1
|
Liu X, Huang X, Chu C, Xu H, Wang L, Xue Y, Arifeen Muhammad ZU, Inagaki F, Liu C. Genome, genetic evolution, and environmental adaptation mechanisms of Schizophyllum commune in deep subseafloor coal-bearing sediments. iScience 2022; 25:104417. [PMID: 35663011 PMCID: PMC9156946 DOI: 10.1016/j.isci.2022.104417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
To understand the genomic evolution and adaptation strategies of fungi to subseafloor sedimentary environments, we de novo assembled the genome of Schizophyllum commune strain 20R-7-F01 isolated from ∼2.0 km-deep, ∼20-millionyearsago (Mya) coal-bearing sediments. Phylogenomics study revealed a differentiation time of 28-73 Mya between this strain and the terrestrial type-strain H4-8, in line with sediment age records. Comparative genome analyses showed that FunK1 protein kinase, NmrA family, and transposons in this strain are significantly expanded, possibly linking to the environmental adaptation and persistence in sediment for over millions of years. Re-sequencing study of 14 S. commune strains sampled from different habitats revealed that subseafloor strains have much lower nucleotide diversity, substitution rate, and homologous recombination rate than other strains, reflecting that the growth and/or reproduction of subseafloor strains are extremely slow. Our data provide new insights into the adaptation and long-term survival of the fungi in the subseafloor sedimentary biosphere.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Xin Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | | | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai 980-8574, Japan
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Drake H, Reiners PW. Thermochronologic perspectives on the deep-time evolution of the deep biosphere. Proc Natl Acad Sci U S A 2021; 118:e2109609118. [PMID: 34725158 PMCID: PMC8609299 DOI: 10.1073/pnas.2109609118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
The Earth's deep biosphere hosts some of its most ancient chemolithotrophic lineages. The history of habitation in this environment is thus of interest for understanding the origin and evolution of life. The oldest rocks on Earth, formed about 4 billion years ago, are in continental cratons that have experienced complex histories due to burial and exhumation. Isolated fracture-hosted fluids in these cratons may have residence times older than a billion years, but understanding the history of their microbial communities requires assessing the evolution of habitable conditions. Here, we present a thermochronological perspective on the habitability of Precambrian cratons through time. We show that rocks now in the upper few kilometers of cratons have been uninhabitable (>∼122 °C) for most of their lifetime or have experienced high-temperature episodes, such that the longest record of habitability does not stretch much beyond a billion years. In several cratons, habitable conditions date back only 50 to 300 million years, in agreement with dated biosignatures. The thermochronologic approach outlined here provides context for prospecting and interpreting the little-explored geologic record of the deep biosphere of Earth's cratons, when and where microbial communities may have thrived, and candidate areas for the oldest records of chemolithotrophic microbes.
Collapse
Affiliation(s)
- Henrik Drake
- Department of Biology and Environmental Science, Linnæus University, Kalmar 391 82, Sweden;
| | - Peter W Reiners
- Department of Geosciences, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
4
|
Tillberg M, Drake H, Zack T, Kooijman E, Whitehouse MJ, Åström ME. In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults. Sci Rep 2020; 10:562. [PMID: 31953465 PMCID: PMC6969261 DOI: 10.1038/s41598-019-57262-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022] Open
Abstract
Establishing temporal constraints of faulting is of importance for tectonic and seismicity reconstructions and predictions. Conventional fault dating techniques commonly use bulk samples of syn-kinematic illite and other K-bearing minerals in fault gouges, which results in mixed ages of repeatedly reactivated faults as well as grain-size dependent age variations. Here we present a new approach to resolve fault reactivation histories by applying high-spatial resolution Rb-Sr dating to fine-grained mineral slickenfibres in faults occurring in Paleoproterozoic crystalline rocks. Slickenfibre illite and/or K-feldspar together with co-genetic calcite and/or albite were targeted with 50 µm laser ablation triple quadrupole inductively coupled plasma mass spectrometry analyses (LA-ICP-MS/MS). The ages obtained disclose slickenfibre growth at several occasions spanning over 1 billion years, from at least 1527 Ma to 349 ± 9 Ma. The timing of these growth phases and the associated structural orientation information of the kinematic indicators on the fracture surfaces are linked to far-field tectonic events, including the Caledonian orogeny. Our approach links faulting to individual regional deformation events by minimizing age mixing through micro-scale analysis of individual grains and narrow crystal zones in common fault mineral assemblages.
Collapse
Affiliation(s)
- Mikael Tillberg
- Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden. .,Department of Earth Sciences, Gothenburg University, 40530, Gothenburg, Sweden.
| | - Henrik Drake
- Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden
| | - Thomas Zack
- Department of Earth Sciences, Gothenburg University, 40530, Gothenburg, Sweden
| | - Ellen Kooijman
- Department of Geosciences, Swedish Museum of Natural History, 10405, Stockholm, Sweden
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, 10405, Stockholm, Sweden
| | - Mats E Åström
- Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden
| |
Collapse
|