1
|
Wang Y, Tan Z, Wei H, Zhang N, Wang L, Yang Y, Liu W, Zhu L. Protein Engineering of Tagatose 4-Epimerase for D-Tagatose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40350604 DOI: 10.1021/acs.jafc.5c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
D-Tagatose, a promising sugar substitute with various functional properties and commercial applications, can be enzymatically converted from D-fructose by tagatose 4-epimerase. The development of an efficient tagatose 4-epimerase that catalyzes the conversion of D-fructose into D-tagatose is essential to make the production technology of D-tagatose applicable. In this study, tagatose 4-epimerase from Thermotogae (TsT4Ease) was engineered through semi-rational design and directed evolution, resulting in a 2.8-fold improvement in catalytic activity compared to the wild type (WT). The production of D-tagatose reached 42 g/L in 2 h. Crystal structure analysis determined the structural features with a common (α/β)8-TIM barrel and a Zn2+-binding architecture at the active center. Subsequent molecular dynamics (MD) simulations revealed that the substitutions improved substrate binding energy and stabilized the active pocket. This study offers new insights into the structure-function relationship of TsT4Ease and provides a candidate tagatose 4-epimerase.
Collapse
Affiliation(s)
- Yuxin Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Zijian Tan
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongli Wei
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Nan Zhang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lifei Wang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Yifan Yang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Weidong Liu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Leilei Zhu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Chen J, Wei Y, Ni D, Zhu Y, Xu W, Zhang W, Mu W. Biochemical characterization and biocatalytic application of a hyperthermostable tagatose 4-epimerase from Infirmifilum uzonense. Int J Biol Macromol 2025; 305:141168. [PMID: 39965353 DOI: 10.1016/j.ijbiomac.2025.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/15/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
D-Tagatose is a representative rare sugar with the physiochemical properties of low energy and high sweetness, as well as excellent physiological functions such as blood sugar regulation, enhancement of intestinal flora, and prevention of dental caries. At present, D-tagatose production involves lactose hydrolysis and D-galactose isomerization processes, resulting in high production costs that hinder its industrial advancement. Tagatose 4-epimerase (T4Ease) has the capability to directly convert d-fructose into D-tagatose through C-4 epimerization, providing a new approach for D-tagatose production. In this study, a hyperthermostable T4Ease from Infirmifilum uzonense (Inuz-TE4ase) was identified from the Foldseek clustered AlphaFold database and its biochemical properties were characterized in detail. Under the optimal reaction conditions of 90 °C and pH 8.5 (Tris-HCl) with the addition of 1 mM Ni2+, the maximum catalytic activity towards d-fructose was determined to be 0.680 U/mg. Inuz-TE4ase exhibited exceptional thermostability, with half-life (t1/2) values of 19.3 h at 85 °C and 8.9 h at 90 °C, respectively. Inuz-TE4ase was strictly metal-dependent, and its stability could be enhanced by Ni2+ with an increase in the melting temperature (Tm) value from 101.1 °C to 105.7 °C. When 100 g/L d-fructose was used as the substrate, Inuz-TE4ase could catalyze the production of 21.67 g/L D-tagatose, indicating its significant potential for D-tagatose bioproduction.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuhan Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Wen X, Lin H, Liu G, Ning Y, Xu X, Hu H, Ren Y, Li C, Zhang C, Dong N, Song X, Lin J, Lin J. Eco-friendly production, separation and purification of D-tagatose and D-allulose from whey powder via one-pot whole-cells biotransformation, yeast fermentation and chromatography. Food Res Int 2025; 207:116109. [PMID: 40086967 DOI: 10.1016/j.foodres.2025.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Whey powder (WP), a dairy by-product with high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), presents challenges due to its high production, low-value utilization, and environmental pollution. Based on the idea of turning waste into treasure, high-value use of WP was studied. Firstly, an engineered Bacillus subtilis co-expressing β-galactosidase (β-Gal) and L-arabinose isomerase (LAI) was constructed, which ultimately yielded 77.5 g/L D-tagatose from 500 g/L lactose. Subsequently, an engineered Escherichia coli co-expressing glucose isomerase (GI) and D-allulose 3-epimerase (DAE) was used together with above recombinant B. subtilis in a one-pot whole-cell biotransformation, and 29.11 g/L D-tagatose and 11.45 g/L D-allulose were derived from 200 g/L WP (equating to 140 g/L lactose) with yield of 0.29 g rare sugars/g lactose. In addition, the d-glucose, d-fructose and D-galactose in the reaction solution were removed by Saccharomyces cerevisiae S288C fermentation, and finally chromatography was used in separation of D-tagatose and D-allulose to obtain the purified products with 97.5 % and 95.0 % purities, respectively. This study showcases the eco-friendly production of D-tagatose and D-allulose from WP, with their separation and purification via yeast fermentation and chromatography successfully carried out for the first time.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Guangwen Liu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Yuhang Ning
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Xixian Xu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Hongtao Hu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Yilin Ren
- Qingdao Longding Biotech Limited Company, Qingdao 266108, China
| | - Can Li
- School of Biological Engineering, Qilu University of Technology, Jinan 250353, China
| | - Chengjia Zhang
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Nannan Dong
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China.
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China.
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
4
|
Palur DK, Taylor JE, Luu B, Anderson IC, Arredondo A, Gannalo T, Skorka BA, Denish PR, Didzbalis J, Siegel JB, Atsumi S. Activating the d-Tagatose Production Capacity of Escherichia coli with Structural Insights into C4 Epimerase Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6124-6134. [PMID: 39999377 PMCID: PMC11907403 DOI: 10.1021/acs.jafc.4c12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
d-Tagatose, a rare low-calorie sweetener, is ideal for beverages due to its high solubility and low viscosity. Current enzymatic production methods from d-galactose or d-galactitol are limited by reaction reversibility, affecting the yield and purity. This study demonstrates that Escherichia coli harbors a thermodynamically favorable pathway for producing d-tagatose from d-glucose via phosphorylation-epimerization-dephosphorylation steps. GatZ and KbaZ, annotated as aldolase chaperones, exhibit C4 epimerization activity, converting d-fructose-6-phosphate to d-tagatose-6-phosphate. Structural analysis reveals active site differences between these enzymes and class II aldolases, indicating functional divergence. By exploiting the strains' inability to metabolize d-tagatose, carbon starvation was applied to remove sugar byproducts. The engineered strains converted 45 g L-1 d-glucose to d-tagatose, achieving a titer of 7.3 g L-1 and a productivity of 0.1 g L-1 h-1 under test tube conditions. This approach highlights E. coli as a promising host for efficient d-tagatose production.
Collapse
Affiliation(s)
- Dileep
Sai Kumar Palur
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Jayce E. Taylor
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Bryant Luu
- Biochemistry,
Molecular, Cellular, and Developmental Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Ian C. Anderson
- Integrative
Genetics and Genomics, University of California,
Davis, Davis, California 95616, United States
| | - Augustine Arredondo
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
- Genome Center, University of
California, Davis, California 95616, United States
| | - Trevor Gannalo
- Biochemistry,
Molecular, Cellular, and Developmental Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Bryan A. Skorka
- Biophysics
Graduate Group, University of California,
Davis, Davis, California 95616, United States
| | - Pamela R. Denish
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - John Didzbalis
- Mars,
Incorporated, 6885 Elm Street, McLean, Virginia 22101, United
States
| | - Justin B. Siegel
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular, and Developmental Graduate Group, University of California, Davis, Davis, California 95616, United States
- Integrative
Genetics and Genomics, University of California,
Davis, Davis, California 95616, United States
- Biophysics
Graduate Group, University of California,
Davis, Davis, California 95616, United States
- Genome Center, University of
California, Davis, California 95616, United States
- Department
of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California 95616, United States
| | - Shota Atsumi
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular, and Developmental Graduate Group, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Zhang X, Chu J, Lv Y, Li X, Yin A, Huang Y. Construction of a multienzyme cascade reaction system and its application in D-tagatose biosynthesis. AMB Express 2025; 15:28. [PMID: 39921796 PMCID: PMC11807042 DOI: 10.1186/s13568-025-01830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
D-tagatose, a low-calorie rare sugar, has significant potential in food, medicine, cosmetics, and other industries owing to its high application value and market potential. In this study, Escherichia coli BL21 was used as the starting strain to express the β-galactosidase (β-Gal) gene-BgaB-derived from Bacillus stearothermophilus and the L-arabinose isomerase (L-AI) gene-araA-derived from Thermus sp., yielding the genetically engineered strains E. coli BL21-pET28a-BgaB and E. coli BL21-pET28a-araA. These strains synthesized D-tagatose using β-Gal and L-AI with a conversion rate of 23.73%. Based on this, we constructed a multienzyme cascade pathway comprising β-Gal, L-AI, glucose isomerase (GI), fructose kinase (FK), D-tagatose-bisphosphate aldolase (GatZ), polyphosphate kinase (PPK), and phosphatase (PGP), further enhancing D-tagatose biosynthesis. This multienzyme approach improved the conversion of the intermediate product D-glucose to D-tagatose by 3.84% compared with the dual-enzyme system. Thus, our study provides a theoretical basis and technical support for the industrial production of D-tagatose.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Jie Chu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Yuanqiang Lv
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Aijiao Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Yanhua Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
6
|
Zhao Y, Duan X, Zhang J, Ding Y, Liu Q. Advances in the bioproduction of d-allulose: A comprehensive review of current status and future prospects. Food Res Int 2025; 202:115767. [PMID: 39967077 DOI: 10.1016/j.foodres.2025.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
As living standards rise, the overconsumption of sugary and calorific foods has led to a rise in obesity, diabetes, and other diseases. In response to the increasing demand for healthier diets, the food industry is actively seeking sugar alternatives. Among these alternatives, d-allulose as a functional sweetener has garnered significant attention for its low-calorie content, low glycemic index, and health benefits. This review summarizes recent advancements in d-allulose research, including its physiological functions, potential applications, and bioproduction methods. This review consolidates the known physiological functions of d-allulose and assesses its potential applications in the food and medical industries. Furthermore, the review explores recent progress in biotechnological production technologies, such as enzymatic conversion and microbial fermentation, which are key to producing d-allulose. d-Allulose is a standout natural sweetener with low calories and a low glycemic index, providing health benefits like lowering blood sugar and lipids, antioxidants, preventing obesity, and regulating metabolism. In the food industry, d-allulose is suitable for use in a variety of products, including baked goods, beverages, confectionery, and yogurt. The primary methods for its production are enzymatic conversion and microbial fermentation, both of which offer scalable and sustainable approaches. Recent research has advanced the production of d-allulose using low-cost raw materials, including agricultural and forestry waste, and even CO2, highlighting a move towards more sustainable production methods. With its diverse physiological functions and broad application prospects, d-allulose holds significant potential for growth in both the food and healthcare sectors.
Collapse
Affiliation(s)
- Yang Zhao
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jinbo Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yucheng Ding
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qianqian Liu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
7
|
Nakakita SI, Hirabayashi J. Transforming monosaccharides: Recent advances in rare sugar production and future exploration. BBA ADVANCES 2025; 7:100143. [PMID: 39926187 PMCID: PMC11803239 DOI: 10.1016/j.bbadva.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Rare sugars are defined as monosaccharides and their derivatives that do not exist in nature at all or that exist in extremely limited amounts despite being theoretically possible. At present, no comprehensive dogma has been presented regarding how and why these rare sugars have deviated from the naturally selected monosaccharides. In this minireview, we adopt a hypothesis on the origin and evolution of elementary hexoses, previously presented by one of the authors (Hirabayashi, Q Rev Biol, 1996, 71:365-380). In this scenario, monosaccharides, which constitute various kinds of glycans in nature, are assumed to have been generated by formose reactions on the prebiotic Earth (chemical evolution era). Among them, the most stable hexoses, i.e., fructose, glucose, and mannose remained accumulated. After the birth of life, the "chemical origin" saccharides thus survived were transformed into a variety of "bricolage products", which include galactose and other recognition saccharides like fucose and sialic acid through the invention of diverse metabolic pathways (biological evolution era). The remaining monosaccharides that have deviated from this scenario are considered rare sugars. If we can produce rare sugars as we wish, it is expected that various more useful biomaterials will be created by using them as raw materials. Thanks to the pioneering research of the Izumori group in the 1990's, and to a few other investigations by other groups, almost all monosaccharides including l-sugars can now be produced by combining both chemical and enzymatic approaches. After briefly giving an overview of the origin of elementary hexoses and the current state of the rare sugar production, we will look ahead to the next generation of monosaccharide research which also targets glycosides including disaccharides.
Collapse
Affiliation(s)
- Shin-ichi Nakakita
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Saiwai, Takamatsu, Kagawa 760-8521 Japan
| | - Jun Hirabayashi
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- Institute for Glyco-core Research, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-0814, Japan
| |
Collapse
|
8
|
Xu X, Gao J, Qing L, Zhang M, Sun J, Jiang H, Wang S, Dong H, Mao X. Artificial Cascade Transformation Biosystem for One-Pot Biomanufacturing of Odd-Numbered Neoagarooligosaccharides and d-Tagatose through Wiser Agarose Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26339-26347. [PMID: 39545938 DOI: 10.1021/acs.jafc.4c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The application of agarose oligosaccharides has garnered great attention, with their biological activities varying among different structures. However, it still meets a great bottleneck for the targeted production of odd-numbered neoagarooligosaccharides (NAOSs), such as neoagarotriose (NA3), due to the lack of one-step hydrolases. In this work, the α-agarase AgaA33 and β-galactosidase BgaD were synergistically used to prepare NA3 with agarose as a substrate. Additionally, an l-arabinose isomerase CaLAI from Clostridium acetobutylicum was characterized to valorize low-value byproducts (d-galactose) by forming d-tagatose, which exhibited good thermal stability without the need for additional metal ions. Under the optimal reaction conditions, the production of NA3 and d-galactose catalyzed by these three enzymes was 0.40 and 0.15 g/L, respectively. The artificial three-enzyme-based cascade transformation system not only achieved the highest production of NA3 until now but also allowed for the valorization of d-galactose, providing a wiser application route for agarose utilization.
Collapse
Affiliation(s)
- Xiaohan Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jing Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Liwei Qing
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Mingyue Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
| |
Collapse
|
9
|
Cui Y, Xu Z, Yue Y, Kong W, Kong J, Guo T. 2-O-α-D-glucosyl glycerol production by whole-cell biocatalyst of lactobacilli encapsulating sucrose phosphorylase with improved glycerol affinity and conversion rate. Microb Cell Fact 2024; 23:307. [PMID: 39543715 PMCID: PMC11566083 DOI: 10.1186/s12934-024-02586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND 2-O-α-D-glucosyl glycerol (2-αGG) is a valuable ingredient in cosmetics, health-care and food fields. Sucrose phosphorylase (SPase) is a favorable choice for biosynthesis of 2-αGG, while its glucosyl-acceptor affinity and thermodynamic feature remain largely unknown, limiting 2-αGG manufacturing. RESULTS Here, three SPases were obtained from lactobacilli and bifidobacteria, and the one encoded by Lb. reuteri SDMCC050455 (LrSP) had the best transglucosylation ability, with 2-αGG accounting for 86.01% in the total product. However, the LrSP exhibited an initial forward reaction rate of 11.83/s and reached equilibrium of 56.90% at 110 h, indicating low glycerol affinity and conversion rate. To improve catalytic efficiency, the LrSP was overexpressed in Lb. paracasei BL-SP, of which the intracellular SPase activity increased by 6.67-fold compared with Lb. reuteri SDMCC050455. After chemically permeabilized with Triton X-100, the whole-cell biocatalysis of Lb. paracasei BL-SP was prepared and showed the highest activity, with the initial forward reaction rate improved to 50.17/s and conversion rate risen to 80.79% within 17 h. Using the whole-cell biocatalyst, the final yield of 2-αGG was 203.21 g/L from 1 M sucrose and 1 M glycerol. CONCLUSION The food grade strain Lb. paracasei was used for the first time as cell factory to recombinantly express the LrSP and construct a whole-cell biocatalyst for the production of 2-αGG. After condition optimization and cell permeabilization, the whole-cell biocatalyst exhibited 23.89% higher equilibrium conversion and 9.10-fold of productivity compared with the pure enzyme catalytic system. This work would provide a reference for large-scale bioprocess of 2-αGG.
Collapse
Affiliation(s)
- Yue Cui
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Zhenxiang Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Yanying Yue
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Wentao Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, P. R. China.
| |
Collapse
|
10
|
Hernandez-Hernandez O, Sabater C, Calvete-Torre I, Doyagüez EG, Muñoz-Labrador AM, Julio-Gonzalez C, de Las Rivas B, Muñoz R, Ruiz L, Margolles A, Mancheño JM, Moreno FJ. Tailoring the natural rare sugars D-tagatose and L-sorbose to produce novel functional carbohydrates. NPJ Sci Food 2024; 8:74. [PMID: 39366963 PMCID: PMC11452612 DOI: 10.1038/s41538-024-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
This multidisciplinary study details the biosynthesis of novel non-digestible oligosaccharides derived from rare sugars, achieved through transfructosylation of D-tagatose and L-sorbose by levansucrase from Bacillus subtilis CECT 39 (SacB). The characterization of these carbohydrates using NMR and molecular docking was instrumental in elucidating the catalytic mechanism and substrate preference of SacB. Tagatose-based oligosaccharides were higher in abundance than L-sorbose-based oligosaccharides, with the most representative structures being: β-D-Fru-(2→6)-β-D-Fru-(2→1)-D-Tag and β-D-Fru-(2→1)-D-Tag. In vitro studies demonstrated the resistance of tagatose-based oligosaccharides to intestinal digestion and their prebiotic properties, providing insights into their structure-function relationship. β-D-Fru-(2→1)-D-Tag was the most resistant structure to small-intestinal digestion after three hours (99.8% remained unaltered). This disaccharide and the commercial FOS clustered in similar branches, indicating comparable modulatory properties on human fecal microbiota, and exerted a higher bifidogenic effect than unmodified tagatose. The bioconversion of selected rare sugars into β-fructosylated species with a higher degree of polymerization emerges as an efficient strategy to enhance the bioavailability of these carbohydrates and promote their interaction with the gut microbiota. These findings open up new opportunities for tailoring natural rare sugars, like D-tagatose and L-sorbose, to produce novel biosynthesized carbohydrates with functional and structural properties desirable for use as emerging prebiotics and low-calorie sweeteners.
Collapse
Affiliation(s)
| | - Carlos Sabater
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Inés Calvete-Torre
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ana M Muñoz-Labrador
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Cristina Julio-Gonzalez
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Blanca de Las Rivas
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Muñoz
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Lorena Ruiz
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - José M Mancheño
- Institute of Physical Chemistry 'Blas Cabrera' (IQF-CSIC), Serrano 119, 28006, Madrid, Spain
| | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Guan L, Zhu L, Wang K, Gao Y, Li J, Yan S, Zhang X, Ji N, Fan J, Zhou Y, Yao X, Li B. Biochemical characterization, structure-guided mutagenesis, and application of a recombinant D-allulose 3-epimerase from Christensenellaceae bacterium for the biocatalytic production of D-allulose. Front Bioeng Biotechnol 2024; 12:1365814. [PMID: 38476966 PMCID: PMC10927987 DOI: 10.3389/fbioe.2024.1365814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
D-Allulose has become a promising alternative sweetener due to its unique properties of low caloric content, moderate sweetness, and physiological effects. D-Allulose 3-epimerase (DAEase) is a promising enzyme for D-Allulose production. However, the low catalytic efficiency limited its large-scale industrial applications. To obtain a more effective biocatalyst, a putative DAEase from Christensenellaceae bacterium (CbDAE) was identified and characterized. The recombinant CbDAE exhibited optimum activity at pH 7.5°C and 55°C, retaining more than 60% relative activity from 40°C to 70°C, and the catalytic activity could be significantly increased by Co2+ supplementation. These enzymatic properties of purified CbDAE were compared with other DAEases. CbDAE was also found to possess desirable thermal stability at 55°C with a half-life of 12.4 h. CbDAE performed the highest relative activity towards D-allulose and strong affinity for D-fructose but relatively low catalytic efficiency towards D-fructose. Based on the structure-guided design, the best double-mutation variant G36N/W112E was obtained which reached up to 4.21-fold enhancement of catalytic activity compared with wild-type (WT) CbDAE. The catalytic production of G36N/W112E with 500 g/L D-fructose was at a medium to a higher level among the DAEases in 3.5 h, reducing 40% catalytic reaction time compared to the WT CbDAE. In addition, the G36N/W112E variant was also applied in honey and apple juice for D-allulose conversion. Our research offers an extra biocatalyst for D-allulose production, and the comprehensive report of this enzyme makes it potentially interesting for industrial applications and will aid the development of industrial biocatalysts for D-allulose.
Collapse
Affiliation(s)
- Lijun Guan
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Ling Zhu
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Kunlun Wang
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Yang Gao
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Jialei Li
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Song Yan
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Xindi Zhang
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Nina Ji
- Heilongjiang Academy of Agricultural Sciences, Soybean Institute, Harbin, China
| | - Jing Fan
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Ye Zhou
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Xinmiao Yao
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Bo Li
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| |
Collapse
|
12
|
Zhao J, Wang Z, Jin Q, Feng D, Lee J. Isomerization of Galactose to Tagatose: Recent Advances in Non-enzymatic Isomerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4228-4234. [PMID: 36867179 DOI: 10.1021/acs.jafc.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The valorization of galactose derived from acid whey to low-calorie tagatose has gained increasing attention. Enzymatic isomerization is of great interest but faces several challenges, such as poor thermal stability of enzymes and a long processing time. In this work, non-enzymatic (supercritical fluids, triethylamine, arginine, boronate affinity, hydrotalcite, Sn-β zeolite, and calcium hydroxide) pathways for galactose to tagatose isomerization were critically discussed. Unfortunately, most of these chemicals showed poor tagatose yields (<30%), except for calcium hydroxide (>70%). The latter is able to form a tagatose-calcium hydroxide-water complex, which stimulates the equilibrium toward tagatose and prevents sugar degradation. Nevertheless, the excessive use of calcium hydroxide may pose challenges in terms of economic and environmental feasibility. Moreover, the proposed mechanisms for the base (enediol intermediate) and Lewis acid (hydride shift between C-2 and C-1) catalysis of galactose were elucidated. Overall, it is crucial to explore novel and effective catalysts as well as integrated systems for isomerizing of galactose to tagatose.
Collapse
Affiliation(s)
- Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Zhuo Wang
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, United States
| | - Danyi Feng
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Juhee Lee
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| |
Collapse
|
13
|
Xu Y, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Sustainable bioproduction of natural sugar substitutes: Strategies and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Hernández S, Gallego M, Verdú S, Barat JM, Talens P, Grau R. Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractTexture-modified pumpkin was developed by using vacuum enzyme impregnation to soften texture to tolerable limits for the elderly population with swallowing and chewing difficulties. The impregnation process and macrostructural and microstructural enzyme action were explored by the laser light backscattering imaging technique and a microscopic study by digital image analysis. Texture was analyzed by a compression assay. The effect of enzyme treatment on antioxidant capacity and sugar content was evaluated and compared to the traditional cooking effect. Image analysis data demonstrated the effectiveness of the impregnation process and enzyme action on plant cell walls. Enzyme-treated samples at the end of the process had lower stiffness values with no fracture point, significantly greater antioxidant capacity and significantly lower total and reducing sugars contents than traditionally cooked pumpkins. The results herein obtained demonstrate the capability of using vacuum impregnation treatment with enzymes to soften pumpkins and their positive effects on antioxidant capacity and sugar content to develop safe and sensory-accepted texture-modified products for specific elderly populations.
Collapse
|
15
|
Milasing N, Khuwijitjaru P, Adachi S. Isomerization of galactose to tagatose using arginine as a green catalyst. Food Chem 2022; 398:133858. [DOI: 10.1016/j.foodchem.2022.133858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
|
16
|
Zhang G, Zabed HM, An Y, Yun J, Huang J, Zhang Y, Li X, Wang J, Ravikumar Y, Qi X. Biocatalytic conversion of a lactose-rich dairy waste into D-tagatose, D-arabitol and galactitol using sequential whole cell and fermentation technologies. BIORESOURCE TECHNOLOGY 2022; 358:127422. [PMID: 35688312 DOI: 10.1016/j.biortech.2022.127422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Dairy industry waste has been explored as a cheap and attractive raw material to produce various commercially important rare sugars. In this study, a lactose-rich dairy byproduct, namely cheese whey powder (CWP), was microbially converted into three low caloric sweeteners using whole-cell and fermentation technologies. Firstly, the simultaneous lactose hydrolysis and isomerization of lactose-derived D-galactose into D-tagatose was performed by an engineered Escherichia coli strain co-expressing β-galactosidase and L-arabinose isomerase, which eventually produced 68.35 g/L D-tagatose during sequential feeding of CWP. Subsequently, the mixed syrup containing lactose-derived D-glucose and residual D-galactose was subjected to fermentation by Metschnikowia pulcherrima E1, which produced 60.12 g/L D-arabitol and 28.26 g/L galactitol. The net titer of the three rare sugars was 156.73 g/L from 300 g/L lactose (equivalent to 428.57 g/L CWP), which was equivalent to 1.12 mol product/mol lactose and 52.24% conversion efficiency in terms of lactose.
Collapse
Affiliation(s)
- Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110161, Liaoning, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiaqi Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiangfei Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
17
|
Al'Abri IS, Haller DJ, Li Z, Crook N. Inducible directed evolution of complex phenotypes in bacteria. Nucleic Acids Res 2022; 50:e58. [PMID: 35150576 PMCID: PMC9177967 DOI: 10.1093/nar/gkac094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 11/15/2022] Open
Abstract
Directed evolution is a powerful method for engineering biology in the absence of detailed sequence-function relationships. To enable directed evolution of complex phenotypes encoded by multigene pathways, we require large library sizes for DNA sequences >5–10 kb in length, elimination of genomic hitchhiker mutations, and decoupling of diversification and screening steps. To meet these challenges, we developed Inducible Directed Evolution (IDE), which uses a temperate bacteriophage to package large plasmids and transfer them to naive cells after intracellular mutagenesis. To demonstrate IDE, we evolved a 5-gene pathway from Bacillus licheniformis that accelerates tagatose catabolism in Escherichia coli, resulting in clones with 65% shorter lag times during growth on tagatose after only two rounds of evolution. Next, we evolved a 15.4 kb, 10-gene pathway from Bifidobacterium breve UC2003 that aids E. coli’s utilization of melezitose. After three rounds of IDE, we isolated evolved pathways that both reduced lag time by more than 2-fold and enabled 150% higher final optical density. Taken together, this work enhances the capacity and utility of a whole pathway directed evolution approach in E. coli.
Collapse
Affiliation(s)
- Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Daniel J Haller
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
18
|
Zhang X, Lu R, Wang Q, Hu M, Li Z, Xu M, Yang T, Zhang R, Rao Z. Production of d-Tagatose by Whole-Cell Conversion of Recombinant Bacillus subtilis in the Absence of Antibiotics. BIOLOGY 2021; 10:biology10121343. [PMID: 34943259 PMCID: PMC8698901 DOI: 10.3390/biology10121343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary d-tagatose is a valuable monosaccharide in the food industry produced from lactose by β-galactosidase and arabinose isomerase. To improve its production safety, d-alanine-deficient heterologous gene expression systems were constructed without antibiotics. The integrated expression and co-expression plasmids were used in different systems, also exploiting the need for d-alanine during cellular metabolism. The integration of the β-galactosidase gene in recombinant is uniquely innovative and promising, applying common knockout techniques to the expression of target genes and the production of high-value products. Abstract d-tagatose is a popular functional monosaccharide produced from lactose by β-galactosidase and arabinose isomerase. In this study, two d-alanine-deficient heterologous gene expression systems were constructed, B. subtilis 168 D1 and B. subtilis 168 D2, using overlapping extension PCR and the CRE/loxP system. The lacZ gene for β-galactosidase was integrated into a specific locus of the chassis B. subtilis 168 D2. A mutually complementary plasmid pMA5 with the alanine racemase gene alrA attached to it was constructed and used to assemble recombinant plasmids overexpressing β-galactosidase and arabinose isomerase. Afterward, an integrated recombinant was constructed by the plasmid expressing the arabinose isomerase gene araA of E. coli transform-competent B. subtilis 168 D2 cells. The co-expressing plasmids were introduced into alanine racemase knockout B. subtilis 168 D1. Whole-cell bioconversion was performed using the integrated recombinant with a maximum yield of 96.8 g/L d-tagatose from 500 g/L lactose, and the highest molar conversions were 57.2%. B. subtilis 168 D1/pMA5-alrA-araA-lacZ is capable of single-cell one-step production of d-tagatose. This study provides a new approach to the production of functional sugars.
Collapse
|
19
|
Reagentless D-Tagatose Biosensors Based on the Oriented Immobilization of Fructose Dehydrogenase onto Coated Gold Nanoparticles- or Reduced Graphene Oxide-Modified Surfaces: Application in a Prototype Bioreactor. BIOSENSORS 2021; 11:bios11110466. [PMID: 34821682 PMCID: PMC8615923 DOI: 10.3390/bios11110466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
As electrode nanomaterials, thermally reduced graphene oxide (TRGO) and modified gold nanoparticles (AuNPs) were used to design bioelectrocatalytic systems for reliable D-tagatose monitoring in a long-acting bioreactor where the valuable sweetener D-tagatose was enzymatically produced from a dairy by-product D-galactose. For this goal D-fructose dehydrogenase (FDH) from Gluconobacter industrius immobilized on these electrode nanomaterials by forming three amperometric biosensors: AuNPs coated with 4-mercaptobenzoic acid (AuNP/4-MBA/FDH) or AuNPs coated with 4-aminothiophenol (AuNP/PATP/FDH) monolayer, and a layer of TRGO on graphite (TRGO/FDH) were created. The immobilized FDH due to changes in conformation and spatial orientation onto proposed electrode surfaces catalyzes a direct D-tagatose oxidation reaction. The highest sensitivity for D-tagatose of 0.03 ± 0.002 μA mM−1cm−2 was achieved using TRGO/FDH. The TRGO/FDH was applied in a prototype bioreactor for the quantitative evaluation of bioconversion of D-galactose into D-tagatose by L-arabinose isomerase. The correlation coefficient between two independent analyses of the bioconversion mixture: spectrophotometric and by the biosensor was 0.9974. The investigation of selectivity showed that the biosensor was not active towards D-galactose as a substrate. Operational stability of the biosensor indicated that detection of D-tagatose could be performed during six hours without loss of sensitivity.
Collapse
|
20
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
21
|
Schulz P, Rizvi SS. Hydrolysis of Lactose in Milk: Current Status and Future Products. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1983590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Patrick Schulz
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Syed S.H. Rizvi
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
22
|
Chen Q, Xu W, Wu H, Guang C, Zhang W, Mu W. An overview of D-galactose utilization through microbial fermentation and enzyme-catalyzed conversion. Appl Microbiol Biotechnol 2021; 105:7161-7170. [PMID: 34515844 DOI: 10.1007/s00253-021-11568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/05/2023]
Abstract
D-Galactose is an abundant carbohydrate monomer in nature and widely exists in macroalgae, plants, and dairy wastes. D-Galactose is useful as a raw material for biomass fuel production or low-calorie sweetener production, attracting increased attention. This article summarizes the studies on biotechnological processes for galactose utilization. Two main research directions of microbial fermentation and enzyme-catalyzed conversion from galactose-rich biomass are extensively reviewed. The review provides the recent discoveries for biofuel production from macroalgae, including the innovative methods in the pretreatment process and technological development in the fermentation process. As modern people pay more attention to health, enzyme technologies for low-calorie sweetener production are more urgently needed. D-Tagatose is a promising low-calorie alternative to sugar. We discuss the recent studies on characterization and genetic modification of L-arabinose isomerase to improve the bioconversion of D-galactose to D-tagatose. In addition, the trends and critical challenges in both research directions are outlined at the end. KEY POINTS: • The value and significance of galactose utilization are highlighted. • Biofuel production from galactose-rich biomass is accomplished by fermentation. • L-arabinose isomerase is a tool for bioconversion of D-galactose to D-tagatose.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
23
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
24
|
Suchý M, Charlton TA, Ben RN, Shuhendler AJ. Synthesis of natural/ 13C-enriched d-tagatose from natural/ 13C-enriched d-fructose. Carbohydr Res 2021; 507:108377. [PMID: 34303197 DOI: 10.1016/j.carres.2021.108377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
A concise, easily scalable synthesis of a rare ketohexose, d-tagatose, was developed, that is compatible with the preparation of d-[UL-13C6]tagatose. Epimerization of the widely available and inexpensive ketohexose d-fructose at the C-4 position via an oxidation/reduction (Dess-Martin periodinane/NaBH4) was a key step in the synthesis. Overall, fully protected natural d-tagatose (3.21 g) was prepared from d-fructose (9 g) on a 50 mmol scale in 23% overall yield, after five steps and two chromatographic purifications. d-[UL-13C6]Tagatose (92 mg) was prepared from d-[UL-13C6]fructose (465 mg, 2.5 mmol) in 16% overall yield after six steps and four chromatographic purifications.
Collapse
Affiliation(s)
- Mojmír Suchý
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Thomas A Charlton
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert N Ben
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam J Shuhendler
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
25
|
Voitechovič E, Stankevičiūtė J, Vektarienė A, Vektaris G, Jančienė R, Kuisienė N, Razumienė J, Meškys R. Bioamperometric Systems with Fructose Dehydrogenase From
Gluconobacter japonicus
for D‐Tagatose Monitoring. ELECTROANAL 2021. [DOI: 10.1002/elan.202060573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Edita Voitechovič
- Institute of Biochemistry, Life Sciences Center Vilnius University Saulėtekio av.7 LT-10257 Vilnius Lithuania
- Department of Nanoengineering Center for Physical Sciences and Technology Savanorių 231 LT-02300 Vilnius Lithuania
| | - Jonita Stankevičiūtė
- Institute of Biochemistry, Life Sciences Center Vilnius University Saulėtekio av.7 LT-10257 Vilnius Lithuania
| | - Aušra Vektarienė
- Institute of Theoretical Physics and Astronomy Vilnius University Saulėtekio av. 3 LT-10222 Vilnius Lithuania
| | - Gytis Vektaris
- Institute of Theoretical Physics and Astronomy Vilnius University Saulėtekio av. 3 LT-10222 Vilnius Lithuania
| | - Regina Jančienė
- Institute of Biochemistry, Life Sciences Center Vilnius University Saulėtekio av.7 LT-10257 Vilnius Lithuania
| | - Nomeda Kuisienė
- Institute of Biosciences, Life Sciences Center Vilnius University Saulėtekio av.7 LT-10257 Vilnius Lithuania
| | - Julija Razumienė
- Institute of Biochemistry, Life Sciences Center Vilnius University Saulėtekio av.7 LT-10257 Vilnius Lithuania
| | - Rolandas Meškys
- Institute of Biochemistry, Life Sciences Center Vilnius University Saulėtekio av.7 LT-10257 Vilnius Lithuania
| |
Collapse
|
26
|
Thomson GJ, Kakade P, Hirakawa MP, Ene IV, Bennett RJ. Adaptation to the dietary sugar D-tagatose via genome instability in polyploid Candida albicans cells. G3-GENES GENOMES GENETICS 2021; 11:6219300. [PMID: 33836061 PMCID: PMC8495922 DOI: 10.1093/g3journal/jkab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
The opportunistic fungal pathogen Candida albicans undergoes an unusual parasexual cycle wherein diploid cells mate to form tetraploid cells that can generate genetically diverse progeny via a non-meiotic program of chromosome loss. The genetic diversity afforded by parasex impacts clinically relevant features including drug resistance and virulence, and yet the factors influencing genome instability in C. albicans are not well defined. To understand how environmental cues impact genome instability, we monitored ploidy change following tetraploid cell growth in a panel of different carbon sources. We found that growth in one carbon source, D-tagatose, led to high levels of genomic instability and chromosome loss in tetraploid cells. This sugar is a stereoisomer of L-sorbose which was previously shown to promote karyotypic changes in C. albicans. However, while expression of the SOU1 gene enabled utilization of L-sorbose, overexpression of this gene did not promote growth in D-tagatose, indicating differences in assimilation of the two sugars. In addition, genome sequencing of multiple progeny recovered from D-tagatose cultures revealed increased relative copy numbers of chromosome 4, suggestive of chromosome-level regulation of D-tagatose metabolism. Together, these studies identify a novel environmental cue that induces genome instability in C. albicans, and further implicate chromosomal changes in supporting metabolic adaptation in this species.
Collapse
Affiliation(s)
- Gregory J Thomson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Matthew P Hirakawa
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.,Department of Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Iuliana V Ene
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.,Mycology Department, Pasteur Institute, Paris 75015, France
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
27
|
Jayaraman AB, Kandasamy T, Venkataraman D, S M. Rational design of Shewanella sp. l-arabinose isomerase for d-galactose isomerase activity under mesophilic conditions. Enzyme Microb Technol 2021; 147:109796. [PMID: 33992411 DOI: 10.1016/j.enzmictec.2021.109796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
d-Tagatose, a potential low calorific substitute for sucrose, can be produced by bioconversion of d-galactose catalysed by l-arabinose isomerase. l-Arabinose isomerase from Shewanella sp. ANA-3 is unique for its ability to catalyse bioconversion reactions under mesophilic conditions. However, d-galactose not being a natural substrate for l-arabinose isomerase is catalysed at a slower rate. We attempted to increase the biocatalytic efficiency of Shewanella sp. l-arabinose isomerase by rational design to enhance galactose isomerisation activity. In silico molecular docking, analysis has revealed that F279 is sterically hindering the binding of d-galactose at the C6 position. Substitution of bulky Phe residue with smaller hydrophilic residues such as Asn and Thr increased the galactose isomerase activity by 86 % and 12 % respectively. At mesophilic conditions, F279N mutant catalysed the bioconversion of d-galactose more efficiently than l-arabinose, indicating a shift in substrate preference.
Collapse
Affiliation(s)
- Arun Baskaran Jayaraman
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Thirukumaran Kandasamy
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | | | | |
Collapse
|
28
|
Ravikumar Y, Ponpandian LN, Zhang G, Yun J, Qi X. Harnessing -arabinose isomerase for biological production of -tagatose: Recent advances and its applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Wang D, Chen M, Zeng X, Li W, Liang S, Lin Y. Improving the catalytic performance of Pichia pastoris whole-cell biocatalysts by fermentation process. RSC Adv 2021; 11:36329-36339. [PMID: 35492776 PMCID: PMC9043429 DOI: 10.1039/d1ra06253k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Whole-cell biocatalysts have a wide range of applications in many fields. However, the transport of substrates is tricky when applying whole-cell biocatalysts for industrial production. In this research, P. pastoris whole-cell biocatalysts were constructed for rebaudioside A synthesis. Sucrose synthase was expressed intracellularly while UDP-glycosyltransferase was displayed on the cell wall surface simultaneously. As an alternative method, a fermentation process is applied to relieve the substrate transport-limitation of P. pastoris whole-cell biocatalysts. This fermentation process was much simpler, more energy-saving, and greener than additional operating after collecting cells to improve the catalytic ability of whole-cell biocatalysts. Compared with the general fermentation process, the protein production capacity of cells did not decrease. Meanwhile, the activity of whole-cell biocatalysts was increased to 262%, which indicates that the permeability and space resistance were improved to relieve the transport-limitations. Furthermore, the induction time was reduced from 60 h to 36 h. The fermentation process offered significant advantages over traditional permeabilizing reagent treatment and ultrasonication treatment based on the high efficiency and simplicity. Fermentation process was applied to relieve the substrate transport-limitation of P. pastoris whole-cell biocatalysts, which was much simpler, more energy-saving and greener than c traditional permeabilizing reagent and ultrasonication treatment.![]()
Collapse
Affiliation(s)
- Denggang Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Meiqi Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Xin Zeng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Wenjie Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Panyu, Guangzhou 510006, People's Republic of China
| |
Collapse
|
30
|
Sun L, Xin F, Alper HS. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol Adv 2021; 47:107694. [PMID: 33388370 DOI: 10.1016/j.biotechadv.2020.107694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
Food additives and colorants are extensively used in the food industry to improve food quality and safety during processing, storage and packing. Sourcing of these molecules is predominately through three means: extraction from natural sources, chemical synthesis, and bio-production, with the first two being the most utilized. However, growing demands for sustainability, safety and "natural" products have renewed interest in using bio-based production methods. Likewise, the move to more cultured foods and meat alternatives requires the production of new additives and colorants. The production of bio-based food additives and colorants is an interdisciplinary research endeavor and represents a growing trend in future food. To highlight the potential of microbial hosts for food additive and colorant production, we focus on current advances for example molecules based on their utilization stage and bio-production yield as follows: (I) approved and industrially produced with high titers; (II) approved and produced with decent titers (in the g/L range), but requiring further engineering to reduce production costs; (III) approved and produced with very early stage titers (in the mg/L range); and (IV) new/potential candidates that have not been approved but can be sourced through microbes. Promising approaches, as well as current challenges and future directions will also be thoroughly discussed for the bioproduction of these food additives and colorants.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States.
| |
Collapse
|
31
|
High resolution and high throughput analytical methods for d-tagatose and process related impurities using capillary electrophoresis. Anal Biochem 2020; 609:113981. [PMID: 33035461 DOI: 10.1016/j.ab.2020.113981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
d-tagatose is a low calorie multifunctional rare ketohexose sugar with sweetness similar to that of sucrose and it has high potential benefits for food and pharmaceutical industries. It is found in traces in some fruits as a natural component. In view of its high demand as a substitute for sugar, mass production of d-tagatose through enzymatic conversion of Lactose to d-tagatose is adopted. The existing HPLC method has limitations with respect sensitivity and resolution in quantification and monitoring of d-tagatose in the presence of its process related impurities. In the present investigation a new robust, fast and green analytical technique has been developed based on capillary electrophoresis (CE) for the separation and quantification of d-tagatose in presence of other sugars: Lactose, d-glucose, d-galactose and d-talose. Optimum conditions are found to be: Back Ground Electrolyte (BGE): 36 mM of Na2HPO4 and 130 mM of NaOH; pH: 12.6; voltage: +18 kV for high resolution and -18 kV for high throughput methods with direct UV-Detector at 265 nm. At these optimum conditions, good separation between the sugars is achieved in less than 20 min for high resolution and less than 4 min for high throughput methods. The developed methodology is validated as per ICHQ2R1 guide lines and successfully applied for monitoring d-tagatose during the enzymatic conversion of Lactose/d-galactose to d-tagatose and also to determine the unknown amounts of d-tagatose in crystallized samples and further, it is used in identifying the d-tagatose in fruits.
Collapse
|
32
|
Shin KC, Lee TE, Seo MJ, Kim DW, Kang LW, Oh DK. Development of Tagaturonate 3-Epimerase into Tagatose 4-Epimerase with a Biocatalytic Route from Fructose to Tagatose. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kyung-Chul Shin
- Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min-Ju Seo
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minneapolis, Minnesota 55108, United States
| | - Dae Wook Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
33
|
Zhang J, Dai Y, Jiang B, Zhang T, Chen J. Dual-enzyme co-immobilization for the one-pot production of glucose 6-phosphate from maltodextrin. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Bortone N, Fidaleo M. Stabilization of immobilizedl‐arabinose isomerase for the production ofd‐tagatose fromd‐galactose. Biotechnol Prog 2020; 36:e3033. [DOI: 10.1002/btpr.3033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Nadia Bortone
- Department for Innovation in Biological, Agro‐food and Forest Systems University of Tuscia Viterbo Italy
| | - Marcello Fidaleo
- Department for Innovation in Biological, Agro‐food and Forest Systems University of Tuscia Viterbo Italy
| |
Collapse
|
35
|
Anchoring of heterologous proteins in multiple Lactobacillus species using anchors derived from Lactobacillus plantarum. Sci Rep 2020; 10:9640. [PMID: 32541679 PMCID: PMC7295990 DOI: 10.1038/s41598-020-66531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Members of the genus Lactobacillus have a long history in food applications and are considered as promising and safe hosts for delivery of medically interesting proteins. We have assessed multiple surface anchors derived from Lactobacillus plantarum for protein surface display in multiple Lactobacillus species, using a Mycobacterium tuberculosis hybrid antigen as test protein. The anchors tested were a lipoprotein anchor and two cell wall anchors, one non-covalent (LysM domain) and one covalent (sortase-based anchoring using the LPXTG motif). Thus, three different expression vectors for surface-anchoring were tested in eight Lactobacillus species. When using the LPXTG and LysM cell wall anchors, surface display, as assessed by flow cytometry and fluorescence microscopy, was observed in all species except Lactobacillus acidophilus. Use of the cell membrane anchor revealed more variation in the apparent degree of surface-exposure among the various lactobacilli. Overproduction of the secreted and anchored antigen impaired bacterial growth rate to extents that varied among the lactobacilli and were dependent on the type of anchor. Overall, these results show that surface anchors derived from L. plantarum are promising candidates for efficient anchoring of medically interesting proteins in other food grade Lactobacillus species.
Collapse
|
36
|
A Three-Step Process for the Bioconversion of Whey Permeate into a Glucose-Free D-Tagatose Syrup. Catalysts 2020. [DOI: 10.3390/catal10060647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have developed a sustainable three-stage process for the revaluation of cheese whey permeate into D-tagatose, a rare sugar with functional properties used as sweetener. The experimental conditions (pH, temperature, cofactors, etc.) for each step were independently optimized. In the first step, concentrated whey containing 180–200 g/L of lactose was fully hydrolyzed by β-galactosidase from Bifidobacterium bifidum (Saphera®) in 3 h at 45 °C. Secondly, glucose was selectively removed by treatment with Pichia pastoris cells for 3 h at 30 °C. The best results were obtained with 350 mg of cells (previously grown for 16 h) per mL of solution. Finally, L-arabinose isomerase US100 from Bacillus stearothermophilus was employed to isomerize D-galactose into D-tagatose at pH 7.5 and 65 °C, in presence of 0.5 mM MnSO4. After 7 h, the concentration of D-tagatose was approximately 30 g/L (33.3% yield, referred to the initial D-galactose present in whey). The proposed integrated process takes place under mild conditions (neutral pH, moderate temperatures) in a short time (13 h), yielding a glucose-free syrup containing D-tagatose and galactose in a ratio 1:2 (w/w).
Collapse
|
37
|
Cell Wall Anchoring of a Bacterial Chitosanase in Lactobacillus plantarum Using a Food-Grade Expression System and Two Versions of an LP TG Anchor. Int J Mol Sci 2020; 21:ijms21113773. [PMID: 32471049 PMCID: PMC7312796 DOI: 10.3390/ijms21113773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 01/16/2023] Open
Abstract
Lactic acid bacteria (LAB) have attracted increasing interest recently as cell factories for the production of proteins as well as a carrier of proteins that are of interest for food and therapeutic applications. In this present study, we exploit a lactobacillal food-grade expression system derived from the pSIP expression vectors using the alr (alanine racemase) gene as the selection marker for the expression and cell-surface display of a chitosanase in Lactobacillus plantarum using two truncated forms of a LP × TG anchor. CsnA, a chitosanase from Bacillus subtilis 168 (ATCC23857), was fused to two different truncated forms (short-S and long-L anchors) of an LP × TG anchor derived from Lp_1229, a key-protein for mannose-specific adhesion in L. plantarum WCFS1. The expression and cell-surface display efficiency driven by the food-grade alr-based system were compared with those obtained from the erm-based pSIP system in terms of enzyme activities and their localisation on L. plantarum cells. The localization of the protein on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest enzymatic activity of CsnA-displaying cells was obtained from the strain carrying the alr-based expression plasmid with short cell wall anchor S. However, the attachment of chitosanase on L. plantarum cells via the long anchor L was shown to be more stable compared with the short anchor after several repeated reaction cycles. CsnA displayed on L. plantarum cells is catalytically active and can convert chitosan into chito-oligosaccharides, of which chitobiose and chitotriose are the main products.
Collapse
|
38
|
Chen Z, Li Z, Li F, Wang N, Gao XD. Characterization of alditol oxidase from Streptomyces coelicolor and its application in the production of rare sugars. Bioorg Med Chem 2020; 28:115464. [DOI: 10.1016/j.bmc.2020.115464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
|
39
|
Jeong DW, Hyeon JE, Shin SK, Han SO. Trienzymatic Complex System for Isomerization of Agar-Derived d-Galactose into d-Tagatose as a Low-Calorie Sweetener. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3195-3202. [PMID: 32075368 DOI: 10.1021/acs.jafc.9b07536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
d-Tagatose is a rare monosaccharide that is used in products in the food industry as a low-calorie sweetener. To facilitate biological conversion of d-tagatose, the agarolytic enzyme complexes based on the principle of the cellulosome structure were constructed through dockerin-cohesin interaction with the scaffoldin. The construction of agarolytic complexes composed of l-arabinose isomerase caused efficient isomerization activity on the agar-derived sugars. In a trienzymatic complex, the chimeric β-agarase (cAgaB) and anhydro-galactosidase (cAhgA) from Zobellia galactanivorans could synergistically hydrolyze natural agar substrates and l-arabinose isomerase (LsAraA Doc) from Lactobacillus sakei 23K could convert d-galactose into d-tagatose. The trienzymatic complex increased the concentration of d-tagatose from the agar substrate to 4.2 g/L. Compared with the monomeric enzyme, the multimeric enzyme showed a 1.4-fold increase in tagatose production, good thermostability, and reusability. A residual activity of 75% remained, and 52% of conversion was noted after five recycles. These results indicated that the dockerin-fused chimeric enzymes on the scaffoldin successfully isomerized d-galactose into d-tagatose with synergistic activity. Thus, the results demonstrated the possibility of advancing efficient strategies for utilizing red algae as a biomass source to produce d-tagatose in the industrial food field that uses marine biomass as the feedstock.
Collapse
Affiliation(s)
- Da Woon Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Korea
| | - Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|