteins.
Collapse
Affiliation(s)
- Tongtong Jin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Yin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Xue
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bowen Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingxuan Zong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunhua Yang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengzhuo Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Liqun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangnan Xing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haijian Zhi
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
15
|
Jin T, Karthikeyan A, Wang L, Zong T, Wang T, Yin J, Hu T, Yang Y, Liu H, Cui Y, Zhao T, Zhi H. Digs out and characterization of the resistance gene accountable to soybean mosaic virus in soybean (Glycine max (L.) Merrill). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4217-4232. [PMID: 36114309 DOI: 10.1007/s00122-022-04213-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
A putative candidate gene conferring resistance to SMV strain SC1 was identified on chromosome 2, and the linked marker was validated in soybean cultivars Soybean mosaic, caused by the soybean mosaic virus, is the most common disease in soybean and a significant impediment to soybean production in the Huanghuai and Yangtze River regions of China. Kefeng No.1, a soybean cultivar, showed high resistance to soybean mosaic virus strain (SC1) collected from Huanghuai and Yangtze River regions. Genetic analysis based on the Mendelian genic population derived from the cross Kefeng No.1 × Nannong 1138-2 revealed that Kefeng No.1 possesses a single dominant gene. Furthermore, genetic fine-mapping using an F2 population containing 281 individuals delimited resistant gene to a genomic region of 186 kb flanked by SSR markers BS020610 and BS020620 on chromosome 2. Within this region, there were 14 genes based on the Williams 82 reference genome. According to sequence analysis, six of the 14 genes have amino acid differences, and one of these genes is the Rsv4 allele designated as Rsc1-DR. The functional analysis of candidate genes using the bean pod mottle virus (BPMV)-induced gene silencing (VIGS) system revealed that Rsc1-DR was accountable for Kefeng No.1's resistance to SMV-SC1. Based on the genome sequence of Rsc1-DR, an Insertion/Deletion (InDel) molecular marker, JT0212, was developed and genotyped using 100 soybean cultivars, and the coincidence rate was 89%. The study enriched our understanding of the SMV resistance mechanism. The marker developed in this study could be directly used by the soybean breeders to select the genotypes with favorable alleles for making crosses, and also it will facilitate marker-assisted selection of SMV resistance in soybean breeding.
Collapse
Affiliation(s)
- Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingxuan Zong
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Hu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunhua Yang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongchun Cui
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Fine Mapping the Soybean Mosaic Virus Resistance Gene in Soybean Cultivar Heinong 84 and Development of CAPS Markers for Rapid Identification. Viruses 2022; 14:v14112533. [PMID: 36423142 PMCID: PMC9697120 DOI: 10.3390/v14112533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Heinong 84 is one of the major soybean varieties growing in Northeast China, and is resistant to the infection of all strains of soybean mosaic virus (SMV) in the region including the most prevalent strain, N3. However, the resistance gene(s) in Heinong 84 and the resistant mechanism are still elusive. In this study, genetic and next-generation sequencing (NGS)-based bulk segregation analysis (BSA) were performed to map the resistance gene using a segregation population from the cross of Heinong 84 and a susceptible cultivar to strain N3, Zhonghuang 13. Results show that the resistance of Heinong 84 is controlled by a dominant gene on chromosome 13. Further analyses suggest that the resistance gene in Heinong 84 is probably an allele of Rsv1. Finally, two pairs of single-nucleotide-polymorphism (SNP)-based primers that are tightly cosegregated with the resistance gene were designed for rapidly identifying resistant progenies in breeding via the cleaved amplified polymorphic sequence (CAPS) assay.
Collapse
|
17
|
Song S, Wang J, Yang X, Zhang X, Xin X, Liu C, Zou J, Cheng X, Zhang N, Hu Y, Wang J, Chen Q, Xin D. GsRSS3L, a Candidate Gene Underlying Soybean Resistance to Seedcoat Mottling Derived from Wild Soybean (Glycine soja Sieb. and Zucc). Int J Mol Sci 2022; 23:ijms23147577. [PMID: 35886929 PMCID: PMC9318458 DOI: 10.3390/ijms23147577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Soybeans are a major crop that produce the best vegetable oil and protein for use in food and beverage products worldwide. However, one of the most well-known viral infections affecting soybeans is the Soybean Mosaic Virus (SMV), a member of the Potyviridae family. A crucial method for preventing SMV damage is the breeding of resistant soybean cultivars. Adult resistance and resistance of seedcoat mottling are two types of resistance to SMV. Most studies have focused on adult-plant resistance but not on the resistance to seedcoat mottling. In this study, chromosome segment-substituted lines derived from a cross between Suinong14 (cultivated soybean) and ZYD00006 (wild soybean) were used to identify the chromosome region and candidate genes underlying soybean resistance to seed coat mottling. Herein, two quantitative trait loci (QTLs) were found on chromosome 17, and eighteen genes were found in the QTL region. RNA-seq was used to evaluate the differentially expressed genes (DEGs) among the eighteen genes located in the QTLs. According to the obtained data, variations were observed in the expression of five genes following SMV infection. Furthermore, Nicotiana benthamiana was subjected to an Agrobacterium-mediated transient expression assay to investigate the role of the five candidate genes in SMV resistance. It has also been revealed that Glyma.17g238900 encoding a RICE SALT SENSITIVE 3-like protein (RSS3L) can inhibit the multiplication of SMV in N.benthamiana. Moreover, two nonsynonymous single-nucleotide polymorphisms (SNPs) were found in the coding sequence of Glyma.17g238900 derived from the wild soybean ZYD00006 (GsRSS3L), and the two amino acid mutants may be associated with SMV resistance. Hence, it has been suggested that GsRSS3L confers seedcoat mottling resistance, shedding light on the mechanism of soybean resistance to SMV.
Collapse
|
18
|
Jiang H, Jia H, Hao X, Li K, Gai J. Mapping Locus R SC11K and predicting candidate gene resistant to Soybean mosaic virus strain SC11 through linkage analysis combined with genome resequencing of the parents in soybean. Genomics 2022; 114:110387. [PMID: 35569732 DOI: 10.1016/j.ygeno.2022.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Soybean mosaic virus (SMV) strain SC11 was prevalent in middle China. Its resistance was controlled by a Mendelian single dominant gene RSC11K in soybean Kefeng-1. This study aimed at mapping RSC11K and identifying its candidate gene. RSC11K locus was mapped ~217 kb interval between two SNP-linkage-disequilibrium-blocks (Gm02_BLOCK_11273955_11464884 and Gm02_BLOCK_11486875_11491354) in W82.a1.v1 genome using recombinant inbred lines population derived from Kefeng-1 (Resistant) × NN1138-2 (Susceptible), but inserted with a ~245 kb segment in W82.a2.v1 genome. In the entire 462 kb RSC11K region, 429 SNPs, 142 InDels and 34 putative genes were identified with more SNPs/InDels distributed in non-functional regions. Thereinto, ten genes contained SNP/InDel variants with high and moderate functional impacts on proteins, among which Glyma.02G119700 encoded a typical innate immune receptor-like kinase involving in virus disease process and responded to SMV inoculation, therefore was recognized as RSC11K's candidate gene. The novel RSC11K locus and candidate genes may help developing SMV resistance germplasm.
Collapse
Affiliation(s)
- Hua Jiang
- Soybean Research Institute & MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huiying Jia
- Soybean Research Institute & MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoshuai Hao
- Soybean Research Institute & MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kai Li
- Soybean Research Institute & MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junyi Gai
- Soybean Research Institute & MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General) & State Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
19
|
Usovsky M, Chen P, Li D, Wang A, Shi A, Zheng C, Shakiba E, Lee D, Canella Vieira C, Lee YC, Wu C, Cervantez I, Dong D. Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean. Viruses 2022; 14:1122. [PMID: 35746594 PMCID: PMC9230979 DOI: 10.3390/v14061122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review summarizes the history and current state of the known genetic basis for soybean resistance to Soybean mosaic virus (SMV), and examines how the integration of molecular markers has been utilized in breeding for crop improvement. SVM causes yield loss and seed quality reduction in soybean based on the SMV strain and the host genotype. Understanding the molecular underpinnings of SMV-soybean interactions and the genes conferring resistance to SMV has been a focus of intense research interest for decades. Soybean reactions are classified into three main responses: resistant, necrotic, or susceptible. Significant progress has been achieved that has greatly increased the understanding of soybean germplasm diversity, differential reactions to SMV strains, genotype-strain interactions, genes/alleles conferring specific reactions, and interactions among resistance genes and alleles. Many studies that aimed to uncover the physical position of resistance genes have been published in recent decades, collectively proposing different candidate genes. The studies on SMV resistance loci revealed that the resistance genes are mainly distributed on three chromosomes. Resistance has been pyramided in various combinations for durable resistance to SMV strains. The causative genes are still elusive despite early successes in identifying resistance alleles in soybean; however, a gene at the Rsv4 locus has been well validated.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65201, USA;
| | - Pengyin Chen
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Dexiao Li
- College of Agronomy, Northwest University of Agriculture, Jiangling, Xianyang 712100, China;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Ehsan Shakiba
- Rice Research and Extension Center, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Stuttgart, AR 72160, USA;
| | - Dongho Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Caio Canella Vieira
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Yi Chen Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Chengjun Wu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Innan Cervantez
- Bayer CropScience, Global Soybean Breeding, 1781 Gavin Road, Marion, AR 72364, USA;
| | - Dekun Dong
- Soybean Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
20
|
Bwalya J, Alazem M, Kim K. Photosynthesis-related genes induce resistance against soybean mosaic virus: Evidence for involvement of the RNA silencing pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:543-560. [PMID: 34962034 PMCID: PMC8916206 DOI: 10.1111/mpp.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 05/17/2023]
Abstract
Increasing lines of evidence indicate that chloroplast-related genes are involved in plant-virus interactions. However, the involvement of photosynthesis-related genes in plant immunity is largely unexplored. Analysis of RNA-Seq data from the soybean cultivar L29, which carries the Rsv3 resistance gene, showed that several chloroplast-related genes were strongly induced in response to infection with an avirulent strain of soybean mosaic virus (SMV), G5H, but were weakly induced in response to a virulent strain, G7H. For further analysis, we selected the PSaC gene from the photosystem I and the ATP-synthase α-subunit (ATPsyn-α) gene whose encoded protein is part of the ATP-synthase complex. Overexpression of either gene within the G7H genome reduced virus levels in the susceptible cultivar Lee74 (rsv3-null). This result was confirmed by transiently expressing both genes in Nicotiana benthamiana followed by G7H infection. Both proteins localized in the chloroplast envelope as well as in the nucleus and cytoplasm. Because the chloroplast is the initial biosynthesis site of defence-related hormones, we determined whether hormone-related genes are involved in the ATPsyn-α- and PSaC-mediated defence. Interestingly, genes involved in the biosynthesis of several hormones were up-regulated in plants infected with SMV-G7H expressing ATPsyn-α. However, only jasmonic and salicylic acid biosynthesis genes were up-regulated following infection with the SMV-G7H expressing PSaC. Both chimeras induced the expression of several antiviral RNA silencing genes, which indicate that such resistance may be partially achieved through the RNA silencing pathway. These findings highlight the role of photosynthesis-related genes in regulating resistance to viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture BiotechnologyCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Mazen Alazem
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Kook‐Hyung Kim
- Department of Agriculture BiotechnologyCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
- Research of Institute Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
21
|
Zhang Y, Song J, Wang L, Yang M, Hu K, Li W, Sun X, Xue H, Dong Q, Zhang M, Lou S, Yang X, Du H, Li Y, Dong L, Che Z, Cheng Q. Identifying Quantitative Trait Loci and Candidate Genes Conferring Resistance to Soybean Mosaic Virus SC7 by Quantitative Trait Loci-Sequencing in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:843633. [PMID: 35295631 PMCID: PMC8919070 DOI: 10.3389/fpls.2022.843633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Soybean mosaic virus (SMV) is detrimental to soybean (Glycine max) breeding, seed quality, and yield worldwide. Improving the basic resistance of host plants is the most effective and economical method to reduce damage from SMV. Therefore, it is necessary to identify and clone novel SMV resistance genes. Here, we report the characterization of two soybean cultivars, DN50 and XQD, with different levels of resistance to SMV. Compared with XQD, DN50 exhibits enhanced resistance to the SMV strain SC7. By combining bulked-segregant analysis (BSA)-seq and fine-mapping, we identified a novel resistance locus, R SMV -11, spanning an approximately 207-kb region on chromosome 11 and containing 25 annotated genes in the reference Williams 82 genome. Of these genes, we identified eleven with non-synonymous single-nucleotide polymorphisms (SNPs) or insertion-deletion mutations (InDels) in their coding regions between two parents. One gene, GmMATE68 (Glyma.11G028900), harbored a frameshift mutation. GmMATE68 encodes a multidrug and toxic compound extrusion (MATE) transporter that is expressed in all soybean tissues and is induced by SC7. Given that MATE transporter families have been reported to be linked with plant disease resistance, we suggest that GmMATE68 is responsible for SC7 resistance in DN50. Our results reveal a novel SMV-resistance locus, improving understanding of the genetics of soybean disease resistance and providing a potential new tool for marker-assisted selection breeding in soybean.
Collapse
Affiliation(s)
- Yong Zhang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Jiling Song
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Lei Wang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Mengping Yang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Kaifeng Hu
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Weiwei Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Xuhong Sun
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hong Xue
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Quanzhong Dong
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Mingming Zhang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Shubao Lou
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Xingyong Yang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hao Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yongli Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhijun Che
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
22
|
Yan T, Zhou Z, Wang R, Bao D, Li S, Li A, Yu R, Wuriyanghan H. A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. PLANT PHYSIOLOGY 2022; 188:1277-1293. [PMID: 34730802 PMCID: PMC8825445 DOI: 10.1093/plphys/kiab507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/12/2023]
Abstract
Soybean mosaic virus (SMV) is a severe soybean (Glycine max) pathogen. Here we characterize a soybean SMV resistance cluster (SRC) that comprises five resistance (R) genes. SRC1 encodes a Toll/interleukin-1 receptor and nucleotide-binding site (TIR-NBS [TN]) protein, SRC4 and SRC6 encode TIR proteins with a short EF-hand domain, while SRC7 and SRC8 encode TNX proteins with a noncanonical basic secretory protein (BSP) domain at their C-termini. We mainly studied SRC7, which contains a noncanonical BSP domain and gave full resistance to SMV. SRC7 possessed broad-spectrum antiviral activity toward several plant viruses including SMV, plum pox virus, potato virus Y, and tobacco mosaic virus. The TIR domain alone was both necessary and sufficient for SRC7 immune signaling, while the NBS domain enhanced its activity. Nuclear oligomerization via the interactions of both TIR and NBS domains was essential for SRC7 function. SRC7 expression was transcriptionally inducible by SMV infection and salicylic acid (SA) treatment, and SA was required for SRC7 triggered virus resistance. SRC7 expression was posttranscriptionally regulated by miR1510a and miR2109, and the SRC7-miR1510a/miR2109 regulatory network appeared to contribute to SMV-soybean interactions in both resistant and susceptible soybean cultivars. In summary, we report a soybean R gene cluster centered by SRC7 that is regulated at both transcriptional and posttranscriptional levels, possesses a yet uncharacterized BSP domain, and has broad-spectrum antiviral activities. The SRC cluster is special as it harbors several functional R genes encoding atypical TIR-NBS-LRR (TNL) type R proteins, highlighting its importance in SMV-soybean interaction and plant immunity.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ru Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Duran Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shanshan Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
23
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Cheng X, Luan Y, Wang A. In Vivo Detection of Double-Stranded RNA by dRBFC Assay. Methods Mol Biol 2022; 2400:1-9. [PMID: 34905185 DOI: 10.1007/978-1-0716-1835-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Double-stranded RNA (dsRNA) is the genomic material or replicate intermediate of RNA viruses, and is also a crucial signal molecule to trigger innate immune response and RNA silencing in eukaryotic organisms. Studying the subcellular localization and dynamic of dsRNA provides significant information for understanding RNA virus replication, host responses to virus infection, and viral diagnosis. Several antibody-dependent or -independent methods have been developed to in vivo or in vitro visualize dsRNA in cells. Here, we provide a step-by-step protocol for efficiently visualizing the distribution and dynamics of dsRNA in living plant cells.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Yameng Luan
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
25
|
Mai J, Liao L, Ling R, Guo X, Lin J, Mo B, Chen W, Yu Y. Study on RNAi-based herbicide for Mikania micrantha. Synth Syst Biotechnol 2021; 6:437-445. [PMID: 34901482 PMCID: PMC8637008 DOI: 10.1016/j.synbio.2021.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/10/2021] [Accepted: 11/09/2021] [Indexed: 01/26/2023] Open
Abstract
The invasive plant Mikania micrantha Kunth (M. micrantha) from South America poses a significant threat to the stability and biodiversity of ecosystems. However, an effective and economical method to control M. micrantha is still lacking. RNA interference (RNAi) has been widely studied and applied in agriculture for trait improvement. Spray-induced gene silencing (SIGS) can produce RNAi silencing effects without introducing heritable modifications to the plant genome and is becoming a novel nontransformation strategy for plant protection. In this study, the genes encoding chlorophyll a/b-binding proteins were selected as targets of RNAi, based on high-throughput sequencing of M. micrantha transcriptome and bioinformatic analyses of sequence specificity. Three types of RNAi molecules, double-stranded RNA, RNAi nanomicrosphere, and short hairpin RNA (shRNA), with their corresponding short interfering RNA sequences were designed and synthesized for SIGS vector construction, from which each RNAi molecule was transcribed and extracted to be sprayed on M. micrantha leaves. Whereas water-treated control leaves remained green, leaves treated with RNAi molecules turned yellow and eventually wilted. Quantitative real-time PCR showed that the expression levels of target genes were significantly reduced in the RNAi-treated groups compared with those of the control, suggesting that all three types of RNAi herbicides effectively silenced the endogenous target genes, which are essential for the growth of M. micrantha. We also found that shRNA showed better silencing efficiency than the other two molecules. Taken together, our study successfully designed three types of RNAi-based herbicides that specifically silenced endogenous target genes and controlled the growth of M. micrantha. Moreover, we identified a gene family encoding chlorophyll a/b-binding proteins that is important for the growth and development of M. micrantha and could serve as potential targets for controlling the spread of M. micrantha.
Collapse
Key Words
- Chlorophyll a/b-binding protein
- GMOs, genetically modified organisms
- HIGS, host-induced gene silencing
- Invasive plant
- LHCs, light-harvesting complexes
- Mikania micrantha
- Nucleic acid bioherbicide
- RNA interference
- RNAi, RNA interference
- RNP, RNAi nanomicrosphere
- SEM, scanning electron microscope
- SIGS, Spray-induced gene silencing
- Spray-induced gene silencing
- dsRNA, double-stranded RNA
- qRT-PCR, Quantitative real-time PCR
- shRNA, short hairpin RNA
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Jiantao Mai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518000, PR China
| | - Lingling Liao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518000, PR China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518000, PR China
| | - Xiaolong Guo
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518000, PR China
| | - Jingying Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518000, PR China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518000, PR China
| | - Weizhao Chen
- Shenzhen Key Laboratory for Microbial Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518000, PR China
| |
Collapse
|
26
|
Yin J, Wang L, Jin T, Nie Y, Liu H, Qiu Y, Yang Y, Li B, Zhang J, Wang D, Li K, Xu K, Zhi H. A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. MOLECULAR PLANT 2021; 14:1881-1900. [PMID: 34303025 DOI: 10.1016/j.molp.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mapping interval contains three nucleotide-binding domain leucine-rich repeat-containing (NLR) candidates (Rsc4-1, Rsc4-2, and Rsc4-3). The NLR-type resistant proteins were considered as important intracellular pathogen sensors in the previous studies. In this study, based on transient expression assay in Nicotiana benthamiana leaves, we found that the longest transcript of Rsc4-3 is sufficient to confer resistance to SMV, and CRISPR/Cas9-mediated editing of Rsc4-3 in resistant cultivar Dabaima compromised the resistance. Interestingly, Rsc4-3 encodes a cell-wall-localized NLR-type resistant protein. We found that the internal polypeptide region responsible for apoplastic targeting of Rsc4-3 and the putative palmitoylation sites on the N terminus are essential for the resistance. Furthermore, we showed that viral-encoded cylindrical inclusion (CI) protein partially localizes to the cell wall and can interact with Rsc4-3. Virus-driven or transient expression of CI protein of avirulent SMV strains is enough to induce resistance response in the presence of Rsc4-3, suggesting that CI is the avirulent gene for Rsc4-3-mediated resistance. Taken together, our work identified a unique NLR that recognizes plant virus in the apoplast, and provided a simple and effective method for identifying resistant genes against SMV infection.
Collapse
Affiliation(s)
- Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yang Nie
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hui Liu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yunhua Yang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bowen Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiaojiao Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dagang Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
27
|
Diao P, Sun H, Bao Z, Li W, Niu N, Li W, Wuriyanghan H. Expression of an Antiviral Gene GmRUN1 from Soybean Is Regulated via Intron-Mediated Enhancement (IME). Viruses 2021; 13:2032. [PMID: 34696462 PMCID: PMC8539222 DOI: 10.3390/v13102032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Most of R (resistance) genes encode the protein containing NBS-LRR (nucleotide binding site and leucine-rich repeat) domains. Here, N. benthamiana plants were used for transient expression assays at 3-4 weeks of age. We identified a TNL (TIR-NBS-LRR) encoding gene GmRUN1 that was resistant to both soybean mosaic virus (SMV) and tobacco mosaic virus (TMV). Truncation analysis indicated the importance of all three canonical domains for GmRUN1-mediated antiviral activity. Promoter-GUS analysis showed that GmRUN1 expression is inducible by both salicylic acid (SA) and a transcription factor GmDREB3 via the cis-elements as-1 and ERE (ethylene response element), which are present in its promoter region. Interestingly, GmRUN1 gDNA (genomic DNA) shows higher viral resistance than its cDNA (complementary DNA), indicating the existence of intron-mediated enhancement (IME) for GmRUN1 regulation. We provided evidence that intron2 of GmRUN1 increased the mRNA level of native gene GmRUN1, a soybean antiviral gene SRC7 and also a reporter gene Luciferase, indicating the general transcriptional enhancement of intron2 in different genes. In summary, we identified an antiviral TNL type soybean gene GmRUN1, expression of which was regulated at different layers. The investigation of GmRUN1 gene regulatory network would help to explore the mechanism underlying soybean-SMV interactions.
Collapse
Affiliation(s)
- Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Hongyu Sun
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Zhuo Bao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Wenxia Li
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Niu Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| |
Collapse
|
28
|
Liu XT, Wu XY, Wu WP, Wu M, Chen JQ, Wang B. A bean common mosaic virus-resistance gene in the soybean variant V94-5152 was mapped to the Rsv4 locus conferring resistance to soybean mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2367-2377. [PMID: 33997918 DOI: 10.1007/s00122-021-03829-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE In the soybean variant V94-5152, a BCMV-resistance gene was mapped near to the region of SMV-resistance Rsv4 locus, raising a possibility that V94-5152 may rely on Rsv4 locus to resist against both SMV and BCMV. Both Soybean mosaic virus (SMV) and Bean common mosaic virus (BCMV) can induce soybean mosaic diseases, but few studies have explored soybean resistance against BCMV so far. In this study, V94-5152, a soybean variant resistant to BCMV and SMV, was crossed with a susceptible cultivar, Williams 82 to map the resistance gene. By inoculating 292 F2 individuals with a BCMV isolate HZZB011, a segregation ratio of 3 resistant: 1 susceptible was observed, suggesting that V94-5152 possesses a single-dominant resistance gene against BCMV-HZZB011. Bulk segregation analysis (BSA) then revealed that the resistance gene is closely linked to BARCSOYSSR_02_0617, a simple sequence repeat (SSR) marker on chromosome 2. Genotyping neighboring SSR markers among the 292 F2 individuals enabled us to draw a genetic linkage map, which indicated that the BCMV-resistance gene is located 0.2 cM downstream of BARCSOYSSR_02_0617. Amplification and sequencing ten candidate genes (Glyma02g121300 to Glyma02g122200) around this marker then revealed four genes containing nonsynonymous changes or indels. Also, this location is near to the recently cloned SMV-resistance Rsv4 locus from the cultivar Peking. By obtaining ten more sequences of Rsv4 locus from cultivated and wild soybean materials, we further investigated the variation and evolutionary patterns of this virus-resistance locus. It was evident that positive selections had been acting on this locus, with one critical amino acid change (R55P) shared by all resistance soybeans tested.
Collapse
Affiliation(s)
- Xue-Ting Liu
- School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Xiao-Yi Wu
- School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Wen-Ping Wu
- School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Mian Wu
- School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| | - Jian-Qun Chen
- School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| | - Bin Wang
- School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| |
Collapse
|
29
|
Zhao X, Jing Y, Luo Z, Gao S, Teng W, Zhan Y, Qiu L, Zheng H, Li W, Han Y. GmST1, which encodes a sulfotransferase, confers resistance to soybean mosaic virus strains G2 and G3. PLANT, CELL & ENVIRONMENT 2021; 44:2777-2792. [PMID: 33866595 DOI: 10.1111/pce.14066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Soybean mosaic virus (SMV) is one of the most widespread and devastating viral diseases worldwide. The genetic architecture of qualitative resistance to SMV in soybean remains unclear. Here, the Rsvg2 locus was identified as underlying soybean resistance to SMV by genome-wide association and linkage analyses. Fine mapping results showed that soybean resistance to SMV strains G2 and G3 was controlled by a single dominant gene, GmST1, on chromosome 13, encoding a sulfotransferase (SOT). A key variation at position 506 in the coding region of GmST1 associated with the structure of the encoded SOT and changed SOT activity levels between RSVG2-S and RSVG2-R alleles. In RSVG2-S allele carrier "Hefeng25", the overexpression of GmST1 carrying the RSVG2-R allele from the SMV-resistant line "Dongnong93-046" conferred resistance to SMV strains G2 and G3. Compared to Hefeng25, the accumulation of SMV was decreased in transgenic plants carrying the RSVG2-R allele. SMV infection differentiated both the accumulation of jasmonates and expression patterns of genes involved in jasmonic acid (JA) signalling, biosynthesis and catabolism in RSVG2-R and RSVG2-S allele carriers. This characterization of GmST1 suggests a new scenario explaining soybean resistance to SMV.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yan Jing
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Zhenghui Luo
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Sainan Gao
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkun Zheng
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| |
Collapse
|
30
|
Yano M, Inoue T, Nakata R, Teraishi M, Yoshinaga N, Ono H, Okumoto Y, Mori N. Evaluation of antixenosis in soybean against Spodoptera litura by dual-choice assay aided by a statistical analysis model: Discovery of a novel antixenosis in Peking. JOURNAL OF PESTICIDE SCIENCE 2021; 46:182-188. [PMID: 34135679 PMCID: PMC8175227 DOI: 10.1584/jpestics.d21-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The method for evaluating soybean (Glycine max) antixenosis against the common cutworm (Spodoptera litura) was developed based on a dual-choice assay aided by a statistical analysis model. This model was constructed from the results of a dual-choice assay in which Enrei, a soybean cultivar susceptible to S. litura, was used as both a standard and a test leaf disc for 2nd-5th instar larvae. The statistical criterion created by this model enabled the evaluation of the presence of antixenosis. This method was applied to four soybean varieties, including Tamahomare (susceptible), Himeshirazu (resistant), IAC100 (resistant), and Peking (unknown), as well as Enrei. Subsequently, the degrees of antixenosis were also compared by F-test, followed by maximum likelihood estimation (MLE). According to the results, the antixenosis of Tamahomare, Himeshirazu, and IAC100 was statistically reevaluated and Peking exhibited a novel antixenosis, which was stronger for 3rd-5th instar larvae than for 2nd instar.
Collapse
Affiliation(s)
- Mariko Yano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Takato Inoue
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Ryu Nakata
- Department of Bioscience and Biotechnology, Kyoto University of Advanced Science, 1–1 Nanjo Otani, Sogabe, Kameoka, Kyoto 621–8555, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Naoko Yoshinaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Hajime Ono
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| |
Collapse
|
31
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
32
|
Amari K, Niehl A. Nucleic acid-mediated PAMP-triggered immunity in plants. Curr Opin Virol 2020; 42:32-39. [DOI: 10.1016/j.coviro.2020.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022]
|
33
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
34
|
Baebler Š, Coll A, Gruden K. Plant Molecular Responses to Potato Virus Y: A Continuum of Outcomes from Sensitivity and Tolerance to Resistance. Viruses 2020; 12:E217. [PMID: 32075268 PMCID: PMC7077201 DOI: 10.3390/v12020217] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Potato virus Y (PVY) is the most economically important virus affecting potato production. PVY manipulates the plant cell machinery in order to successfully complete the infecting cycle. On the other side, the plant activates a sophisticated multilayer immune defense response to combat viral infection. The balance between these mechanisms, depending on the plant genotype and environment, results in a specific outcome that can be resistance, sensitivity, or tolerance. In this review, we summarize and compare the current knowledge on molecular events, leading to different phenotypic outcomes in response to PVY and try to link them with the known molecular mechanisms.
Collapse
|
35
|
Soybean Resistance to Soybean Mosaic Virus. PLANTS 2020; 9:plants9020219. [PMID: 32046350 PMCID: PMC7076706 DOI: 10.3390/plants9020219] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean–SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.
Collapse
|