1
|
Lin B, Liu Y, Chen Q, Li M, Xu L, Chen Q, Tan Y, Liu Z. DNA Nanostructures-Based In Situ Cancer Vaccines: Mechanisms and Applications. SMALL METHODS 2025; 9:e2401501. [PMID: 39840607 DOI: 10.1002/smtd.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Indexed: 01/23/2025]
Abstract
Current tumor vaccines suffer from inadequate immune responsive due to the insufficient release of tumor antigens, low tumor infiltration, and immunosuppressive microenvironment. DNA nanostructures with their ability to precisely engineer, controlled release, biocompatibility, and the capability to augment the immunogenicity of tumor microenvironment, have gained significant attention for their potential to revolutionize vaccine designing. This review summarizes various applications of DNA nanostructures in the construction of in situ cancer vaccines, which can generate tumor-associated antigens directly from damaged tumors for cancer immune-stimulation. The mechanisms and components of cancer vaccines are listed, the specific strategies for constructing in situ vaccines using DNA nanostructures are explored and their underlying mechanisms of action are elucidated. The immunogenic cell death (ICD) induced by chemotherapeutic agents, photothermal therapy (PTT), photodynamic therapy (PDT), and radiation therapy (RT) and the related cancer vaccines building strategies are systematically summarized. The applications of different DNA nanostructures in various cancer immunotherapy are elaborated, which exerts precise, long-lasting, and robust immune responses. The current challenges and future prospectives are proposed. This review provides a holistic understanding of the evolving role of DNA nanostructures for in situ vaccine development.
Collapse
Affiliation(s)
- Bingyu Lin
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Qianqian Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
2
|
Sadraei A, Naghib SM, Rabiee N. 4D printing biological stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 1. Expert Opin Drug Deliv 2025; 22:471-490. [PMID: 39939161 DOI: 10.1080/17425247.2025.2466772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The advent of 3D printing has revolutionized biomedical engineering, yet limitations in creating dynamic human tissues remain. The emergence of 4D printing, which introduces time as a fourth dimension, offers new possibilities by enabling the production of adaptable, stimuli-responsive structures. A thorough literature search was performed across various databases, including Google Scholar, PubMed, Scopus, and Web of Science, to identify pertinent studies published up to 2025. The search parameters were confined to articles published in English that concentrated on peer-reviewed clinical studies. AREAS COVERED This review explores the transition from 3D to 4D printing and focuses on stimuli-responsive materials, particularly hydrogels, which react to environmental changes. The literature search examined recent studies on the interaction of these materials with biological stimuli, emphasizing their application in tissue engineering and drug delivery applications. EXPERT OPINION 4D printing, combined with smart materials, holds immense promise for advancing biomedical treatments, including customized therapies and regenerative medicine. However, technological challenges must be addressed to realize its full potential.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
4
|
Ouyang Y, Willner I. Photomodulated Transient Catalytic Constitutional Dynamic Networks and Reaction Circuits. Angew Chem Int Ed Engl 2025; 64:e202420787. [PMID: 39757120 DOI: 10.1002/anie.202420787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ=365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network. By temporal photocleavage of the hairpin within the course of transient operation of the circuit, photomodulation of the systems are demonstrated. The modulation amplitude and rhythms are controlled by the time-interval and cycle numbers of photo-deprotecting the hairpin structure. The method is applied to transiently photomodulate the catalytic activities of a DNAzyme, enabling the photomodulation of the transient assembly of a constitutional dynamic network (CDN) and the transient reconfiguration of the CDN framework. The different systems are supported by computational kinetic models allowing to predict, and experimentally validate, the behavior of the systems under variable auxiliary conditions. Moreover, the photomodulated transient CDNs are implemented as functional frameworks guiding the thrombin-catalyzed coagulation of fibrinogen to fibrin (fibrinogenesis) and photomodulated operation of a biocatalytic cascade.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
5
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2025; 90:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
6
|
Qin Y, Sohn YS, Li X, Nechushtai R, Zhang J, Tian H, Willner I. Photochemically Triggered and Autonomous Oscillatory pH-Modulated Transient Assembly/Disassembly of DNA Microdroplet Coacervates. Angew Chem Int Ed Engl 2025; 64:e202415550. [PMID: 39378022 DOI: 10.1002/anie.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 11/10/2024]
Abstract
The assembly of pH-responsive DNA-based, phase-separated microdroplets (MDs) coacervates, consisting of frameworks composed of Y-shaped nucleic acid modules crosslinked by pH-responsive strands, is introduced. The phase-separated MDs reveal dynamic pH-stimulated switchable or oscillatory transient depletion and reformation. In one system, a photoisomerizable merocyanine/spiropyran photoacid is used for the light-induced pH switchable modulation of the reaction medium between the values pH=6.0-4.4. The dynamic transient photochemically-induced switchable depletion/reformation of phase-separated MDs, follows the rhythm of pH changes in solution. In a second system, the Landolt oscillatory reaction mixture pH 7.5→4.2→7.5 is applied to stimulate the oscillatory depletion/reformation of the MDs. The autonomous dynamic oscillation of the assembly/disassembly of the MDs follows the oscillating pH rhythm of the reaction medium.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yang Sung Sohn
- The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiang Li
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rachel Nechushtai
- The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
7
|
Ghosheh M, Ehrlich A, Fischer A, Pasitka L, Cohen M, Nahmias Y. Metamaterial-based injection molding for the cost-effective production of whole cuts. Nat Commun 2024; 15:10767. [PMID: 39737916 DOI: 10.1038/s41467-024-54939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
The escalating global demand for meat products has intensified ecological concerns, underscoring the need for sustainable meat alternatives. Although current methods effectively imitate ground meat, mimicking whole cuts, which constitute 54% of the global market, remains challenging due to the lack of scalable technology. Injection molding is a massively scalable manufacturing technology developed for the polymer industry. Here, we introduce two injectable metamaterials: a thermally irreversible fat composite we named proteoleogel, and a multi-scaled meat analog produced by low-temperature extrusion. Viscoelastic screening of plant proteins identifies mung bean for its ability to stabilize complex oleogel structures, mimicking the mechanics of adipose tissue. Mechanical analysis reveals that low-temperature extrusion produces microscale isotropic fibers and mesoscale anisotropic structures mimicking muscle and fascia. These metamaterials can be injection-molded into various whole cuts, from chops to T-bones. Blinded taste tests indicate a 43% preference for our plant-based steak analog. Moreover, technical economic analysis shows injection molding is more cost-effective than 3D printing, costing $9/kg compared to $38/kg. This research represents a step in sustainable food production, offering cost-effective and scalable solutions for the entire meat market.
Collapse
Affiliation(s)
- Mohammad Ghosheh
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avner Ehrlich
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Fischer
- Department of Biological Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pasitka
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Cohen
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
9
|
Ouyang Y, Zhang P, Willner I. DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications. Angew Chem Int Ed Engl 2024; 63:e202411118. [PMID: 39037936 DOI: 10.1002/anie.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore. The article presents a comprehensive review addressing methods to assemble and characterize the DNA tetrahedra nanostructures, and diverse applications of DNA tetrahedra framework are discussed. Topics being addressed include the application of structurally functionalized DNA tetrahedra nanostructure for the assembly of diverse optical or electrochemical sensing platforms and functionalized intracellular sensing and imaging modules. In addition, the triggered reconfiguration of DNA tetrahedra nanostructures and dynamic networks and circuits emulating biological transformations are introduced. Moreover, the functionalization of DNA tetrahedra frameworks with nanoparticles provides building units for the assembly of optical devices and for the programmed crystallization of nanoparticle superlattices. Finally, diverse applications of DNA tetrahedra in the field of nanomedicine are addressed. These include the DNA tetrahedra-assisted permeation of nanocarriers into cells for imaging, controlled drug release, active chemodynamic/photodynamic treatment of target tissues, and regenerative medicine.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Current address: Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
11
|
Lin N, Ouyang Y, Qin Y, Karmi O, Sohn YS, Liu S, Nechushtai R, Zhang Y, Willner I, Zhou Z. Spatially Localized Entropy-Driven Evolution of Nucleic Acid-Based Constitutional Dynamic Networks for Intracellular Imaging and Spatiotemporal Programmable Gene Therapy. J Am Chem Soc 2024; 146:20685-20699. [PMID: 39012486 PMCID: PMC11295181 DOI: 10.1021/jacs.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
The primer-guided entropy-driven high-throughput evolution of the DNA-based constitutional dynamic network, CDN, is introduced. The entropy gain associated with the process provides a catalytic principle for the amplified emergence of the CDN. The concept is applied to develop a programmable, spatially localized DNA circuit for effective in vitro and in vivo theranostic, gene-regulated treatment of cancer cells. The localized circuit consists of a DNA tetrahedron core modified at its corners with four tethers that include encoded base sequences exhibiting the capacity to emerge and assemble into a [2 × 2] CDN. Two of the tethers are caged by a pair of siRNA subunits, blocking the circuit into a mute, dynamically inactive configuration. In the presence of miRNA-21 as primer, the siRNA subunits are displaced, resulting in amplified release of the siRNAs silencing the HIF-1α mRNA and fast dynamic reconfiguration of the tethers into a CDN. The resulting CDN is, however, engineered to be dynamically reconfigured by miRNA-155 into an equilibrated mixture enriched with a DNAzyme component, catalyzing the cleavage of EGR-1 mRNA. The DNA tetrahedron nanostructure stimulates enhanced permeation into cancer cells. The miRNA-triggered entropy-driven reconfiguration of the spatially localized circuit leads to the programmable, cooperative bis-gene-silencing of HIF-1α and EGR-1 mRNAs, resulting in the effective and selective apoptosis of breast cancer cells and effective inhibition of tumors in tumor bearing mice.
Collapse
Affiliation(s)
- Nina Lin
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Yu Ouyang
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yunlong Qin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Songqin Liu
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yuanjian Zhang
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhixin Zhou
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| |
Collapse
|
12
|
Yang B, Cui T, Guo L, Dong L, Wu J, Xing Y, Xu Y, Chen J, Wang Y, Cui Z, Dong Y. Advanced Smart Biomaterials for Regenerative Medicine and Drug Delivery Based on Phosphoramidite Chemistry: From Oligonucleotides to Precision Polymers. Biomacromolecules 2024; 25:2701-2714. [PMID: 38608139 DOI: 10.1021/acs.biomac.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Over decades of development, while phosphoramidite chemistry has been known as the leading method in commercial synthesis of oligonucleotides, it has also revolutionized the fabrication of sequence-defined polymers (SDPs), offering novel functional materials in polymer science and clinical medicine. This review has introduced the evolution of phosphoramidite chemistry, emphasizing its development from the synthesis of oligonucleotides to the creation of universal SDPs, which have unlocked the potential for designing programmable smart biomaterials with applications in diverse areas including data storage, regenerative medicine and drug delivery. The key methodologies, functions, biomedical applications, and future challenges in SDPs, have also been summarized in this review, underscoring the significance of breakthroughs in precisely synthesized materials.
Collapse
Affiliation(s)
- Bo Yang
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Ting Cui
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Liang Guo
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Lianqiang Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wu
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzheng Xing
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yun Xu
- Center for Medical Device Evaluation, China Food and Drug Administration (CFDA), Beijing 100084, China
| | - Jian Chen
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Yufei Wang
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Zhonghui Cui
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Ouyang Y, Willner I. Phototriggered Equilibrated and Transient Orthogonally Operating Constitutional Dynamic Networks Guiding Biocatalytic Cascades. J Am Chem Soc 2024; 146:6806-6816. [PMID: 38422481 PMCID: PMC10941189 DOI: 10.1021/jacs.3c13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
The photochemical deprotection of structurally engineered o-nitrobenzylphosphate-caged hairpin nucleic acids is introduced as a versatile method to evolve constitutional dynamic networks, CDNs. The photogenerated CDNs, in the presence of fuel strands, interact with auxiliary CDNs, resulting in their dynamically equilibrated reconfiguration. By modification of the constituents associated with the auxiliary CDNs with glucose oxidase (GOx)/horseradish peroxidase (HRP) or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) cofactor, the photogenerated CDN drives the orthogonal operation upregulated/downregulated operation of the GOx/HRP and LDH/NAD+ biocatalytic cascade in the conjugate mixture of auxiliary CDNs. Also, the photogenerated CDN was applied to control the reconfiguration of coupled CDNs, leading to upregulated/downregulated formation of the antithrombin aptamer units, resulting in the dictated inhibition of thrombin activity (fibrinogen coagulation). Moreover, a reaction module consisting of GOx/HRP-modified o-nitrobenzyl phosphate-caged DNA hairpins, photoresponsive caged auxiliary duplexes, and nickase leads upon irradiation to the emergence of a transient, dissipative CDN activating in the presence of two alternate auxiliary triggers, achieving transient operation of up- and downregulated GOx/HRP biocatalytic cascades.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Agarwal S, Osmanovic D, Dizani M, Klocke MA, Franco E. Dynamic control of DNA condensation. Nat Commun 2024; 15:1915. [PMID: 38429336 PMCID: PMC10907372 DOI: 10.1038/s41467-024-46266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Artificial biomolecular condensates are emerging as a versatile approach to organize molecular targets and reactions without the need for lipid membranes. Here we ask whether the temporal response of artificial condensates can be controlled via designed chemical reactions. We address this general question by considering a model problem in which a phase separating component participates in reactions that dynamically activate or deactivate its ability to self-attract. Through a theoretical model we illustrate the transient and equilibrium effects of reactions, linking condensate response and reaction parameters. We experimentally realize our model problem using star-shaped DNA motifs known as nanostars to generate condensates, and we take advantage of strand invasion and displacement reactions to kinetically control the capacity of nanostars to interact. We demonstrate reversible dissolution and growth of DNA condensates in the presence of specific DNA inputs, and we characterize the role of toehold domains, nanostar size, and nanostar valency. Our results will support the development of artificial biomolecular condensates that can adapt to environmental changes with prescribed temporal dynamics.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Bioengineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Osmanovic
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahdi Dizani
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Melissa A Klocke
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Elisa Franco
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Bioengineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Li Y, Chen R, Zhou B, Dong Y, Liu D. Rational Design of DNA Hydrogels Based on Molecular Dynamics of Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307129. [PMID: 37820719 DOI: 10.1002/adma.202307129] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Indexed: 10/13/2023]
Abstract
In recent years, DNA has emerged as a fascinating building material to engineer hydrogel due to its excellent programmability, which has gained considerable attention in biomedical applications. Understanding the structure-property relationship and underlying molecular determinants of DNA hydrogel is essential to precisely tailor its macroscopic properties at molecular level. In this review, the rational design principles of DNA molecular networks based on molecular dynamics of polymers on the temporal scale, which can be engineered via the backbone rigidity and crosslinking kinetics, are highlighted. By elucidating the underlying molecular mechanisms and theories, it is aimed to provide a comprehensive overview of how the tunable DNA backbone rigidity and the crosslinking kinetics lead to desirable macroscopic properties of DNA hydrogels, including mechanical properties, diffusive permeability, swelling behaviors, and dynamic features. Furthermore, it is also discussed how the tunable macroscopic properties make DNA hydrogels promising candidates for biomedical applications, such as cell culture, tissue engineering, bio-sensing, and drug delivery.
Collapse
Affiliation(s)
- Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruofan Chen
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bini Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
16
|
Peng YH, Hsiao SK, Gupta K, Ruland A, Auernhammer GK, Maitz MF, Boye S, Lattner J, Gerri C, Honigmann A, Werner C, Krieg E. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. NATURE NANOTECHNOLOGY 2023; 18:1463-1473. [PMID: 37550574 PMCID: PMC10716043 DOI: 10.1038/s41565-023-01483-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Three-dimensional cell and organoid cultures rely on the mechanical support of viscoelastic matrices. However, commonly used matrix materials lack control over key cell-instructive properties. Here we report on fully synthetic hydrogels based on DNA libraries that self-assemble with ultrahigh-molecular-weight polymers, forming a dynamic DNA-crosslinked matrix (DyNAtrix). DyNAtrix enables computationally predictable and systematic control over its viscoelasticity, thermodynamic and kinetic parameters by changing DNA sequence information. Adjustable heat activation allows homogeneous embedding of mammalian cells. Intriguingly, stress-relaxation times can be tuned over four orders of magnitude, recapitulating mechanical characteristics of living tissues. DyNAtrix is self-healing, printable, exhibits high stability, cyto- and haemocompatibility, and controllable degradation. DyNAtrix-based cultures of human mesenchymal stromal cells, pluripotent stem cells, canine kidney cysts and human trophoblast organoids show high viability, proliferation and morphogenesis. DyNAtrix thus represents a programmable and versatile precision matrix for advanced approaches to biomechanics, biophysics and tissue engineering.
Collapse
Affiliation(s)
- Yu-Hsuan Peng
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Syuan-Ku Hsiao
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Krishna Gupta
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - André Ruland
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Günter K Auernhammer
- Institute for Physical Chemistry and Polymer Physics, Polymer Interfaces, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Manfred F Maitz
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Susanne Boye
- Institute for Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Johanna Lattner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Claudia Gerri
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Carsten Werner
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Elisha Krieg
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Ouyang Y, Dong J, Willner I. Dynamic DNA Networks-Guided Directional and Orthogonal Transient Biocatalytic Cascades. J Am Chem Soc 2023; 145:22135-22149. [PMID: 37773962 PMCID: PMC10571085 DOI: 10.1021/jacs.3c08020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/01/2023]
Abstract
DNA frameworks, consisting of constitutional dynamic networks (CDNs) undergoing fuel-driven reconfiguration, are coupled to a dissipative reaction module that triggers the reconfigured CDNs into a transient intermediate CDNs recovering the parent CDN state. Biocatalytic cascades consisting of the glucose oxidase (GOx)/horseradish peroxidase (HRP) couple or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) couple are tethered to the constituents of two different CDNs, allowing the CDNs-guided operation of the spatially confined GOx/HRP or LDH/NAD+ biocatalytic cascades. By applying two different fuel triggers, the directional transient CDN-guided upregulation/downregulation of the two biocatalytic cascades are demonstrated. By mixing the GOx/HRP-biocatalyst-modified CDN with the LDH/NAD+-biocatalyst-functionalized CDN, a composite CDN is assembled. Triggering the composite CDN with two different fuel strands results in orthogonal transient upregulation of the GOx/HRP cascade and transient downregulation of the LDH/NAD+ cascade or vice versa. The transient CDNs-guided biocatalytic cascades are computationally simulated by kinetic models, and the computational analyses allow the prediction of the performance of transient biocatalytic cascades under different auxiliary conditions. The concept of orthogonally triggered temporal, transient, biocatalytic cascades by means of CDN frameworks is applied to design an orthogonally operating CDN for the temporal upregulated or downregulated transient thrombin-induced coagulation of fibrinogen to fibrin.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry,
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- The Institute of Chemistry,
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry,
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
18
|
Li Z, Wang J, Willner I. Alternate Strategies to Induce Dynamically Modulated Transient Transcription Machineries. ACS NANO 2023; 17:18266-18279. [PMID: 37669432 PMCID: PMC10540262 DOI: 10.1021/acsnano.3c05336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Emulating native transient transcription machineries modulating temporal gene expression by synthetic circuits is a major challenge in the area of systems chemistry. Three different methods to operate transient transcription machineries and to modulate the gated transcription processes of target RNAs are introduced. One method involves the design of a reaction module consisting of transcription templates being triggered by promoter fuel strands transcribing target RNAs and in parallel generating functional DNAzymes in the transcription templates, modulating the dissipative depletion of the active templates and the transient operation of transcription circuits. The second approach involves the application of a reaction module consisting of two transcription templates being activated by a common fuel promoter strand. While one transcription template triggers the transcription of the target RNA, the second transcription template transcribes the anti-fuel strand, displacing the promoter strand associated with the transcription templates, leading to the depletion of the transcription templates and to the dynamic transient modulation of the transcription process. The third strategy involves the assembly of a reaction module consisting of a reaction template triggered by a fuel promoter strand transcribing the target RNA. The concomitant nickase-stimulated depletion of the promoter strand guides the transient modulation of the transcription process. Via integration of two parallel fuel-triggered transcription templates in the three transcription reaction modules and application of template-specific blocker units, the parallel and gated transiently modulated transcription of two different RNA aptamers is demonstrated. The nickase-stimulated transiently modulated transcription reaction module is applied as a functional circuit guiding the dynamic expression of gated, transiently operating, catalytic DNAzymes.
Collapse
Affiliation(s)
| | | | - Itamar Willner
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Chai Q, Chen J, Zeng S, Zhu T, Chen J, Qi C, Mao G, Liu Y. Closed Cyclic DNA Machine for Sensitive Logic Operation and APE1 Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207736. [PMID: 36916696 DOI: 10.1002/smll.202207736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
DNA self-assembly has been developed as a kind of robust signal amplification strategy, but most of reported assembly pathways are programmed to amplify signal in one direction. Herein, based on mutual-activated cascade cycle of hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), a closed cycle circuit (CCC) based DNA machine is developed for sensitive logic operation and molecular recognition. Benefiting from the synergistically accelerated signal amplification, the closed cyclic DNA machine enabled the logic computing with strong and significant output signals even at weak input signals. The typical logic operations such as OR, YES, AND, INHIBIT, NOR, and NAND gate, are conveniently and clearly executed with this DNA machine through rational design of the input and computing elements. Moreover, by integrating the target recognition module with the CCC module, the proposed DNA machine is further employed in the homogeneous detection of apurinic/apyrimidinic endonuclease 1 (APE1). The precise recognition and exponential signal amplification facilitated the highly selective and sensitive detection of APE1 with limit of detection (LOD) of 7.8 × 10-5 U mL-1 . Besides, the normal cells and tumor cells are distinguished unambiguously by this method according to the detected concentration difference of cellular APE1, which indicates the robustness and practicability of this method.
Collapse
Affiliation(s)
- Qingli Chai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Shasha Zeng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Ting Zhu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jintao Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Chunjiao Qi
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yucheng Liu
- Core Facility of Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
20
|
Zhou Z, Lin N, Ouyang Y, Liu S, Zhang Y, Willner I. Cascaded, Feedback-Driven, and Spatially Localized Emergence of Constitutional Dynamic Networks Driven by Enzyme-Free Catalytic DNA Circuits. J Am Chem Soc 2023. [PMID: 37257165 DOI: 10.1021/jacs.3c02083] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The enzyme-free catalytic hairpin assembly (CHA) process is introduced as a functional reaction module for guided, high-throughput, emergence, and evolution of constitutional dynamic networks, CDNs, from a set of nucleic acids. The process is applied to assemble networks of variable complexities, functionalities, and spatial confinement, and the systems provide possible mechanistic pathways for the evolution of dynamic networks under prebiotic conditions. Subjecting a set of four or six structurally engineered hairpins to a promoter P1 leads to the CHA-guided emergence of a [2 × 2] CDN or the evolution of a [3 × 3] CDN, respectively. Reacting of a set of branched three-arm DNA-hairpin-functionalized junctions to the promoter strand activates the CHA-induced emergence of a three-dimensional (3D) CDN framework emulating native gene regulatory networks. In addition, activation of a two-layer CHA cascade circuit or a cross-catalytic CHA circuit and cascaded driving feedback-driven evolution of CDNs are demonstrated. Also, subjecting a four-hairpin-modified DNA tetrahedron nanostructure to an auxiliary promoter strand simulates the evolution of a dynamically equilibrated DNA tetrahedron-based CDN that undergoes secondary fueled dynamic reconfiguration. Finally, the effective permeation of DNA tetrahedron structures into cells is utilized to integrate the four-hairpin-functionalized tetrahedron reaction module into cells. The spatially localized miRNA-triggered CHA evolution and reconfiguration of CDNs allowed the logic-gated imaging of intracellular RNAs. Beyond the bioanalytical applications of the systems, the study introduces possible mechanistic pathways for the evolution of functional networks under prebiotic conditions.
Collapse
Affiliation(s)
- Zhixin Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Nina Lin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
21
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
22
|
Lachance‐Brais C, Rammal M, Asohan J, Katolik A, Luo X, Saliba D, Jonderian A, Damha MJ, Harrington MJ, Sleiman HF. Small Molecule-Templated DNA Hydrogel with Record Stiffness Integrates and Releases DNA Nanostructures and Gene Silencing Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205713. [PMID: 36752390 PMCID: PMC10131789 DOI: 10.1002/advs.202205713] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Indexed: 05/31/2023]
Abstract
Deoxyribonucleic acid (DNA) hydrogels are a unique class of programmable, biocompatible materials able to respond to complex stimuli, making them valuable in drug delivery, analyte detection, cell growth, and shape-memory materials. However, unmodified DNA hydrogels in the literature are very soft, rarely reaching a storage modulus of 103 Pa, and they lack functionality, limiting their applications. Here, a DNA/small-molecule motif to create stiff hydrogels from unmodified DNA, reaching 105 Pa in storage modulus is used. The motif consists of an interaction between polyadenine and cyanuric acid-which has 3-thymine like faces-into multimicrometer supramolecular fibers. The mechanical properties of these hydrogels are readily tuned, they are self-healing and thixotropic. They integrate a high density of small, nontoxic molecules, and are functionalized simply by varying the molecule sidechain. They respond to three independent stimuli, including a small molecule stimulus. These stimuli are used to integrate and release DNA wireframe and DNA origami nanostructures within the hydrogel. The hydrogel is applied as an injectable delivery vector, releasing an antisense oligonucleotide in cells, and increasing its gene silencing efficacy. This work provides tunable, stimuli-responsive, exceptionally stiff all-DNA hydrogels from simple sequences, extending these materials' capabilities.
Collapse
Affiliation(s)
| | - Mostafa Rammal
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Jathavan Asohan
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Adam Katolik
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Xin Luo
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Daniel Saliba
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Antranik Jonderian
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Masad J. Damha
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | | | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| |
Collapse
|
23
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
24
|
C S A, Kandasubramanian B. Hydrogel as an advanced energy material for flexible batteries. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anju C S
- CIPET, Institute of Petrochemicals Technology (IPT), Kochi, India
| | | |
Collapse
|
25
|
Klaassen DJ, Castenmiller C, Zandvliet HJ, Bampoulis P. Charge Localization Induced by Pentagons on Ge(110). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:599-605. [PMID: 36660094 PMCID: PMC9841572 DOI: 10.1021/acs.jpcc.2c06399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The Ge(110) surface reconstructs into ordered and disordered phases, in which the basic unit is a five-membered ring of Ge atoms (pentagon). The variety of surface reconstructions leads to a rich electronic density of states with several surface states. Using scanning tunneling microscopy and spectroscopy, we have identified the exact origins of these surface states and linked them to either the Ge pentagons or the underlying Ge-Ge bonds. We show that even moderate fluctuations in the positions of the Ge pentagonal units induce large variations in the local density of states. The local density of states modulates in a precise manner, following the geometrical constraints on tiling Ge pentagons. These geometry-correlated electronic states offer a vast configurational landscape that could provide new opportunities in data storage and computing applications.
Collapse
Affiliation(s)
- Dennis J. Klaassen
- Physics of Interfaces and
Nanomaterials, MESA+ Institute, University
of Twente, P.O. Box 217, 7500AE Enschede, Overijssel, The Netherlands
| | - Carolien Castenmiller
- Physics of Interfaces and
Nanomaterials, MESA+ Institute, University
of Twente, P.O. Box 217, 7500AE Enschede, Overijssel, The Netherlands
| | - Harold J.W. Zandvliet
- Physics of Interfaces and
Nanomaterials, MESA+ Institute, University
of Twente, P.O. Box 217, 7500AE Enschede, Overijssel, The Netherlands
| | - Pantelis Bampoulis
- Physics of Interfaces and
Nanomaterials, MESA+ Institute, University
of Twente, P.O. Box 217, 7500AE Enschede, Overijssel, The Netherlands
| |
Collapse
|
26
|
Lin P, Yang H, Nakata E, Morii T. Mechanistic Aspects for the Modulation of Enzyme Reactions on the DNA Scaffold. Molecules 2022; 27:molecules27196309. [PMID: 36234845 PMCID: PMC9572797 DOI: 10.3390/molecules27196309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cells have developed intelligent systems to implement the complex and efficient enzyme cascade reactions via the strategies of organelles, bacterial microcompartments and enzyme complexes. The scaffolds such as the membrane or protein in the cell are believed to assist the co-localization of enzymes and enhance the enzymatic reactions. Inspired by nature, enzymes have been located on a wide variety of carriers, among which DNA scaffolds attract great interest for their programmability and addressability. Integrating these properties with the versatile DNA–protein conjugation methods enables the spatial arrangement of enzymes on the DNA scaffold with precise control over the interenzyme distance and enzyme stoichiometry. In this review, we survey the reactions of a single type of enzyme on the DNA scaffold and discuss the proposed mechanisms for the catalytic enhancement of DNA-scaffolded enzymes. We also review the current progress of enzyme cascade reactions on the DNA scaffold and discuss the factors enhancing the enzyme cascade reaction efficiency. This review highlights the mechanistic aspects for the modulation of enzymatic reactions on the DNA scaffold.
Collapse
|
27
|
Kankanamalage DVDW, Tran JHT, Beltrami N, Meng K, Zhou X, Pathak P, Isaacs L, Burin AL, Ali MF, Jayawickramarajah J. DNA Strand Displacement Driven by Host-Guest Interactions. J Am Chem Soc 2022; 144:16502-16511. [PMID: 36063395 PMCID: PMC9479067 DOI: 10.1021/jacs.2c05726] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Base-pair-driven toehold-mediated strand displacement (BP-TMSD) is a fundamental concept employed for constructing DNA machines and networks with a gamut of applications─from theranostics to computational devices. To broaden the toolbox of dynamic DNA chemistry, herein, we introduce a synthetic surrogate termed host-guest-driven toehold-mediated strand displacement (HG-TMSD) that utilizes bioorthogonal, cucurbit[7]uril (CB[7]) interactions with guest-linked input sequences. Since control of the strand-displacement process is salient, we demonstrate how HG-TMSD can be finely modulated via changes to the structure of the input sequence (including synthetic guest head-group and/or linker length). Further, for a given input sequence, competing small-molecule guests can serve as effective regulators (with fine and coarse control) of HG-TMSD. To show integration into functional devices, we have incorporated HG-TMSD into machines that control enzyme activity and layered reactions that detect specific microRNA.
Collapse
Affiliation(s)
| | - Jennifer H T Tran
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Noah Beltrami
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Kun Meng
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Xiao Zhou
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Pravin Pathak
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Mehnaaz F Ali
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | | |
Collapse
|
28
|
Wei Y, Wang K, Luo S, Li F, Zuo X, Fan C, Li Q. Programmable DNA Hydrogels as Artificial Extracellular Matrix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107640. [PMID: 35119201 DOI: 10.1002/smll.202107640] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The cell microenvironment plays a crucial role in regulating cell behavior and fate in physiological and pathological processes. As the fundamental component of the cell microenvironment, extracellular matrix (ECM) typically possesses complex ordered structures and provides essential physical and chemical cues to the cells. Hydrogels have attracted much attention in recapitulating the ECM. Compared to natural and synthetic polymer hydrogels, DNA hydrogels have unique programmable capability, which endows the material precise structural customization and tunable properties. This review focuses on recent advances in programmable DNA hydrogels as artificial extracellular matrix, particularly the pure DNA hydrogels. It introduces the classification, design, and assembly of DNA hydrogels, and then summarizes the state-of-the-art achievements in cell encapsulation, cell culture, and tissue engineering with DNA hydrogels. Ultimately, the challenges and prospects for cellular applications of DNA hydrogels are delivered.
Collapse
Affiliation(s)
- Yuhan Wei
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaizhe Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shihua Luo
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| |
Collapse
|
29
|
Ouyang Y, Zhang P, Willner I. Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures. Bioconjug Chem 2022; 34:51-69. [PMID: 35973134 PMCID: PMC9853509 DOI: 10.1021/acs.bioconjchem.2c00233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nucleic acid networks conjugated to native enzymes and supramolecular DNA nanostructures modified with enzymes or DNAzymes act as functional reaction modules for guiding dynamic catalytic transformations. These systems are exemplified with the assembly of constitutional dynamic networks (CDNs) composed of nucleic acid-functionalized enzymes, as constituents, undergoing triggered structural reconfiguration, leading to dynamically switched biocatalytic cascades. By coupling two nucleic acid/enzyme networks, the intercommunicated feedback-driven dynamic biocatalytic operation of the system is demonstrated. In addition, the tailoring of a nucleic acid/enzyme reaction network driving a dissipative, transient, biocatalytic cascade is introduced as a model system for out-of-equilibrium dynamically modulated biocatalytic transformation in nature. Also, supramolecular nucleic acid machines or DNA nanostructures, modified with DNAzyme or enzyme constituents, act as functional reaction modules driving temporal dynamic catalysis. The design of dynamic supramolecular machines is exemplified with the introduction of an interlocked two-ring catenane device that is dynamically reversibly switched between two states operating two different DNAzymes, and with the tailoring of a DNA-tweezers device functionalized with enzyme/DNAzyme constituents that guides the dynamic ON/OFF operation of a biocatalytic cascade by opening and closing the molecular device. In addition, DNA origami nanostructures provide functional scaffolds for the programmed positioning of enzymes or DNAzyme for the switchable operation of catalytic transformations. This is introduced by the tailored functionalization of the edges of origami tiles with nucleic acids guiding the switchable formation of DNAzyme catalysts through the dimerization/separation of the tiles. In addition, the programmed deposition of two-enzyme/cofactor constituents on the origami raft allowed the dynamic photochemical activation of the cofactor-mediated biocatalytic cascade on the spatially biocatalytic assembly on the scaffold. Furthermore, photoinduced "mechanical" switchable and reversible unlocking and closing of nanoholes in the origami frameworks allow the "ON" and "OFF" operation of DNAzyme units in the nanoholes, confined environments. The future challenges and potential applications of dynamic nucleic acid/enzyme and DNAzyme conjugates are discussed in the conclusion paragraph.
Collapse
|
30
|
Kou T, Faisal M, Song J, Blennow A. Polysaccharide-based nanosystems: a review. Crit Rev Food Sci Nutr 2022; 64:1-15. [PMID: 35916785 DOI: 10.1080/10408398.2022.2104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharide-based nanosystem is an umbrella term for many areas within research and technology dealing with polysaccharides that have at least one of their dimensions in the realm of a few hundreds of nanometers. Nanoparticles, nanocrystals, nanofibers, nanofilms, and nanonetworks can be fabricated from many different polysaccharide resources. Abundance in nature, cellulose, starch, chitosan, and pectin of different molecular structures are widely used to fabricate nanosystems for versatile industrial applications. This review presents the dissolution and modification of polysaccharides, which are influenced by their different molecular structures and applications. The dissolution ways include conventional organic solvents, ionic liquids, inorganic strong alkali and acids, enzymes, and hydrothermal treatment. Rheological properties of polysaccharide-based nano slurries are tailored for the purpose functions of the final products, e.g., imparting electrostatic functions of nanofibers to reduce viscosity by using lithium chloride and octenyl succinic acid to increase the hydrophobicity. Nowadays, synergistic effects of polysaccharide blends are increasingly highlighted. In particular, the reinforcing effect of nanoparticles, nanocrystals, nanowhiskers, and nanofibers to hydrogels, aerogels, and scaffolds, and the double network hydrogels of a rigid skeleton and a ductile substance have been developed for many emerging issues.
Collapse
Affiliation(s)
- Tingting Kou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marwa Faisal
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
31
|
Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models. Nat Commun 2022; 13:4414. [PMID: 35906232 PMCID: PMC9338015 DOI: 10.1038/s41467-022-32148-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Dynamic, transient, out-of-equilibrium networks guide cellular genetic, metabolic or signaling processes. Designing synthetic networks emulating natural processes imposes important challenges including the ordered connectivity of transient reaction modules, engineering of the appropriate balance between production and depletion of reaction constituents, and coupling of the reaction modules with emerging chemical functions dictated by the networks. Here we introduce the assembly of three coupled reaction modules executing a cascaded dynamic process leading to the transient formation and depletion of three different Mg2+-ion-dependent DNAzymes. The transient operation of the DNAzyme in one layer triggers the dynamic activation of the DNAzyme in the subsequent layer, leading to a three-layer transient catalytic cascade. The kinetics of the transient cascade is computationally simulated. The cascaded network is coupled to a polymerization/nicking DNA machinery guiding transient synthesis of three coded strands acting as “gene models”, and to the rolling circle polymerization machinery leading to the transient synthesis of fluorescent Zn(II)-PPIX/G-quadruplex chains or hemin/G-quadruplex catalytic wires. A reaction network executing a cascaded transient formation and depletion of three different catalytic strands is introduced. The system is coupled to the secondary temporal synthesis of different coded strands as gene models.
Collapse
|
32
|
Cao D, Xie Y, Song J. DNA Hydrogels in the Perspective of Mechanical Properties. Macromol Rapid Commun 2022; 43:e2200281. [PMID: 35575627 DOI: 10.1002/marc.202200281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Tailoring the mechanical properties has always been a key to the field of hydrogels in terms of different applications. Particularly, deoxyribonucleic acid (DNA) hydrogels offer an unambiguous way to precisely tune the mechanical properties, largely on account of their programmable sequences, abundant responding toolbox, and various ligation approaches. In this review, DNA hydrogels from the perspective of mechanical properties, from synthetic standpoint to different applications are introduced. The relationship between the structure and their mechanical properties in DNA hydrogels and the methods of regulating the mechanical properties of DNA hydrogels are specifically summarized. Furthermore, several recent applications of DNA hydrogels in relation to their mechanical properties are discussed. Benefiting from the tunability and flexibility, rational design of mechanical properties in DNA hydrogels provided unheralded interest from fundamental science to extensive applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dengjie Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
33
|
Singh A, Bhatia D. DNA Nanotechnology-Based Supramolecular Assemblies for Targeted Biomedical Applications. CHEM REC 2022; 22:e202200048. [PMID: 35532197 DOI: 10.1002/tcr.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/24/2022] [Indexed: 11/10/2022]
Abstract
DNA is a polyanionic, hydrophilic, and natural biopolymer that offers properties such as biodegradability, biocompatibility, non-toxicity, and non-immunogenicity. These properties of DNA as an ideal biopolymer offer modern-day researchers' reasons to exploit these to form high-order supramolecular assemblies. These structures could range from simple to complex and provide various applications. Among them, supramolecular assemblies like DNA hydrogels (DNA-HG) and DNA dendrimers (DNA-DS) show massive growth potential in the areas of biomedical applications such as cell biology, medical stream, molecular biology, pharmacology, and healthcare product manufacturing. The application of both of these assemblies has seen enormous growth in recent years. In this focused review on DNA-based supramolecular assemblies like hydrogels and dendrimers, we present the principles of synthesis and characterization, key developments with examples and applications, and conclude with a brief perspective on challenges and future outlook for such devices and their subsequent applications.
Collapse
Affiliation(s)
- Ankur Singh
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India E-mail: Dhiraj Bhatia
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India E-mail: Dhiraj Bhatia.,Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
34
|
Hu T, Chan C, Lin M, Bu H, Liu B, Jiang G. COCu: A Robust Self-Regenerative Hydrogel with Applicability as Both Hydrated Gel Dressing and Dry Suture for Seamless Tissue Fixation and Repair. Adv Healthc Mater 2022; 11:e2102074. [PMID: 34913606 DOI: 10.1002/adhm.202102074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Indexed: 01/13/2023]
Abstract
Self-regenerative hydrogels have recently been developed, and represent a special type of self-healing hydrogels with the ability to restore a dehydrated hydrogel with physical damage. In this study, a self-regenerative hydrogel (COCu) based on two chitosan polymers assembled by slow-released Cu2+ is developed. The COCu hydrogel displays an excellent regeneration ability after being dehydrated and fractured. By simple hydration at room temperature, the fragments of the dehydrated gel fuse into one seamless whole, thereby preserving the mechanical properties and functionalities of the original hydrogel. The regeneration process can be conducted repeatedly after different methods of dehydration (natural volatilization, heat drying, lyophilization) and various modes of deconstruction (flakes, powder, lumpy sponge, etc.). Furthermore, the COCu hydrogel provides ultra-stretchability, and it can be stretched into thin (0.01-0.1 mm) filaments, which, when dried (dtCOCu), can be used as suture lines. Moreover, when used as a dry suture, it regenerates into the hydrogel in the presence of the tissue fluid, forming an excellent sealant to immobilize tissues and seamlessly seal wounds. The fast self-regeneration allows for its facile application as both a hydrated gel dressing and dry suture, and offers customized strategies for fixing and repair of different wounds in soft tissues.
Collapse
Affiliation(s)
- Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Chuncheung Chan
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 China
| | - Min‐Zhao Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Huaitian Bu
- Department of Materials and Nanotechnology SINTEF Industry Forskningsveien 1 Oslo 0373 Norway
| | - Bin Liu
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 China
| | - Gang‐Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
35
|
Li Z, Wang J, Zhou Z, O’Hagan MP, Willner I. Gated Transient Dissipative Dimerization of DNA Tetrahedra Nanostructures for Programmed DNAzymes Catalysis. ACS NANO 2022; 16:3625-3636. [PMID: 35184545 PMCID: PMC8945371 DOI: 10.1021/acsnano.1c06117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Transient dissipative dimerization and transient gated dimerization of DNA tetrahedra nanostructures are introduced as functional modules to emulate transient and gated protein-protein interactions and emergent protein-protein guided transient catalytic functions, operating in nature. Four tetrahedra are engineered to yield functional modules that, in the presence of pre-engineered auxiliary nucleic acids and the nicking enzyme Nt.BbvCI, lead to the fueled transient dimerization of two pairs of tetrahedra. The dynamic transient formation and depletion of DNA tetrahedra are followed by transient FRET signals generated by fluorophore-labeled tetrahedra. The integration of two inhibitors within the mixture of the four tetrahedra and two auxiliary modules, fueling the transient dimerization, results in selective inhibitor-guided gated transient dimerization of two different DNA tetrahedra dimers. Kinetic models for the dynamic transient dimerization and gated transient dimerization of the DNA tetrahedra are formulated and computationally simulated. The derived rate-constants allow the prediction and subsequent experimental validation of the performance of the systems under different auxiliary conditions. In addition, by appropriate modification of the four tetrahedra structures, the triggered gated emergence of selective transient catalytic functions driven by the two pairs of DNA tetrahedra dimers is demonstrated.
Collapse
|
36
|
Simeth NA, de Mendoza P, Dubach VRA, Stuart MCA, Smith JW, Kudernac T, Browne WR, Feringa BL. Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chem Sci 2022; 13:3263-3272. [PMID: 35414864 PMCID: PMC8926171 DOI: 10.1039/d1sc06490h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Molecular recognition-driven self-assembly employing single-stranded DNA (ssDNA) as a template is a promising approach to access complex architectures from simple building blocks. Oligonucleotide-based nanotechnology and soft-materials benefit from the high information storage density, self-correction, and memory function of DNA. Here we control these beneficial properties with light in a photoresponsive biohybrid hydrogel, adding an extra level of function to the system. An ssDNA template was combined with a complementary photo-responsive unit to reversibly switch between various functional states of the supramolecular assembly using a combination of light and heat. We studied the structural response of the hydrogel at both the microscopic and macroscopic scale using a combination of UV-vis absorption and CD spectroscopy, as well as fluorescence, transmission electron, and atomic force microscopy. The hydrogels grown from these supramolecular self-assembly systems show remarkable shape-memory properties and imprinting shape-behavior while the macroscopic shape of the materials obtained can be further manipulated by irradiation.
Collapse
Affiliation(s)
- Nadja A Simeth
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Paula de Mendoza
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Victor R A Dubach
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Julien W Smith
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Tibor Kudernac
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
37
|
Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022. [DOI: 10.1002/viw.20200112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Tianyue Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
38
|
Abstract
Stimuli-responsive DNA-based hydrogels are attracting growing interest because of their smart responsiveness, excellent biocompatibility, regulated biodegradability, and programmable design properties. Integration of reconfigurable DNA architectures and switchable supramolecular moieties (as cross-linkers) in hydrogels by responding to external stimuli provides an ideal approach for the reversible tuning structural and mechanical properties of the hydrogels, which can be exploited in the development of intelligent DNA-based materials. This review highlights recent advances in the design of responsive pure DNA hydrogels, DNA-polymer hybrid hydrogels, and autonomous DNA-based hydrogels with transient behaviors. A variety of chemically and physically triggered DNA-based stimuli-responsive hydrogels and their versatile applications in biosensing, biocatalysis, cell culture and separation, drug delivery, shape memory, self-healing, and robotic actuators are summarized. Finally, we address the key challenges that the field will face in the coming years, and future prospects are identified.
Collapse
Affiliation(s)
- Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
39
|
Sun H, He Y, Wang Z, Liang Q. An Insight into Skeletal Networks Analysis for Smart Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202108489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractHydrogels are 3D cross‐linked polymer networks. Benefiting from the flexible designs and reasonable constructions of these networks, a large number of smart hydrogels with response characteristics to specific stimuli have received widespread attention and developed rapidly. The skeletal networks composed of the skeletal polymer chains and effectual cross‐links are the soul of such soft materials, and the response behaviors fundamentally depend on the dynamic characteristics of skeletal networks. Herein, the novel concepts of skeletal networks analysis to describe, understand, and guide the advanced designs and applications of smart hydrogels are proposed. Representative glucose‐sensitive hydrogels and DNA‐based smart hydrogels are reviewed to demonstrate the principle of skeletal networks analysis and clarify its practical guidance. Summarizing and classifying the characterizations and conversions of skeletal networks dynamics based on different response mechanisms provides a realistic solution. On this basis, advanced applications of smart hydrogels guided by skeletal networks dynamics including biochemical detection, cell mechanics sensing, drug delivery systems, and dynamic complex soft materials are typically reviewed. The skeletal networks analysis for smart hydrogels is of great significance for understanding the microstructures of hydrogels and guiding the designs of soft materials and their smart applications in the fields of analytical science and advanced materials.
Collapse
Affiliation(s)
- Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Yan He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering Shandong Sino‐Japanese Center for Collaborative Research of Carbon Nanomaterials Qingdao University Qingdao 266071 China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
40
|
Sato Y, Takinoue M. Capsule-like DNA Hydrogels with Patterns Formed by Lateral Phase Separation of DNA Nanostructures. JACS AU 2022; 2:159-168. [PMID: 35098232 PMCID: PMC8790810 DOI: 10.1021/jacsau.1c00450] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 05/03/2023]
Abstract
Phase separation is a key phenomenon in artificial cell construction. Recent studies have shown that the liquid-liquid phase separation of designed-DNA nanostructures induces the formation of liquid-like condensates that eventually become hydrogels by lowering the solution temperature. As a compartmental capsule is an essential artificial cell structure, many studies have focused on the lateral phase separation of artificial lipid vesicles. However, controlling phase separation using a molecular design approach remains challenging. Here, we present the lateral liquid-liquid phase separation of DNA nanostructures that leads to the formation of phase-separated capsule-like hydrogels. We designed three types of DNA nanostructures (two orthogonal and a linker nanostructure) that were adsorbed onto an interface of water-in-oil (W/O) droplets via electrostatic interactions. The phase separation of DNA nanostructures led to the formation of hydrogels with bicontinuous, patch, and mix patterns, due to the immiscibility of liquid-like DNA during the self-assembly process. The frequency of appearance of these patterns was altered by designing DNA sequences and altering the mixing ratio of the nanostructures. We constructed a phase diagram for the capsule-like DNA hydrogels by investigating pattern formation under various conditions. The phase-separated DNA hydrogels did not only form on the W/O droplet interface but also on the inner leaflet of lipid vesicles. Notably, the capsule-like hydrogels were extracted into an aqueous solution, maintaining the patterns formed by the lateral phase separation. In addition, the extracted hydrogels were successfully combined with enzymatic reactions, which induced their degradation. Our results provide a method for the design and control of phase-separated hydrogel capsules using sequence-designed DNAs. We envision that by incorporating various DNA nanodevices into DNA hydrogel capsules, the capsules will gain molecular sensing, chemical-information processing, and mechanochemical actuating functions, allowing the construction of functional molecular systems.
Collapse
Affiliation(s)
- Yusuke Sato
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi 980-8579, Japan
- Department
of Computer Science, Tokyo Institute of
Technology, Kanagawa 226-8502, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, Kanagawa 226-8502, Japan
| |
Collapse
|
41
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
42
|
Shellard A, Mayor R. Collective durotaxis along a self-generated stiffness gradient in vivo. Nature 2021; 600:690-694. [PMID: 34880503 DOI: 10.1038/s41586-021-04210-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Collective cell migration underlies morphogenesis, wound healing and cancer invasion1,2. Most directed migration in vivo has been attributed to chemotaxis, whereby cells follow a chemical gradient3-5. Cells can also follow a stiffness gradient in vitro, a process called durotaxis3,4,6-8, but evidence for durotaxis in vivo is lacking6. Here we show that in Xenopus laevis the neural crest-an embryonic cell population-self-generates a stiffness gradient in the adjacent placodal tissue, and follows this gradient by durotaxis. The gradient moves with the neural crest, which is continually pursuing a retreating region of high substrate stiffness. Mechanistically, the neural crest induces the gradient due to N-cadherin interactions with the placodes and senses the gradient through cell-matrix adhesions, resulting in polarized Rac activity and actomyosin contractility, which coordinates durotaxis. Durotaxis synergizes with chemotaxis, cooperatively polarizing actomyosin machinery of the cell group to prompt efficient directional collective cell migration in vivo. These results show that durotaxis and dynamic stiffness gradients exist in vivo, and gradients of chemical and mechanical signals cooperate to achieve efficient directional cell migration.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
43
|
Wang C, O'Hagan MP, Willner B, Willner I. Bioinspired Artificial Photosynthetic Systems. Chemistry 2021; 28:e202103595. [PMID: 34854505 DOI: 10.1002/chem.202103595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 12/18/2022]
Abstract
Mimicking photosynthesis using artificial systems, as a means for solar energy conversion and green fuel generation, is one of the holy grails of modern science. This perspective presents recent advances towards developing artificial photosynthetic systems. In one approach, native photosystems are interfaced with electrodes to yield photobioelectrochemical cells that transform light energy into electrical power. This is exemplified by interfacing photosystem I (PSI) and photosystem II (PSII) as an electrically contacted assembly mimicking the native Z-scheme, and by the assembly of an electrically wired PSI/glucose oxidase biocatalytic conjugate on an electrode support. Illumination of the functionalized electrodes led to light-induced generation of electrical power, or to the generation of photocurrents using glucose as the fuel. The second approach introduces supramolecular photosensitizer nucleic acid/electron acceptor complexes as functional modules for effective photoinduced electron transfer stimulating the subsequent biocatalyzed generation of NADPH or the Pt-nanoparticle-catalyzed evolution of molecular hydrogen. Application of the DNA machineries for scaling-up the photosystems is demonstrated. A third approach presents the integration of artificial photosynthetic modules into dynamic nucleic acid networks undergoing reversible reconfiguration or dissipative transient operation in the presence of auxiliary triggers. Control over photoinduced electron transfer reactions and photosynthetic transformations by means of the dynamic networks is demonstrated.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael P O'Hagan
- Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bilha Willner
- Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
44
|
Li C, Feng X, Yang S, Xu H, Yin X, Yu Y. Capture, Detection, and Simultaneous Identification of Rare Circulating Tumor Cells Based on a Rhodamine 6G-Loaded Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52406-52416. [PMID: 34709779 DOI: 10.1021/acsami.1c15838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circulating tumor cells (CTCs) play a key role in the development of tumor metastasis. It will be a big step forward for CTC application as a reliable clinical liquid biopsy marker to be able to identify the captured CTCs while achieving a high capture efficiency within one analytical system. Herein, in this work, a stimuli-responsive and rhodamine 6G (Rho 6G)-entrapped fluorescent metal-organic framework (MOF) probe, named MOF-Rho 6G-DNA, was designed to capture, detect, and subsequently identify CTCs from blood samples of cancer patients. The probe was fabricated by modifying the epithelial cell adhesion molecule (EpCAM) hairpin DNA aptamer with Rho 6G enclosed and an Arm-DNA-attached UiO-66-NH2 MOF by sequence complementation. CTCs could be captured by the EpCAM hairpin DNA on the probe; as a result, Rho 6G loaded in the probe was released, and the number of CTCs was positively related to the concentration of released Rho 6G. An excellent correlation of fluorescence intensities with CTC numbers was obtained from 2 to 500 cells/mL. More importantly, the MOF-Rho 6G-DNA probe simultaneously realized rapid identification of the captured cells within 30 min by only relying on the residue Rho 6G in the MOF cavity. The captured target cells can be conveniently released from the probe using the complementary DNA sequence. These performance features of the probe were further verified by blood samples from patients of various types of tumor.
Collapse
Affiliation(s)
- Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xingqing Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Shenhao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Hao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| |
Collapse
|
45
|
Gibney R, Ferraris E. Bioprinting of Collagen Type I and II via Aerosol Jet Printing for the Replication of Dense Collagenous Tissues. Front Bioeng Biotechnol 2021; 9:786945. [PMID: 34805132 PMCID: PMC8602098 DOI: 10.3389/fbioe.2021.786945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Collagen has grown increasingly present in bioprinting, however collagen bioprinting has mostly been limited to the extrusion printing of collagen type I to form weak collagen hydrogels. While these weak collagen hydrogels have their applications, synthetic polymers are often required to reinforce gel-laden constructs that aim to replicate dense collagenous tissues found in vivo. In this study, aerosol jet printing (AJP) was used to print and process collagen type I and II into dense constructs with a greater capacity to replicate the dense collagenous ECM found in connective tissues. Collagen type I and II was isolated from animal tissues to form solutions for printing. Collagen type I and II constructs were printed with 576 layers and measured to have average effective elastic moduli of 241.3 ± 94.3 and 196.6 ± 86.0 kPa (±SD), respectively, without any chemical modification. Collagen type II solutions were measured to be less viscous than type I and both collagen type I and II exhibited a drop in viscosity due to AJP. Circular dichroism and SDS-PAGE showed collagen type I to be more vulnerable to structural changes due to the stresses of the aerosol formation step of aerosol jet printing while the collagen type II triple helix was largely unaffected. SEM illustrated that distinct layers remained in the aerosol jet print constructs. The results show that aerosol jet printing should be considered an effective way to process collagen type I and II into stiff dense constructs with suitable mechanical properties for the replication of dense collagenous connective tissues.
Collapse
Affiliation(s)
- Rory Gibney
- Department of Mechanical Engineering, KU Leuven Campus De Nayer, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven Campus De Nayer, Leuven, Belgium
| |
Collapse
|
46
|
Zhang C, Zhu H, Ren X, Gao B, Cheng B, Liu S, Sha B, Li Z, Zhang Z, Lv Y, Wang H, Guo H, Lu TJ, Xu F, Genin GM, Lin M. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat Commun 2021; 12:6229. [PMID: 34711824 PMCID: PMC8553821 DOI: 10.1038/s41467-021-26454-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell's mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed "mechanical memory" in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinru Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zhaoqing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- MOE Key Laboratory of Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
47
|
|
48
|
Gibney R, Patterson J, Ferraris E. High-Resolution Bioprinting of Recombinant Human Collagen Type III. Polymers (Basel) 2021; 13:2973. [PMID: 34503013 PMCID: PMC8434404 DOI: 10.3390/polym13172973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
The development of commercial collagen inks for extrusion-based bioprinting has increased the amount of research on pure collagen bioprinting, i.e., collagen inks not mixed with gelatin, alginate, or other more common biomaterial inks. New printing techniques have also improved the resolution achievable with pure collagen bioprinting. However, the resultant collagen constructs still appear too weak to replicate dense collagenous tissues, such as the cornea. This work aims to demonstrate the first reported case of bioprinted recombinant collagen films with suitable optical and mechanical properties for corneal tissue engineering. The printing technology used, aerosol jet® printing (AJP), is a high-resolution printing method normally used to deposit conductive inks for electronic printing. In this work, AJP was employed to deposit recombinant human collagen type III (RHCIII) in overlapping continuous lines of 60 µm to form thin layers. Layers were repeated up to 764 times to result in a construct that was considered a few hundred microns thick when swollen. Samples were subsequently neutralised and crosslinked using EDC:NHS crosslinking. Nanoindentation and absorbance measurements were conducted, and the results show that the AJP-deposited RHCIII samples possess suitable mechanical and optical properties for corneal tissue engineering: an average effective elastic modulus of 506 ± 173 kPa and transparency ≥87% at all visible wavelengths. Circular dichroism showed that there was some loss of helicity of the collagen due to aerosolisation. SDS-PAGE and pepsin digestion were used to show that while some collagen is degraded due to aerosolisation, it remains an inaccessible substrate for pepsin cleavage.
Collapse
Affiliation(s)
- Rory Gibney
- Department of Mechanical Engineering, KU Leuven, Campus De Nayer, 2860 Sint-Katelijne-Waver, Belgium
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, Getafe, 28906 Madrid, Spain
| | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven, Campus De Nayer, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
49
|
Akintayo CO, Creusen G, Straub P, Walther A. Tunable and Large-Scale Model Network StarPEG-DNA Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cecilia Oluwadunsin Akintayo
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| | - Guido Creusen
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
| | - Paula Straub
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab, Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, 55128 Mainz, Germany
- DFG Cluster of Excellence @ FIT “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Koehler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
50
|
Su D, Zhang Y, Ulrich S, Barboiu M. Constitutional Dynamic Inhibition/Activation of Carbonic Anhydrases. Chempluschem 2021; 86:1500-1510. [PMID: 34327867 DOI: 10.1002/cplu.202100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Indexed: 12/23/2022]
Abstract
In this review we consider one important member of the metalloenzymes family, the carbonic anhydrase (CA), involved in the treatment of several common diseases. Different approaches have emerged to regulate the activity of CA, mostly acting on the inner catalytic active site or outer microenvironment of the enzyme, leading to inhibition or activation of CA. In recent years, gradually increased attention has focused on the adoption of constitutional dynamic chemistry (CDC) strategies for the screening and discovery of potent inhibitors or activators. The participation of reversible covalent bonds enabled the enzyme itself to select the optimal ligands obtained from diverse building blocks with comparatively higher degree of variety, resulting in the fittest recognition of enzyme ligands from complex dynamic systems. With the increasing implementation of CDC for enzyme targets, it shows great potential for drug discovery or CO2 capture applications.
Collapse
Affiliation(s)
- Dandan Su
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|