1
|
Wang Y, Zhang Y, Wang S, Li L, Lv T, Liu X, Zhao H, Han Z, Tan X, Mu Y, Cui M, Hu T, Meng C. Fe Coordination Environment Modulating Oxygen Evolution Reaction Properties of Cobalt Site. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500121. [PMID: 40370292 DOI: 10.1002/smll.202500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Co─Fe layered double hydroxide (LDH) has shown great performance for oxygen evolution reaction (OER), however, the effect of Fe in Co─Fe compounds as well as its mechanism for promoting OER are still of great challenge. Herein, Co─Fe bimetallic silicate hydroxides, with a similar structure of Co─Fe LDH and more advantages, are designed to address the issue about the performance-determining site (PDS). In designed Co─Fe bimetallic silicate hydroxides, two different coordinated Fe ions in cationic layers (Fe3+ (Oh)) and anionic layers (Fe3+ (Td)) are distinguished to achieve high-efficient OER catalysts, where introducing Al as heteroatom can shield the existence of Fe3+ (Td), creating a key contrast. It is found that different coordinated Fe ions modulate OER properties of cobalt sites into different directions: Fe3+ (Oh) immensely promotes the OER process on adjacent Co sites, while Fe3+ (Td) plays an opposite role. Taking advantage of the above effects, the overpotential has declined to 254 mV at 10 mA cm-2, showing great progress in this field. The density functional theory (DFT) method identifies Co2+ as PDS and elucidates the related mechanisms with electronic structures. This work explores the mechanism of Co─Fe bimetallic effect promoting OER performance, providing a reference for the related controversy.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yifu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Shengguo Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Longmei Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tianming Lv
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xin Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongxin Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zhixuan Han
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xianfang Tan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Yang Mu
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, P. R. China
| | - Miao Cui
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tao Hu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, P. R. China
| |
Collapse
|
2
|
Wang Z, Wan J, Sun X, Sun L, Chen S, Zhang Q. Boosting the Selectivity in Oxygen Electrocatalysis Using Chiral Nanoparticles as Electron-Spin Filters. J Am Chem Soc 2025; 147:15767-15776. [PMID: 40215458 DOI: 10.1021/jacs.5c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Controlling the electron spin of oxygen-containing intermediates is crucial for efficient oxygen electrocatalysis toward clean energy technologies such as fuel cells and water electrolysis. Current strategies for controlling the electron spins rely mainly on tuning the chemical structure of the oxygen electrocatalyst, which is often hardly achieved for metal and oxide electrocatalysts. The chiral-induced spin selectivity (CISS) effect, a significant discovery in chiral spintronics, represents an alternative approach for tuning the spin selectivity of oxygen electrocatalysts. Here we demonstrate the use of intrinsic chiral nanoparticles as electron-spin filters to tune the selectivity in oxygen electrocatalytic reactions. Chiral Au nanoparticles with a concave vortex cube structure were employed as the chiral substrate, exhibiting highly tunable optical chirality and intriguing CISS-like effect. As model systems, the catalytically active components such as Pt or Ni(OH)2 are overgrown onto chiral Au nanoparticles to construct the chiral hybrid electrocatalysts. Remarkably, both cases show chirality-dependent tunable activities over oxygen reduction/evolution reactions, respectively. The insights gained from this work not only shed light on the underlying mechanisms dictating the CISS-enhanced oxygen electrocatalysis by chiral nanoparticles but also provide an important knowledge framework that guides the rational design of chiral electrocatalysts toward oxygen electrocatalysis.
Collapse
Affiliation(s)
- Zixu Wang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Jinling Wan
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Suvarna M, Laplaza R, Graux R, López N, Corminboeuf C, Jorner K, Pérez-Ramírez J. SPOCK Tool for Constructing Empirical Volcano Diagrams from Catalytic Data. ACS Catal 2025; 15:7296-7307. [PMID: 40337363 PMCID: PMC12053834 DOI: 10.1021/acscatal.5c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 05/09/2025]
Abstract
Volcano plots, stemming from the Sabatier principle, visualize descriptor-performance relationships, allowing rational catalyst design. Manually drawn volcanoes originating from experimental studies are potentially prone to human bias as no guidelines or metrics exist to quantify the goodness of fit. To address this limitation, we introduce a framework called SPOCK (systematic piecewise regression for volcanic kinetics) and validate it using experimental data from heterogeneous, homogeneous, and enzymatic catalysis to fit volcano-like relationships. We then generalize this approach to DFT-derived volcanoes and evaluate the tool's robustness against noisy kinetic data and in identifying false-positive volcanoes, i.e., cases where studies claim a volcano-like relationship exists, but such correlations are not statistically significant. Once the SPOCK's functional features are established, we demonstrate its potential to identify descriptor-performance relationships, exemplified via the ceria-promoted water-gas shift and single-atom-catalyzed electrocatalytic carbon dioxide reduction reactions. In both cases, the model uncovers descriptors previously unreported, revealing insights that are not easily recognized by human experts. Finally, we showcase SPOCK's capabilities to formulate multivariable descriptors, an emerging topic in catalysis research. Our work pioneers an automated and standardized tool for volcano plot construction and validation, and we release the model as an open-source web application for greater accessibility and knowledge generation in catalysis.
Collapse
Affiliation(s)
- Manu Suvarna
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- NCCR
Catalysis, 8093 Zurich, Switzerland
| | - Rubén Laplaza
- Laboratory
for Computational Molecular Design, Institute
of Chemical Sciences and Engineering, EPFL, 1015 Lausanne, Switzerland
- NCCR
Catalysis, 8093 Zurich, Switzerland
| | - Romain Graux
- Institute
of Chemical Sciences and Engineering, EPFL, 1015 Lausanne, Switzerland
- NCCR
Catalysis, 8093 Zurich, Switzerland
| | - Núria López
- The
Barcelona Institute of Science and Technology (BIST), Institute of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Clémence Corminboeuf
- Laboratory
for Computational Molecular Design, Institute
of Chemical Sciences and Engineering, EPFL, 1015 Lausanne, Switzerland
- NCCR
Catalysis, 8093 Zurich, Switzerland
| | - Kjell Jorner
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- NCCR
Catalysis, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- NCCR
Catalysis, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Wang K, Ni C, Jin L, Qian X, Xu H, Chen H, He G. Fe doping intensifies the built-in electric field for tailoring the reconstruction of sulfides towards efficient oxygen evolution. Chem Sci 2025; 16:7467-7476. [PMID: 40160352 PMCID: PMC11949124 DOI: 10.1039/d4sc08789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
The traditional view of sulfides as stable active centers has hindered the development of a clear structure-activity relationship and the rational design of high-performance oxygen evolution reaction (OER) catalysts. In this study, we focus on regulating sulfide reconstruction and have synthesized a Fe-Ni3S4/Cr2O3 pre-catalyst. Under the combined influence of the built-in electric field (BIEF) at the heterogeneous interface and Fe doping, both the sulfide reconstruction process and the electronic structure of the reconstructed product, namely Fe-NiOOH, were effectively tuned. The enhanced BIEF induced by Fe doping generated electron-rich regions on the sulfide surface, stabilizing the reconstruction process. Fe doping into the sulfide induced the incorporation of Fe into NiOOH, modulating the electronic states near the Fermi level of the metal-oxygen bond and subsequently activating the lattice oxygen mediated mechanism (LOM) of Fe-NiOOH, which serves as the true active center. Additionally, the BIEF optimized OH- diffusion dynamics and the energy consumption of hydroxyl deprotonation, reducing the energy barrier of the rate-limiting step of the LOM process, further enhancing OER activity. Remarkably, Fe-Ni3S4/Cr2O3 demonstrated excellent OER activity and commercial viability. This work offers a new perspective on the regulation of reconstruction products of pre-catalyst, providing fresh insights for the design of efficient OER catalysts.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University 21 Gehu Lake Road Changzhou 213164 China
| | - Chunmei Ni
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University 21 Gehu Lake Road Changzhou 213164 China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University 21 Gehu Lake Road Changzhou 213164 China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University 21 Gehu Lake Road Changzhou 213164 China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University 21 Gehu Lake Road Changzhou 213164 China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University 21 Gehu Lake Road Changzhou 213164 China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University 21 Gehu Lake Road Changzhou 213164 China
| |
Collapse
|
5
|
Song Y, Zhao W, Wang Z, Shi W, Zhang F, Wei Z, Cui X, Zhu Y, Wang T, Sun L, Zhang B. Sub-4 nm Ru-RuO 2 Schottky Nanojunction as a Catalyst for Durable Acidic Water Oxidation. J Am Chem Soc 2025; 147:13775-13783. [PMID: 40184350 DOI: 10.1021/jacs.5c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
RuO2 with high intrinsic activity for water oxidation is a promising alternative to IrO2 in proton exchange membrane (PEM) electrolyzer, but it suffers from long-term stability issues due to overoxidation. Here, we report a sub-4 nm Ru-RuO2 Schottky nanojunction (Ru-RuO2-SN) prepared by a microwave reaction that exhibits high activity and long-term stability in both three-electrode systems and PEM devices. The lattice strain and charge transfer induced by the metal-oxide SN increase the work function of the Ru-RuO2-SN, optimize the local electronic structure, and reduce the desorption energy of the metal site to the oxygen-containing intermediates; as a result, it leads to the oxide path mechanism (OPM) and inhibits the excessive oxidation of surface ruthenium. The Ru-RuO2-SN requires only 165 mV overpotential to obtain 10 mA·cm-2 with 1400 h stability without obvious activity degradation, achieving a stability number (6.7 × 106) matching iridium-based catalysts. In a PEM electrolyzer with Ru-RuO2-SN as an anode catalyst, only 1.6 V is needed to reach 1.0 A·cm-2 and it shows long-term stability at 100 mA·cm-2 for 1100 h and at 500 mA·cm-2 for 100 h. The reaction mechanism for the high stability of Ru-RuO2-SN was analyzed by density functional theory calculations. This work reports a durable, pure Ru-based water-oxidation catalyst and provides a new perspective for the development of efficient Ru-based catalysts.
Collapse
Affiliation(s)
- Yuxiang Song
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Wanghui Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhi Wang
- Center for Electron Microscopy, Zhejiang Key Laboratory of Surface and Interface Science and Engineering for Catalysts, China-Saudi Arabia Joint Laboratory on Microscopic Structural Engineering of Advanced Materials and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weili Shi
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Feiyang Zhang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Zhuoming Wei
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Xin Cui
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Yihan Zhu
- Center for Electron Microscopy, Zhejiang Key Laboratory of Surface and Interface Science and Engineering for Catalysts, China-Saudi Arabia Joint Laboratory on Microscopic Structural Engineering of Advanced Materials and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Biaobiao Zhang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
6
|
Gallenberger J, Gohlke C, Neumann M, Mechler AK, Hofmann JP. Water Dissociation on NiOOH in Alkaline Water Electrolysis Improves with Increasing Alkali Metal Cation Size. CHEMSUSCHEM 2025:e2402596. [PMID: 40211958 DOI: 10.1002/cssc.202402596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/10/2025] [Indexed: 04/27/2025]
Abstract
The activity of nickel-based electrocatalysts toward the oxygen evolution reaction (OER) is influenced by the presence of alkali metal cations in the electrolyte. Since the underlying mechanism is not fully resolved yet, a study combining Raman, Fourier-transform infrared, and photoelectron spectroscopies is conducted. It is found that an improved OER activity correlates with structural changes of the catalyst. The cations are adsorbed in increasing amounts in the order Li+ < Na+ < K+ < Cs+, opening the layers of the NiOOH layered double-hydroxide structure and promoting a transition from a more β-like to a more γ-like NiOOH phase. In addition, the NiOOH surface gets increasingly deprotonated with increasing alkali cation size. The activated catalyst materials are stabilized in ultra-high vacuum and exposed to controlled doses of H2O to analyze the catalyst-electrolyte interface in a quasi in situ approach with photoelectron spectroscopy. Going from Li+ to Cs+, more OH groups are found on the surface after the exposure to H2O, demonstrating that such structural changes are facilitating the dissociation of H2O. As the dissociation of H2O is a crucial step in many OER mechanisms, its modified efficiency can be correlated with the observed trends in OER activity in LiOH, NaOH, KOH, and CsOH.
Collapse
Affiliation(s)
- Julia Gallenberger
- Surface Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Clara Gohlke
- Electrochemical Reaction Engineering (AVT.ERT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Marie Neumann
- Surface Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Anna K Mechler
- Electrochemical Reaction Engineering (AVT.ERT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
7
|
Hu Y, Chao T, Dou Y, Xiong Y, Liu X, Wang D. Isolated Metal Centers Activate Small Molecule Electrooxidation: Mechanisms and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418504. [PMID: 39865965 DOI: 10.1002/adma.202418504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property. The isolated metal sites in IASCs inherently possess a positive oxidation state, and can be more readily produce homogeneous high-valence active sites under oxidative potentials than their nanoparticle counterparts. Meanwhile, IASCs merely possess the isolated metal centers but lack ensemble metal sites, which can alter the adsorption configurations of small molecules as compared with nanoparticle counterparts, and thus induce various reaction pathways and mechanisms to change product selectivity. More importantly, the construction of isolated metal centers is discovered to limit metal d-electron back donation to CO 2p* orbital and reduce the overly strong adsorption of CO on ensemble metal sites, which resolve the CO poisoning problems in most small molecules electro-oxidation reactions and thus improve catalytic stability. Based on these advantages of IASCs in the fields of electrochemical oxidation of small molecules, this review summarizes recent developments and advancements in IASCs in small molecules electro-oxidation reactions, focusing on anodic HOR in fuel cells and OER in electrolytic cells as well as their alternative reactions, such as formic acid/methanol/ethanol/glycerol/urea/5-hydroxymethylfurfural (HMF) oxidation reactions as key reactions. The catalytic merits of different oxidation reactions and the decoding of structure-activity relationships are specifically discussed to guide the precise design and structural regulation of IASCs from the perspective of a comprehensive reaction mechanism. Finally, future prospects and challenges are put forward, aiming to motivate more application possibilities for diverse functional IASCs.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tingting Chao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Yu Z, Li JP, Xu XK, Ding ZC, Peng XH, Gao YJ, Wan Q, Zheng JF, Zhou XS, Wang YH. Uncovering Interfacial Oxygen-Bridged Binuclear Metal Centers of Heterogenized Molecular Catalyst for Water Electrolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417607. [PMID: 40159461 DOI: 10.1002/advs.202417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The success of different heterogeneous strategies of organometallic catalysts has been demonstrated to achieve high selectivity and activity in photo/electrocatalysis. However, yielding their catalytic mechanisms at complex molecule-electrode and electrochemical interfaces remains a great challenge. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy is employed to elucidate the dynamic process, interfacial structure, and intermediates of copper hydroxide-2-2' bipyridine on Au electrode ((bpy)Cu(OH)2/Au) during the oxygen evolution reaction (OER). Direct Raman molecular evidences reveal that the interfacial (bpy)Cu(OH)2 oxidizes into Cu(III) and bridges to Au atoms via oxygenated species, forming (bpy)Cu(III)O2-Au with oxygen-bridged binuclear metal centers of Cu(III)-O-Au for the OER. As the potential further increases, Cu(III)-O-Au combines with surface hydroxyl groups (*OH) to form the important intermediate of Cu(III)-OOH-Au, which then turns into Cu(III)-OO-Au to release O2. Furthermore, in situ electrochemical impedance spectroscopy proves that the Cu(III)-O-Au has lower resistance and faster mass transport of hydroxy to enhance OER. Theoretical calculations reveal that the formation of Cu(III)-O-Au significantly modify the elementary reaction steps of the OER, resulting in a lower potential-determining step of ≈0.58 V than that of bare Au. This work provides new insights into the OER mechanism of immobilized-molecule catalysts for the development and application of renewable energy conversion devices.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Jian-Ping Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Xian-Kun Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhong-Chen Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Xiao-Hui Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Qiang Wan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
9
|
Huang J, Clark AH, Hales N, Crossley K, Guehl J, Skoupy R, Schmidt TJ, Fabbri E. Oxidation of interfacial cobalt controls the pH dependence of the oxygen evolution reaction. Nat Chem 2025:10.1038/s41557-025-01784-1. [PMID: 40155757 DOI: 10.1038/s41557-025-01784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/21/2025] [Indexed: 04/01/2025]
Abstract
Transition metal oxides often undergo dynamic surface reconstruction under oxygen evolution reaction conditions to form the active state, which differs in response to the electrolyte pH. The resulting pH dependency of catalytic activity is commonly observed but poorly understood. Herein we track Co oxidation state changes at different pH-directed (hydr)oxide/electrolyte interfaces using operando X-ray absorption spectroscopy characterizations. Combined with in situ electrochemical analyses, we establish correlations between Co redox dynamics, the flat band potential and Co oxidation state changes to explain the pH dependency of the oxygen evolution activity. Alkaline environments provide a low flat band potential that yields a low-potential Co redox transformation, which favours surface reconstruction. Neutral and acidic environments afford an anodic shift of the Co redox transformation that increases the catalytic overpotential. The larger overpotential in neutral environments is attributable to poor Co atom polarizability and slow Co oxidation state changes. These findings reveal that interfacial Co oxidation state changes directly determine the pH dependency of the oxygen evolution reaction activity.
Collapse
Affiliation(s)
- Jinzhen Huang
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland.
| | - Adam H Clark
- PSI Center for Photon Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Natasha Hales
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Kenneth Crossley
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Julie Guehl
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Radim Skoupy
- PSI Center for Life Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Thomas J Schmidt
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Physical Molecular Sciences, ETH Zürich, Zürich, Switzerland
| | - Emiliana Fabbri
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
10
|
Sun W, Hu J, Lou Y, Chen J. Creating Dual Active Sites in Ru-doped FeMn-MOF-74 for Efficient Overall Water Splitting. Chemistry 2025; 31:e202500149. [PMID: 39846498 DOI: 10.1002/chem.202500149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
The design of well-engineered bifunctional electrocatalysts is crucial for achieving durable and efficient performance in overall water splitting. In this study, Ru-doped FeMn-MOF-74 itself has Ru sites and generates FeMnOOH under catalytic conditions, forming dual active sites for overall water splitting. Density functional theory (DFT) calculations demonstrate that the Ru dopants exhibit optimized binding strength for H* and enhanced hydrogen evolution reaction (HER) performance. Moreover, the Mn sites within FeMnOOH lower the energy barrier for the rate-determining step (from O* to OOH*), serving as the active centre for oxygen evolution reaction (OER). The incorporation of Ru significantly improves the electron transfer properties of FeMn-MOF-74 and enhances its water adsorption capacity, synergistically boosting its bifunctional activity. This strategy of designing dual active sites provides new insights into the development of bifunctional metal-organic frameworks (MOFs) for efficient overall water splitting.
Collapse
Affiliation(s)
- Wenting Sun
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing, 211189, PR China
| | - Jinqi Hu
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing, 211189, PR China
| | - Yongbin Lou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing, 211189, PR China
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing, 211189, PR China
| |
Collapse
|
11
|
Wang K, Xu H, Huang B, Xing H, Jin L, Qian X, Chen H, He G. Coupling Built-in Electric Field and Lewis Acid Triggers the Lattice Oxygen-Mediated Mechanism for Efficient Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411790. [PMID: 39924750 DOI: 10.1002/smll.202411790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The oxygen evolution reaction catalyst triggering lattice oxygen-mediated mechanism (LOM) can break the activity limitation imposed by the adsorbate evolution mechanism scaling relationship. However, triggering LOM is challenging due to the thermodynamic disadvantages associated with lattice oxygen redox reactions. Here, a Lewis acid-modified layered double hydroxides (LDH) heterojunction catalyst (LDH/Cr2O3) is designed. The asymmetric charge distribution at the heterojunction interface, induced by the built-in electric field, shifts the electron transfer center from the lower Hubbard band to non-bonding oxygen, thereby activating LOM. The enrichment of OH- and the enhanced covalency of the metal-oxygen bond by Lewis acid optimize the pH-dependent and high-energy consumption during the hydroxyl (OH*) deprotonation process of LOM. Furthermore, the activation of lattice oxygen and accelerated OH* deprotonation facilitate the surface reconstruction of LDH. Consequently, the LDH/Cr2O3 exhibits excellent catalytic activity, with an overpotential of only 237 mV (at 10 mA cm-2) in 1.0 m KOH electrolyte. The catalyst maintains excellent activity in simulated seawater and 0.1 m KOH electrolyte. Furthermore, it demonstrates outstanding practical functionality, as the assembled commercial-scale alkaline electrolyzer operates stably for 50 h. This work may provide new approaches and theoretical insights for triggering and optimizing LOM.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University, 21 Gehu Lake Road, Changzhou, 213164, China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University, 21 Gehu Lake Road, Changzhou, 213164, China
| | - Bingji Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process engineering, ECNU Engineering Center for Sustainable Carbon, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China
| | - Haoran Xing
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Street, Nanjing, 210023, China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University, 21 Gehu Lake Road, Changzhou, 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University, 21 Gehu Lake Road, Changzhou, 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University, 21 Gehu Lake Road, Changzhou, 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Institution, Changzhou University, 21 Gehu Lake Road, Changzhou, 213164, China
| |
Collapse
|
12
|
Soriano-López J, Quirós-Huerta J, Seijas-Da Silva Á, Torres-Cavanillas R, Andres-Garcia E, Abellán G, Coronado E. Elucidation of the Activity and pH Stability Limits of Polyoxometalate-Intercalated Layered Double Hydroxide Nanocomposites toward Water Oxidation Catalysis. Inorg Chem 2025; 64:3242-3255. [PMID: 39933709 PMCID: PMC11863369 DOI: 10.1021/acs.inorgchem.4c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
The inclusion of water oxidation active polyoxometalates (POMs) inside layered materials is a promising strategy to increase their catalytic efficiency while overcoming their fragility under homogeneous conditions. In this sense, intercalation of POMs in the interlaminar space of layered double hydroxides (LDHs), formed by positively charged brucite-type inorganic layers, is a very interesting strategy that is gaining attention in the field. Despite their huge potential, there is a lack of accurate characterization of the materials, especially after their use as water oxidation catalysts under pH conditions in which the POM counterpart has been demonstrated to be unstable (strong alkali media). For this reason and as a proof of concept, we have intercalated the well-known [Co4(H2O)2(PW9O34)2]10- POM (Co4-POM) in the lamellar space of the Mg2Al-LDH, to study its catalytic capabilities and stability. Remarkably, the nanocomposites show improved water oxidation efficiencies with excellent stability in close-to-neutral media compared with the water-insoluble cesium salt of Co4-POM or commercial Co3O4. However, thorough postcatalytic characterization of the nanocomposites demonstrates that the polyoxotungstate framework of the POM suffers from hydrolytic instability in strong alkali conditions, leading to the formation of a mixed-valence cobalt(II/III) oxide in the interlayer space of Mg2Al-LDH. This work highlights the importance of accurately assessing the fate of the catalytic POM after the catalytic reaction, especially when conditions are employed outside the pH stability window of the POM, which can lead to erroneous conclusions and mistaken catalytic activities.
Collapse
Affiliation(s)
- Joaquín Soriano-López
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Javier Quirós-Huerta
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Álvaro Seijas-Da Silva
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Ramón Torres-Cavanillas
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
- Department
of Materials, Oxford University, Oxford OX2 6NN, U.K.
| | - Eduardo Andres-Garcia
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Gonzalo Abellán
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Eugenio Coronado
- Institut
de Ciència Molecular, Universitat
de València, Catedrático José Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|
13
|
Yu ZT. Chemical design of metal complexes for electrochemical water oxidation under acidic conditions. Dalton Trans 2025; 54:2718-2736. [PMID: 39834165 DOI: 10.1039/d4dt02874k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The development of viable, stable, and highly efficient molecular water oxidation catalysts under acidic aqueous conditions (pH < 7) is challenging with Earth-abundant metals in the field of renewable energy due to their low stability and catalytic activity. The utilization of these catalysts is generally considered more cost-effective and sustainable relative to conventional catalysts relying on precious metals such as ruthenium and iridium, which exhibit outstanding activities. Herein, we discussed the effectiveness of transition metal complexes for electrocatalytic water oxidation under acidic conditions. We focus on important aspects of 3d first-row metal complexes as they relate to the design of water oxidation systems and emphasize the importance of the fundamental coordination chemistry perspective in this field, which can be applied to the understanding of catalytic activity and fundamental structure-function relationships. Finally, we identified the scientific challenges that should be overcome for the future development and application of water oxidation electrochemical catalysts.
Collapse
Affiliation(s)
- Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| |
Collapse
|
14
|
Wang M, Ou WC, Yu ZT. Porous Silicon-Supported Catalytic Materials for Energy Conversion and Storage. CHEMSUSCHEM 2025; 18:e202401459. [PMID: 39269735 DOI: 10.1002/cssc.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Porous silicon (Si) has a tetrahedral structure similar to that of sp3-hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high-speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si-supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si-based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium-ion battery and supercapacitor in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.
Collapse
Affiliation(s)
- Man Wang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Wei-Cheng Ou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
15
|
Ye K, Han Y, Hu M, Hu P, Ahlquist MSG, Zhang G. Secondary Coordination Effects of Adjacent Metal Center in Metal-Nitrogen-Carbon Improve Scaling Relation of Oxygen Electrocatalysis. J Phys Chem Lett 2025; 16:909-916. [PMID: 39832180 DOI: 10.1021/acs.jpclett.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Heterogenous single-atom catalysts (SACs) are reminiscent of homogeneous catalysts because of the similarity of structural motif of active sites, showing the potential of using the advantage of homogeneous catalysts to tackle challenges in hetereogenous catalysis. In heterogeneous oxygen electrocatalysis, the homogeneity of adsorption patterns of reaction intermediates leads to scaling relationships that limit their activities. In contrast, homogeneous catalysts can circumvent such limits by selectively altering the adsorption of intermediates through secondary coordination effects (SCEs). This inspired us to explore potential SCEs in metal-nitrogen-carbon (M-N-C), a promising type of oxygen evolution electrocatalyst. We introduced SCEs with a neighboring metal site that can modulate the adsorption strengths of oxygen-containing intermediates. First-principles calculations show that the second site in the heteronuclear duo four-nitrogen-coordinated metal center can induce SCEs that selectively stabilize the OOH intermediate but with minor effects on the OH intermediate and, thereby, disrupt the scaling relation between oxygen species and eventually increase the catalytic activity in oxygen evolution reactions. Additionally, the activity of oxygen reduction reaction of selected M-N-C is also enhanced by such SCE. Our computational work underscored the critical role SCEs can have in shaping activities of SACs, particularly in favorably altering scaling relationships, and demonstrated its potential to address catalytic challenges in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ke Ye
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Yulan Han
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
| | - Min Hu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - P Hu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Future Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Liu D, Wang Y, Zhu J, Gu X, Yang H, Xiong Y, Shao M, Shao Q. A two-dimensional amorphous iridium-cobalt oxide for an acidic oxygen evolution reaction. Chem Commun (Camb) 2025; 61:2119-2122. [PMID: 39801483 DOI: 10.1039/d4cc05227g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
A two-dimensional (2D) amorphous iridium cobalt oxide (Am-IrCoyOx) was prepared using the molten salt method. The optimal catalyst shows a low overpotential of 230 mV at 10 mA cm-2 in 0.5 M H2SO4. DFT calculations show that the unsaturated Ir active sites on the surface are responsible for the excellent electrocatalytic performance. This work exhibits the advantages of 2D oxides and might find potential applications in other fields.
Collapse
Affiliation(s)
- Da Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Jiarui Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Xuewei Gu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Yutian Xiong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| |
Collapse
|
17
|
Fan F, Lei B, Song X, Liang J, Cai W, Zhong Y, Wu Y, Bao N, Zhang L. Applicable Descriptors under Weak Metal-Oxygen d-p Interaction for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202419718. [PMID: 39564973 DOI: 10.1002/anie.202419718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
The oxygen evolution reaction (OER) plays a crucial role in water electrolysis and renewable energy conversion processes. Descriptors are utilized to elucidate the structure-performance relationships of OER catalytic materials, yet each descriptor exhibits specificity to particular systems. Currently, there is a lack of effective descriptors to describe the relationship between electronic structure and OER performance in ionic systems. This study reveals for the first time that widely used OER descriptors, the d-band center and charge transfer energy, are limited in their effectiveness for oxide systems dominated by ionic bonds, in which ionic interactions significantly enhance or suppress the catalytic activity. Furthermore, composite descriptors tailored for ionic systems are proposed, with findings extended to complex multi-component and high-entropy oxides. The results indicate that the metal d-band unoccupied states parameter and the active states parameter can serve as effective OER descriptors for ionic catalytic materials. This work addresses the gap in OER descriptors for ionic systems, offering a new theoretical foundation and guidance for the development of efficient OER catalytic materials.
Collapse
Affiliation(s)
- Fangshi Fan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Bohan Lei
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Xiaomin Song
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jiayuan Liang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Weiwei Cai
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yu Zhong
- Laboratory Intern, 12th Grade, Shanghai Mingsui Creative School, Shanghai, 201201, P. R. China
| | - Yongjun Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- School of Engineering, Hangzhou City University, Hangzhou, Zhejiang, 310015, P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- School of Engineering, Hangzhou City University, Hangzhou, Zhejiang, 310015, P. R. China
| | - Lingjie Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- School of Engineering, Hangzhou City University, Hangzhou, Zhejiang, 310015, P. R. China
| |
Collapse
|
18
|
Quirós‐Huerta J, Troya J, Clemente‐León M, Clemente‐Juan JM, Coronado E, Soriano‐López J. A Novel Banana-Shaped Mixed-Metal Co/Fe Polyoxometalate Cluster. Chempluschem 2025; 90:e202400473. [PMID: 39315671 PMCID: PMC11734574 DOI: 10.1002/cplu.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/25/2024]
Abstract
The synthesis and characterization of a Co/Fe mixed-metal banana-shaped polyoxometalate with the formula [(Co2.5Fe0.5(H2O)PW9O34)2(PW6O26)]16- (Co5Fe) is reported. This transition-metal-substituted polyoxometalate readily assembles from its components in a one-pot reaction and crystallizes in the monoclinic space group P21/c. The structure of Co5Fe can be considered a double sandwich composed by two B-α-{Co2.5Fe0.5PW9O40} Keggin units, in which one coordinatively saturated octahedral metal position is equally occupied by Co(II) and Fe(III) ions with a 50 % of site occupancy. These Keggin units are linked via a hexalacunary Keggin unit {PW6O26}. Single crystal X-ray diffraction and magnetic measurements support the proposed atom arrangement within the crystal structure. Magnetic measurements of these double trimeric unit {Co2.5Fe0.5O13}2 show a combination of antiferromagnetic interactions, the presence of spin frustration, and the first-order spin-orbit coupling of Co(II) ions. Electrocatalytic water oxidation measurements show that Co5Fe displays low stability in both homogeneous and heterogeneous conditions. This is evidenced by the constant increase on the catalytic currents over time together with the appearance of polyoxometalate-derived electrode-bound species that can be responsible for the observed catalytic activity.
Collapse
Affiliation(s)
- Javier Quirós‐Huerta
- Institut de Ciència Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán 246980PaternaSpain
| | - José Troya
- Institut de Ciència Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán 246980PaternaSpain
| | - Miguel Clemente‐León
- Institut de Ciència Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán 246980PaternaSpain
| | | | - Eugenio Coronado
- Institut de Ciència Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán 246980PaternaSpain
| | - Joaquín Soriano‐López
- Institut de Ciència Molecular (ICMol)Universitat de ValènciaCatedrático José Beltrán 246980PaternaSpain
| |
Collapse
|
19
|
Deng Q, Li H, Pei K, Wong LW, Zheng X, Tsang CS, Chen H, Shen W, Ly TH, Zhao J, Fu Q. Strategic Design for High-Efficiency Oxygen Evolution Reaction (OER) Catalysts by Triggering Lattice Oxygen Oxidation in Cobalt Spinel Oxides. ACS NANO 2024; 18:33718-33728. [PMID: 39605163 DOI: 10.1021/acsnano.4c14158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
High-efficiency catalysts with refined electronic structures are highly desirable for promoting the kinetics of the oxygen evolution reaction (OER) and enhancing catalyst durability. This study comprehensively explores strategies involving metal doping and oxygen vacancies for enhancing the acidic OER catalytic activity of Co3O4. Through extensive screening of 3d and 4d transition metals using density functional theory (DFT) simulations, we demonstrate that the incorporation of metal dopants and oxygen vacancies into Co3O4 potentially triggers a transition from the adsorbate evolution mechanism (AEM) to the lattice oxygen oxidation mechanism (LOM) in the oxygen evolution reaction (OER). While the formation of the O-O bond in the intermediate *OOH poses challenges, a significantly reduced overpotential facilitates efficient conversion of O to O2 through the LOM in *OH and lattice oxygen. Additionally, we find that Mn doping can significantly improve the stability of the catalyst. Building upon the rationale above, we employed a dual doping strategy in subsequent experiments to enhance both the activity and stability. Our final design involved the codoping of Mn and Ru in Co3O4, along with an appropriate amount of oxygen vacancies. This catalyst demonstrates a low overpotential (η10 = 230 mV) compared to pure Co3O4 and maintains stable operation for over 120 h, representing a 12-fold increase. By exploring and harnessing the LOM, more efficient, stable, and cost-effective OER catalysts can be designed, providing crucial support for technologies such as water electrolysis in clean energy.
Collapse
Affiliation(s)
- Qingming Deng
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Hui Li
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Ke Pei
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Lok Wing Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Xiaodong Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chi Shing Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Honglin Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Wenqian Shen
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Qiang Fu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
20
|
Meng H, Li J, Wu C, Zhang Q, Wang Z, Tang Y, Zou A, Zhang Y, Ma R, Yu Z, Gao F, Xi S, Xue J, Wang X, Wu J. Hydrothermal-Induced Cationic Vacancies in NiAl Hydroxide for Enhanced Oxygen Evolution Activities through Optimization of e g* Band Broadening. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63602-63611. [PMID: 39528358 DOI: 10.1021/acsami.4c14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nickel-based hydroxides [Ni(OH)2] have attracted significant attention as effective oxygen evolution reaction (OER) catalysts. In recent years, defect engineering has been extensively utilized in Ni(OH)2 modification research. Numerous studies have confirmed that the generation of defects can expose more active sites and regulate electronic states, particularly through the introduction of Al cationic vacancies, which enhance conductivity and thereby improve the catalytic performance. The traditional method for producing cationic vacancies is electrochemical etching. However, this method generates a limited number of vacancies in the catalysts and has the complex etching process. Herein, we found that when NiAl layered double hydroxides were treated using a hydrothermal process at 100 °C in a KOH solution, more Al cationic vacancies were generated. Compared to the traditional method with an Al leaching efficiency of 24%, our proposed method achieved an Al leaching efficiency of 44%. Meanwhile, the electrochemical results showed that the overpotential was reduced by 110 mV at 10 A/g. Further experiments showed that the enhanced OER activities resulting from an increased number of cationic defects lead to structural distortions, which broaden the eg* band, significantly affecting the rate of electron transfer between the electrocatalyst and external circuitry, thereby enhancing the OER activity. This work presents a promising approach to creating cationic defects in Ni(OH)2 for high-performance electrocatalysts.
Collapse
Affiliation(s)
- Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yiming Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Ma
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhigen Yu
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Feng Gao
- BGRIMM Advanced Materials Science & Technology Co., Ltd., Beijing 102206, China
| | - Shibo Xi
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Yin ZH, Liu H, Hu JS, Wang JJ. The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl Sci Rev 2024; 11:nwae362. [PMID: 39588208 PMCID: PMC11587812 DOI: 10.1093/nsr/nwae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/27/2024] Open
Abstract
An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
22
|
Kumar Singh A, Roy L. Toward Rational Design of Mononuclear Nickel Complexes as Water Oxidation Catalysts Exploring the Ligand Effects on the Rate-Determining Step. Chemphyschem 2024; 25:e202400533. [PMID: 38925604 DOI: 10.1002/cphc.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The major impediment in realizing a carbon-neutral hydrogen fuel economy is the cost and inadequacy of contemporary electrochemical water splitting approaches towards the energy intensive oxygen evolution reaction (OER). The O-O bond formation in the water oxidation half-cell reaction is both kinetically and thermodynamically challenging and amplifies the overpotential requirement in most of the active water oxidation catalysts. Herein, density functional theory is employed to interrogate 20 Ni(II) complexes, out of which 17 are in silico designed molecular water oxidation catalysts, coordinated to electron-rich tetra-anionic redox non-innocent phenylenebis(oxamidate) and dibenzo-1,4,7,10-tetraazacyclododecane-2,3,8,9-tetraone parent ligands and their structural analogues, and identify the role of substituent changes or ligand effects in the order of their reactivity. Importantly, our computational mechanistic analyses predict that the activation free energy of the rate-determining O-O bond formation step obeys an inverse scaling relationship with the global electrophilicity index of the intermediate generated on two-electron oxidation of the starting complex. Additionally, the driving force is directly correlated with this OER descriptor which enables two-dimensional volcano representation and thereby extrapolation towards the ideal substitution with the chosen ligand. Our study, therefore, establish fundamental insights to overcome the imperative overpotential issue with simple and precise computational rationalization preceding experimental validation.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| |
Collapse
|
23
|
Wang Y, Li L, Wang S, Dong X, Ding C, Mu Y, Cui M, Hu T, Meng C, Zhang Y. Anion Structure Regulation of Cobalt Silicate Hydroxide Endowing Boosted Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401394. [PMID: 38709222 DOI: 10.1002/smll.202401394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Transition metal silicates (TMSs) are attempted for the electrocatalyst of oxygen evolution reaction (OER) due to their special layered structure in recent years. However, defects such as low theoretical activity and conductivity limit their application. Researchers always prefer to composite TMSs with other functional materials to make up for their deficiency, but rarely focus on the effect of intrinsic structure adjustment on their catalytic activity, especially anion structure regulation. Herein, applying the method of interference hydrolysis and vacancy reserve, new silicate vacancies (anionic regulation) are introduced in cobalt silicate hydroxide (CoSi), named SV-CoSi, to enlarge the number and enhance the activity of catalytic sites. The overpotential of SV-CoSi declines to 301 mV at 10 mA cm-2 compared to 438 mV of CoSi. Source of such improvement is verified to be not only the increase of active sites, but also the positive effect on the intrinsic activity due to the enhancement of cobalt-oxygen covalence with the variation of anion structure by density functional theory (DFT) method. This work demonstrates that the feasible intrinsic anion structure regulation can improve OER performance of TMSs and provides an effective idea for the development of non-noble metal catalyst for OER.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Longmei Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shengguo Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xueying Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chongtao Ding
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yang Mu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Miao Cui
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Tao Hu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Yifu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
24
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
25
|
Ma S, Lee H, Moon J. Chirality-Induced Spin Selectivity Enables New Breakthrough in Electrochemical and Photoelectrochemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405685. [PMID: 38963061 DOI: 10.1002/adma.202405685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Indexed: 07/05/2024]
Abstract
To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.
Collapse
Affiliation(s)
- Sunihl Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
26
|
Li X, Ng BKY, Ho PL, Jia C, Shang J, Yoskamtorn T, Pan X, Li Y, Li G, Wu TS, Soo YL, He H, Yue B, Tsang SCE. Stabilization of Ni-containing Keggin-type polyoxometalates with variable oxidation states as novel catalysts for electrochemical water oxidation. Chem Sci 2024; 15:9201-9215. [PMID: 38903226 PMCID: PMC11186315 DOI: 10.1039/d4sc01087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/11/2024] [Indexed: 06/22/2024] Open
Abstract
The development of new recyclable and inexpensive electrochemically active species for water oxidation catalysis is the most crucial step for future utilization of renewables. Particularly, transition metal complexes containing internal multiple, cooperative metal centers to couple with redox catalysts in the inorganic Keggin-type polyoxometalate (POM) framework at high potential or under extreme pH conditions would be promising candidates. However, most reported Ni-containing POMs have been highly unstable towards hydrolytic decomposition, which precludes them from application as water oxidation catalysts (WOCs). Here, we have prepared new tri-Ni-containing POMs with variable oxidation states by charge tailored synthetic strategies for the first time and developed them as recyclable POMs for water oxidation catalysts. In addition, by implanting corresponding POM anions into the positively charged MIL-101(Cr) metal-organic framework (MOF), the entrapped Ni2+/Ni3+ species can show complete recyclability for water oxidation catalysis without encountering uncontrolled hydrolysis of the POM framework. As a result, a low onset potential of approximately 1.46 V vs. NHE for water oxidation with stable WOC performance is recorded. Based on this study, rational design and stabilization of other POM-electrocatalysts containing different multiple transition metal centres could be made possible.
Collapse
Affiliation(s)
- Xiang Li
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | | | - Ping-Luen Ho
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Chunbo Jia
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Jining Shang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | | | - Xuelei Pan
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Yiyang Li
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Guangchao Li
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Yun-Liang Soo
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Heyong He
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Bin Yue
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | | |
Collapse
|
27
|
Wu T, Ge J, Wu Q, Ren X, Meng F, Wang J, Xi S, Wang X, Elouarzaki K, Fisher A, Xu ZJ. Tailoring atomic chemistry to refine reaction pathway for the most enhancement by magnetization in water oxidation. Proc Natl Acad Sci U S A 2024; 121:e2318652121. [PMID: 38687781 PMCID: PMC11087795 DOI: 10.1073/pnas.2318652121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Water oxidation on magnetic catalysts has generated significant interest due to the spin-polarization effect. Recent studies have revealed that the disappearance of magnetic domain wall upon magnetization is responsible for the observed oxygen evolution reaction (OER) enhancement. However, an atomic picture of the reaction pathway remains unclear, i.e., which reaction pathway benefits most from spin-polarization, the adsorbent evolution mechanism, the intermolecular mechanism (I2M), the lattice oxygen-mediated one, or more? Here, using three model catalysts with distinguished atomic chemistries of active sites, we are able to reveal the atomic-level mechanism. We found that spin-polarized OER mainly occurs at interconnected active sites, which favors direct coupling of neighboring ligand oxygens (I2M). Furthermore, our study reveals the crucial role of lattice oxygen participation in spin-polarized OER, significantly facilitating the coupling kinetics of neighboring oxygen radicals at active sites.
Collapse
Affiliation(s)
- Tianze Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Qian Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Xiao Ren
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Fanxu Meng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Jiarui Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, Singapore627833, Singapore
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Kamal Elouarzaki
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
- Center for Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore639798, Singapore
| | - Adrian Fisher
- Department of Chemical Engineering, University of Cambridge, CambridgeCB2 3RA, United Kingdom
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore138602, Singapore
| | - Zhichuan J. Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
- Center for Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore138602, Singapore
- Energy Research Institute @Nanyang Technological University, Interdisciplinary Graduate School, Nanyang Technological University, Singapore639798, Singapore
| |
Collapse
|
28
|
Exner KS. Four Generations of Volcano Plots for the Oxygen Evolution Reaction: Beyond Proton-Coupled Electron Transfer Steps? Acc Chem Res 2024; 57:1336-1345. [PMID: 38621676 PMCID: PMC11080045 DOI: 10.1021/acs.accounts.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
ConspectusDue to its importance for electrolyzers or metal-air batteries for energy conversion or storage, there is huge interest in the development of high-performance materials for the oxygen evolution reaction (OER). Theoretical investigations have aided the search for active material motifs through the construction of volcano plots for the kinetically sluggish OER, which involves the transfer of four proton-electron pairs to form a single oxygen molecule. The theory-driven volcano approach has gained unprecedented popularity in the catalysis and energy communities, largely due to its simplicity, as adsorption free energies can be used to approximate the electrocatalytic activity by heuristic descriptors.In the last two decades, the binding-energy-based volcano method has witnessed a renaissance with special concepts being developed to incorporate missing factors into the analysis. To this end, this Account summarizes and discusses the different generations of volcano plots for the example of the OER. While first-generation methods relied on the assessment of the thermodynamic information for the OER reaction intermediates by means of scaling relations, the second and third generations developed strategies to include overpotential and kinetic effects into the analysis of activity trends. Finally, the fourth generation of volcano approaches allowed the incorporation of various mechanistic pathways into the volcano methodology, thus paving the path toward data- and mechanistic-driven volcano plots in electrocatalysis.Although the concept of volcano plots has been significantly expanded in recent years, further research activities are discussed by challenging one of the main paradigms of the volcano concept. To date, the evaluation of activity trends relies on the assumption of proton-coupled electron transfer steps (CPET), even though there is experimental evidence of sequential proton-electron transfer (SPET) steps. While the computational assessment of SPET for solid-state electrodes is ambitious, it is strongly suggested to comprehend their importance in energy conversion and storage processes, including the OER. This can be achieved by knowledge transfer from homogeneous to heterogeneous electrocatalysis and by focusing on the material class of single-atom catalysts in which the active center is well defined. The derived concept of how to analyze the importance of SPET for mechanistic pathways in the OER over solid-state electrodes could further shape our understanding of the proton-electron transfer steps at electrified solid/liquid interfaces, which is crucial for further progress toward sustainable energy and climate neutrality.
Collapse
Affiliation(s)
- Kai S. Exner
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster
of Excellence RESOLV, 44801 Bochum, Germany
- Center
for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
29
|
Miao L, Jia W, Cao X, Jiao L. Computational chemistry for water-splitting electrocatalysis. Chem Soc Rev 2024; 53:2771-2807. [PMID: 38344774 DOI: 10.1039/d2cs01068b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has attracted great interest in recent years for producing hydrogen with high-purity. However, the practical applications of this technology are limited by the development of electrocatalysts with high activity, low cost, and long durability. In the search for new electrocatalysts, computational chemistry has made outstanding contributions by providing fundamental laws that govern the electron behavior and enabling predictions of electrocatalyst performance. This review delves into theoretical studies on electrochemical water-splitting processes. Firstly, we introduce the fundamentals of electrochemical water electrolysis and subsequently discuss the current advancements in computational methods and models for electrocatalytic water splitting. Additionally, a comprehensive overview of benchmark descriptors is provided to aid in understanding intrinsic catalytic performance for water-splitting electrocatalysts. Finally, we critically evaluate the remaining challenges within this field.
Collapse
Affiliation(s)
- Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenqi Jia
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Pan J, Li M, Filot IAW, Wang H, Hensen EJM, Zhang L. Descriptor for C 2N-Supported Single-Cluster Catalysts in Bifunctional Oxygen Evolution and Reduction Reactions. J Phys Chem Lett 2024; 15:2066-2074. [PMID: 38358260 PMCID: PMC10895691 DOI: 10.1021/acs.jpclett.3c03573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Developing highly active cluster catalysts for the bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is significant for future renewable energy technology. Here, we employ first-principles calculations combined with a genetic algorithm to explore the activity trends of transition metal clusters supported on C2N. Our results indicate that the supported clusters, as bifunctional catalysts for the OER and the ORR, may outperform single-atom catalysts. In particular, the C2N-supported Ag6 cluster exhibits outstanding bifunctional activity with low overpotentials. Mechanistic analysis indicates that the activity of the cluster is related to the number of atoms in the active site as well as the interaction between the intermediate and the cluster. Accordingly, we identify a descriptor that links the intrinsic properties of the clusters with the activity of both the OER and the ORR. This work provides guidelines and strategies for the rational design of highly efficient bifunctional cluster catalysts.
Collapse
Affiliation(s)
- Jing Pan
- School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Min Li
- School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ivo A W Filot
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Hui Wang
- School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Emiel J M Hensen
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Long Zhang
- School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
31
|
Sun DY, Li LH, Yuan GT, Ouyang YL, Tan R, Yin WJ, Wei XL, Tang ZK. Enhanced OER catalytic activity of single metal atoms supported by the pentagonal NiN 2 monolayer: insight from density functional theory calculations. Phys Chem Chem Phys 2024; 26:6292-6299. [PMID: 38305764 DOI: 10.1039/d3cp05464k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Two-dimensional material-supported single metal atom catalysts have been extensively studied and proved effective in electrocatalytic reactions in recent years. In this work, we systematically investigate the OER catalytic properties of single metal atoms supported by the NiN2 monolayer. Several typical transition metals with high single atom catalytic activity, such as Fe, Co, Ru, Rh, Pd, Ir, and Pt, were selected as catalytic active sites. The energy calculations show that transition metal atoms (Fe, Co, Ru, Rh, Pd, Ir, and Pt) are easily embedded in the NiN2 monolayer with Ni vacancies due to the negative binding energy. The calculated OER overpotentials of Fe, Co, Ru, Rh, Pd, Ir and Pt embedded NiN2 monolayers are 0.92 V, 0.47 V, 1.13 V, 0.66 V, 1.25 V, 0.28 V, and 0.94 V, respectively. Compared to the 0.57 V OER overpotential of typical OER noble metal catalysts IrO2, Co@NiN2 and Ir@NiN2 exhibit high OER catalytic activity due to lower overpotential, especially for Ir@NiN2. The high catalytic activity of the Ir embedded NiN2 monolayer can be explained well by the d-band center model. It is found that the adsorption strength of the embedded TM atoms with intermediates follows a linear relationship with their d-band centers. Besides, the overpotential of the Ir embedded NiN2 monolayer can be further reduced to 0.24 V under -2% biaxial strain. Such findings are expected to be employed in more two-dimensional material-supported single metal atom catalyzed reactions.
Collapse
Affiliation(s)
- Dong-Yin Sun
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Long-Hui Li
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Guo-Tao Yuan
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Yu-Lou Ouyang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Rui Tan
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Wen-Jin Yin
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiao-Lin Wei
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Zhen-Kun Tang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| |
Collapse
|
32
|
Baldinelli L, Rodriguez GM, D'Ambrosio I, Grigoras AM, Vivani R, Latterini L, Macchioni A, De Angelis F, Bistoni G. Harnessing the electronic structure of active metals to lower the overpotential of the electrocatalytic oxygen evolution reaction. Chem Sci 2024; 15:1348-1363. [PMID: 38274069 PMCID: PMC10806668 DOI: 10.1039/d3sc05891c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Despite substantial advancements in the field of the electrocatalytic oxygen evolution reaction (OER), the efficiency of earth-abundant electrocatalysts remains far from ideal. The difficulty stems from the complex nature of the catalytic system, which limits our fundamental understanding of the process and thus the possibility of a rational improvement of performance. Herein, we shed light on the role played by the tunable 3d configuration of the metal centers in determining the OER catalytic activity by combining electrochemical and spectroscopic measurements with an experimentally validated computational protocol. One-dimensional coordination polymers based on Fe, Co and Ni held together by an oxonato linker were selected as a case study because of their well-defined electronic and geometric structure in the active site, which can be straightforwardly correlated with their catalytic activity. Novel heterobimetallic coordination polymers were also considered, in order to shed light on the cooperativity effects of different metals. Our results demonstrate the fundamental importance of electronic structure effects such as metal spin and oxidation state evolutions along the reaction profile to modulate ligand binding energies and increase catalyst efficiency. We demonstrated that these effects could in principle be exploited to reduce the overpotential of the electrocatalytic OER below its theoretical limit, and we provide basic principles for the development of coordination polymers with a tailored electronic structure and activity.
Collapse
Affiliation(s)
- Lorenzo Baldinelli
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Gabriel Menendez Rodriguez
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Iolanda D'Ambrosio
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Amalia Malina Grigoras
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Riccardo Vivani
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi Di Perugia Via del Liceo 06123 Perugia Italy
| | - Loredana Latterini
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Alceo Macchioni
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| | - Filippo De Angelis
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC) 06123 Perugia Italy
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University Al Khobar 31952 Saudi Arabia
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University Suwon 440-746 Korea
| | - Giovanni Bistoni
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia Via Elce di sotto, 8 06123 Perugia Italy
| |
Collapse
|
33
|
Park MG, Hwang J, Deng YP, Lee DU, Fu J, Hu Y, Jang MJ, Choi SM, Feng R, Jiang G, Qian L, Ma Q, Yang L, Jun YS, Seo MH, Bai Z, Chen Z. Longevous Cycling of Rechargeable Zn-Air Battery Enabled by "Raisin-Bread" Cobalt Oxynitride/Porous Carbon Hybrid Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311105. [PMID: 38085968 DOI: 10.1002/adma.202311105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 12/20/2023]
Abstract
Developing commercially viable electrocatalyst lies at the research hotspot of rechargeable Zn-air batteries, but it is still challenging to meet the requirements of energy efficiency and durability in realistic applications. Strategic material design is critical to addressing its drawbacks in terms of sluggish kinetics of oxygen reactions and limited battery lifespan. Herein, a "raisin-bread" architecture is designed for a hybrid catalyst constituting cobalt nitride as the core nanoparticle with thin oxidized coverings, which is further deposited within porous carbon aerogel. Based on synchrotron-based characterizations, this hybrid provides oxygen vacancies and Co-Nx -C sites as the active sites, resulting from a strong coupling between CoOx Ny nanoparticles and 3D conductive carbon scaffolds. Compared to the oxide reference, it performs enhanced stability in harsh electrocatalytic environments, highlighting the benefits of the oxynitride. Furthermore, the 3D conductive scaffolds improve charge/mass transportation and boost durability of these active sites. Density functional theory calculations reveal that the introduced N species into hybrid can synergistically tune the d-band center of cobalt and improve its bifunctional activity. As a result, the obtained air cathode exhibits bifunctional overpotential of 0.65 V and a battery lifetime exceeding 1350 h, which sets a new record for rechargeable Zn-air battery reported so far.
Collapse
Affiliation(s)
- Moon Gyu Park
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jeemin Hwang
- Fuel Cell Research & Demonstration Center, Hydrogen Energy Research Division, Korea Institute of Energy Research (KIER), Buan-gun, 56332, Republic of Korea
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dong Un Lee
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jing Fu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 0×4, Canada
| | - Myeong Je Jang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sung Mook Choi
- Department of Hydrogen Energy Materials, Surface & Nano Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
- Advanced Materials Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Renfei Feng
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, S7N 0×4, Canada
| | - Gaopeng Jiang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lanting Qian
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
| | - Yun Seok Jun
- College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Min Ho Seo
- College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Henan Normal University, Xinxiang, 453007, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
34
|
Xue Z, Tan R, Wang H, Tian J, Wei X, Hou H, Zhao Y. A novel tetragonal T-C 2N supported transition metal atoms as superior bifunctional catalysts for OER/ORR: From coordination environment to rational design. J Colloid Interface Sci 2023; 651:149-158. [PMID: 37542890 DOI: 10.1016/j.jcis.2023.07.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Single-atom catalysts with particular electronic structures and precisely regulated coordination environments delivering excellent activity for oxygen-evolution reaction (OER) and oxygen-reduction reaction (ORR) are highly desirable for renewable energy applications. In this work, a novel tetragonal carbon nitride T-C2N monolayer with remarkable stability was predicted by using the RG2 method. Inspired by the well-defined atomic structures and just right N4 aperture of T-C2N substrate, the electrocatalytic performance of a series of transition metal single-atoms anchored on porous T-C2N matrix (TM@C2N) have been systematically investigated. In addition, machine learning (ML) method was employed with the gradient boosting regression GBR model to deeply explore the complex controlling factors and offer direct guidance for rational discovery of desirable catalysts. On this basis, the coordination environment of the central TM active sites has been tailored by incorporating heteroatoms. Impressively, the Co@C2N/B-C, Rh@C2N/SC and Rh@C2N/SN exhibit significantly enhanced OER/ORR activity with notably low ηOER/ηORR of 0.39/0.32, 0.26/0.35 and 0.37/0.27 V, respectively. Our work provides insights into the rational design, data-driven, performance regulation, mechanism analysis and practical application of TMNC catalysts. Such a systematic theoretical framework can also be expanded to many other kinds of catalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Zhe Xue
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Rui Tan
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Hongxia Wang
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Jinzhong Tian
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Xiaolin Wei
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Hua Hou
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuhong Zhao
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110010, China.
| |
Collapse
|
35
|
Fei J, Zhang D, Wang T, Shi Y, Zhu J, Zhan T, Tian M, Lai J, Wang L. Precise Interstitial Built-In Electric Field Tuning for Hydrogen Evolution Electrocatalysis. Inorg Chem 2023. [PMID: 38012066 DOI: 10.1021/acs.inorgchem.3c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The built-in electric field (BEF) has become an effective means of adjusting the electronic structure and hydrogen spillover to influence the adsorption of intermediates. However, the previously reported BEF cannot be tuned continuously and precisely. Herein, a series of nanocatalysts with interstitial BEF were successfully synthesized, and the effect of precisely tuned interstitial BEF on the intermediate's adsorption and hydrogen spillover was systematically investigated using changing the insertion of interstitial B. Three catalysts with different BEF strengths were obtained by changing the interstitial content (B0.22-Cu/NC, B0.30-Cu/NC, B0.41-Cu/NC), and it was demonstrated that B0.30-Cu/NC gave the best catalytic performance for hydrogen evolution reactions (HERs). The turnover frequency (TOF) value is shown to reach 0.36 s-1 at just -0.1 V vs. RHE, which is about 3 times that of Cu (0.12 s-1). For the HER, it is one of the best Cu-based catalysts reported to date (Table S3). Besides, when the catalyst was applied to the cathode of the PEM water electrolyzer, B0.30-Cu/NC exhibited long-time stability at a water-splitting current density of 500 mA cm-2. Density functional theory and in situ Raman spectroscopy suggest that a suitable interstitial BEF can not only optimize the intermediate's adsorption but also promote hydrogen spillover.
Collapse
Affiliation(s)
- Jiawei Fei
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Dan Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Tiantian Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Yue Shi
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Jiawei Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Tianrong Zhan
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Minge Tian
- Jining Economic Development Zone, Scientific Green (Shandong) Environmental Technology Co. Ltd., Jining 272113, Shandong, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| |
Collapse
|
36
|
Zhao H, Lv X, Wang Y. Realistic Modeling of the Electrocatalytic Process at Complex Solid-Liquid Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303677. [PMID: 37749877 PMCID: PMC10646274 DOI: 10.1002/advs.202303677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
The rational design of electrocatalysis has emerged as one of the most thriving means for mitigating energy and environmental crises. The key to this effort is the understanding of the complex electrochemical interface, wherein the electrode potential as well as various internal factors such as H-bond network, adsorbate coverage, and dynamic behavior of the interface collectively contribute to the electrocatalytic activity and selectivity. In this context, the authors have reviewed recent theoretical advances, and especially, the contributions to modeling the realistic electrocatalytic processes at complex electrochemical interfaces, and illustrated the challenges and fundamental problems in this field. Specifically, the significance of the inclusion of explicit solvation and electrode potential as well as the strategies toward the design of highly efficient electrocatalysts are discussed. The structure-activity relationships and their dynamic responses to the environment and catalytic functionality under working conditions are illustrated to be crucial factors for understanding the complexed interface and the electrocatalytic activities. It is hoped that this review can help spark new research passion and ultimately bring a step closer to a realistic and systematic modeling method for electrocatalysis.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xinmao Lv
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yang‐Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
37
|
Bhattacharjee S, Ram S, Lee SC. Insights into Heterogeneous Catalysis on Surfaces with 3d Transition Metals: Spin-Dependent Chemisorption Models and Magnetic Field Effects. J Phys Chem Lett 2023; 14:8755-8764. [PMID: 37738559 DOI: 10.1021/acs.jpclett.3c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
This Perspective provides an overview of recent developments in the field of 3d transition metal (TM) catalysts for different reactions, including oxygen-based reactions such as the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The spin moments of 3d TMs can be exploited to influence chemical reactions, and recent advances in this area, including the theory of chemisorption based on spin-dependent d-band centers and magnetic field effects, are discussed. The Perspective also explores the use of scaling relationships and surface magnetic moments in catalyst design as well as the effect of magnetism on chemisorption and vice versa. In addition, recent studies on the influence of a magnetic field on the ORR and the OER are presented, demonstrating the potential of ferromagnetic catalysts to enhance these reactions through spin polarization.
Collapse
Affiliation(s)
| | - Swetarekha Ram
- Indo-Korea Science and Technology Center (IKST), Bangalore 560064, India
| | - Seung-Cheol Lee
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
38
|
Wei Y, Yi L, Wang R, Li J, Li D, Li T, Sun W, Hu W. A Unique Etching-Doping Route to Fe/Mo Co-Doped Ni Oxyhydroxide Catalyst for Enhanced Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301267. [PMID: 37144442 DOI: 10.1002/smll.202301267] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Fe-doped Ni (oxy)hydroxide shows intriguing activity toward oxygen evolution reaction (OER) in alkaline solution, yet it remains challenging to further boost its performance. In this work, a ferric/molybdate (Fe3+ /MoO4 2- ) co-doping strategy is reported to promote the OER activity of Ni oxyhydroxide. The reinforced Fe/Mo-doped Ni oxyhydroxide catalyst supported by nickel foam (p-NiFeMo/NF) is synthesized via a unique oxygen plasma etching-electrochemical doping route, in which precursor Ni(OH)2 nanosheets are first etched by oxygen plasma to form defect-rich amorphous nanosheets, followed by electrochemical cycling to trigger simultaneously Fe3+ /MoO4 2- co-doping and phase transition. This p-NiFeMo/NF catalyst requires an overpotential of only 274 mV to reach 100 mA cm-2 in alkaline media, exhibiting significantly enhanced OER activity compared to NiFe layered double hydroxide (LDH) catalyst and other analogs. Its activity does not fade even after 72 h uninterrupted operation. In situ Raman analysis reveals that the intercalation of MoO4 2- is able to prevent the over-oxidation of NiOOH matrix from β to γ phase, thus keeping the Fe-doped NiOOH at the most active state.
Collapse
Affiliation(s)
- Yunpeng Wei
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Lingya Yi
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Rongfei Wang
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Junying Li
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Dazhi Li
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Tianhao Li
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Weihua Hu
- School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
39
|
Wang H, Zhai T, Wu Y, Zhou T, Zhou B, Shang C, Guo Z. High-Valence Oxides for High Performance Oxygen Evolution Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301706. [PMID: 37253121 PMCID: PMC10401147 DOI: 10.1002/advs.202301706] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Valence tuning of transition metal oxides is an effective approach to design high-performance catalysts, particularly for the oxygen evolution reaction (OER) that underpins solar/electric water splitting and metal-air batteries. Recently, high-valence oxides (HVOs) are reported to show superior OER performance, in association with the fundamental dynamics of charge transfer and the evolution of the intermediates. Particularly considered are the adsorbate evolution mechanism (AEM) and the lattice oxygen-mediated mechanism (LOM). High-valence states enhance the OER performance mainly by optimizing the eg -orbital filling, promoting the charge transfer between the metal d band and oxygen p band. Moreover, HVOs usually show an elevated O 2p band, which triggers the lattice oxygen as the redox center and enacts the efficient LOM pathway to break the "scaling" limitation of AEM. In addition, oxygen vacancies, induced by the overall charge-neutrality, also promote the direct oxygen coupling in LOM. However, the synthesis of HVOs suffers from relatively large thermodynamic barrier, which makes their preparation difficult. Hence, the synthesis strategies of the HVOs are discussed to guide further design of the HVO electrocatalysts. Finally, further challenges and perspectives are outlined for potential applications in energy conversion and storage.
Collapse
Affiliation(s)
- Hao Wang
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
- Green Catalysis CenterCollege of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Tingting Zhai
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SAR000000China
| | - Yifan Wu
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Tao Zhou
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Binbin Zhou
- Shenzhen Institute of Advanced Electronic MaterialsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Congxiao Shang
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SAR000000China
- Zhejiang Institute of Research and InnovationThe University of Hong KongHangzhou311300China
| |
Collapse
|
40
|
Xu H, Qi J, Zhang Y, Liu H, Hu L, Feng M, Lü W. Magnetic Field-Enhanced Oxygen Evolution Reaction via the Tuneability of Spin Polarization in a Half-Metal Catalyst. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384856 DOI: 10.1021/acsami.3c03713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The magnetic field response of an electrochemistry process, such as the oxygen evolution reaction (OER), provides not only a strategy for enhanced catalytic activity by applying an external field but also a platform for revealing the functionality of the multiple degrees of freedom of the catalyst. However, the mechanism of the magnetic field tuneable OER is controversial. The strong correlation between the d and p orbitals of transition metal and oxygen still puzzles the dominant role of spin in an OER process. Here in this study, we have employed the manganite La0.7Sr0.2Ca0.1MnO3 as the ferromagnetic OER catalyst, which has a ferromagnetic/paramagnetic transition (TC) around the room temperature. It is found that the overpotential can be reduced by ∼18% after applying a 5 kOe magnetic field. Furthermore, this magnetic field can trigger a further improvement of the OER performance, and it demonstrates a strong temperature dependence which is incongruent with its magnetoresistive behavior. So our experiments suggest that the observed magnetic response originates dominantly from the triplet state of the O2, where the spin-polarized d and oxygen p orbitals lower the Gibbs free energy for every reaction step in OER. This study offers experimental evidence on comprehending the spin degree in the OER process, meanwhile benefiting the further design and engineering of the promising magnetic electrochemistry catalysts.
Collapse
Affiliation(s)
- Hang Xu
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ji Qi
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yuan Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Huan Liu
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Linglong Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Weiming Lü
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
41
|
Chen Z, Liu Z, Xu X. Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO 2 single-atom catalyst. Nat Commun 2023; 14:2512. [PMID: 37130833 PMCID: PMC10154346 DOI: 10.1038/s41467-023-38307-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Hemilability is an important concept in homogeneous catalysis where both the reactant activation and the product formation can occur simultaneously through a reversible opening and closing of the metal-ligand coordination sphere. However, this effect has rarely been discussed in heterogeneous catalysis. Here, by employing a theoretical study on CO oxidation over substituted Cu1/CeO2 single atom catalysts, we show that dynamic evolution of metal-support coordination can significantly change the electronic structure of the active center. The evolution of the active center is shown to either strengthen or weaken the metal-adsorbate bonding as the reaction proceeds from reactants, through intermediates, to products. As a result, the activity of the catalyst can be increased. We explain our observations by extending hemilability effects to single atom heterogenous catalysts and anticipate that introducing this concept can offer a new insight into the important role active site dynamics have in catalysis toward the rational design of more sophisticated single atom catalyst materials.
Collapse
Affiliation(s)
- Zheng Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zhangyun Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.
- Hefei National Laboratory, Hefei, 230088, P. R. China.
| |
Collapse
|
42
|
Das D, Manna J, Bhattacharyya TK. Efficient Hydrogen Evolution via 1T-MoS 2 /Chlorophyll-a Heterostructure: Way Toward Metal Free Green Catalyst. SMALL METHODS 2023; 7:e2201446. [PMID: 36807895 DOI: 10.1002/smtd.202201446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is regarded as a sustainable and green way for H2 generation, which faces a great challenge in designing highly active, stable electrocatalysts to replace the state-of-art noble metal-platinum catalysts. 1T MoS2 is highly promising in this regard, but the synthesis and stability of this is a particularly pressing task. Here, a phase engineering strategy has been proposed to achieve a stable, high-percentage (88%) 1T MoS2 /chlorophyll-a hetero-nanostructure, through a photo-induced donation of anti-bonding electrons from chlorophyll-a (CHL-a) highest occupied molecular orbital to 2H MoS2 lowest unoccupied molecular orbital. The resultant catalyst has abundant binding sites provided by the coordination of magnesium atom in the CHL-a macro-cycle, featuring higher binding strength and low Gibbs-free energy. This metal-free heterostructure exhibits excellent stability via band renormalization of Mo 4d orbital which creates the pseudogap-like structure by lifting the degeneracy of projected density of state with 4S in 1T MoS2 . It shows extremely low overpotential, toward the acidic HER (68 mV at the current density of 10 mA cm-2 ), very close to the Pt/C catalyst (53 mV). The high electrochemical-surface-area and electrochemical turnover frequency support enhanced active sites along with near zero Gibbs free energy. Such a surface-reconstruction strategy provides a new avenue toward the production of efficient non-noble-metal-catalysts for the HER with the aim of green-hydrogen production.
Collapse
Affiliation(s)
- Debmallya Das
- School of Nano-Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Jhimli Manna
- Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Tarun Kanti Bhattacharyya
- Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
43
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
44
|
Hu M, Ye K, Zhang G, Li X, Jiang J. Insight into the Mechanism for Catalytic Activity of the Oxygen/Hydrogen Evolution Reaction on a Dual-Site Catalyst. J Phys Chem Lett 2023; 14:2201-2207. [PMID: 36812359 DOI: 10.1021/acs.jpclett.3c00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dual-site catalysts consisting of two adjacent single-atom sites on graphene have exhibited promising catalytic activity of the electrochemical oxygen/hydrogen evolution reaction (OER/HER). However, the electrochemical mechanisms of the OER/HER on dual-site catalysts have still been ambiguous. In this work, we employed density functional theory calculations to study the catalytic activity of the OER/HER with a O-O (H-H) direct coupling mechanism on dual-site catalysts. Specifically, these element steps should be classified into two categories: a step evolving proton-coupled electron transfer (PCET step) that needs to be driven by electrode potential and a step without PCET (non-PCET step) that occurs naturally under mild conditions. Our calculated results show that both the maximal free energy change (ΔGMax) contributed by the PCET step and the activity barrier (Ea) of the non-PCET step must be examined to evaluate the catalytic activity of the OER/HER on the dual site. Importantly, it is a basically inevitable negative relationship between ΔGMax and Ea, which would play a critical role in guiding the rational design of effective dual-site catalysts for electrochemical reactions.
Collapse
Affiliation(s)
- Min Hu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ke Ye
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiyu Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
45
|
Shin S, Wi TU, Kong TH, Park C, Lee H, Jeong J, Lee E, Yoon S, Kim TH, Lee HW, Kwon Y, Song HK. Selectively Enhanced Electrocatalytic Oxygen Evolution within Nanoscopic Channels Fitting a Specific Reaction Intermediate for Seawater Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206918. [PMID: 36567426 DOI: 10.1002/smll.202206918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Abundant availability of seawater grants economic and resource-rich benefits to water electrolysis technology requiring high-purity water if undesired reactions such as chlorine evolution reaction (CER) competitive to oxygen evolution reaction (OER) are suppressed. Inspired by a conceptual computational work suggesting that OER is kinetically improved via a double activation within 7 Å-gap nanochannels, RuO2 catalysts are realized to have nanoscopic channels at 7, 11, and 14 Å gap in average (dgap ), and preferential activity improvement of OER over CER in seawater by using nanochanneled RuO2 is demonstrated. When the channels are developed to have 7 Å gap, the OER current is maximized with the overpotential required for triggering OER minimized. The gap value guaranteeing the highest OER activity is identical to the value expected from the computational work. The improved OER activity significantly increases the selectivity of OER over CER in seawater since the double activation by the 7 Å-nanoconfined environments to allow an OER intermediate (*OOH) to be doubly anchored to Ru and O active sites does not work on the CER intermediate (*Cl). Successful operation of direct seawater electrolysis with improved hydrogen production is demonstrated by employing the 7 Å-nanochanneled RuO2 as the OER electrocatalyst.
Collapse
Affiliation(s)
- Seokmin Shin
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Tae-Ung Wi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Tae-Hoon Kong
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Chanhyun Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Hojeong Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Jihong Jeong
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Eunryeol Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Subhin Yoon
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Tae-Hee Kim
- Ulsan Advanced Energy Technology R&D Center, KIER, Ulsan, 44776, Korea
| | - Hyun-Wook Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| |
Collapse
|
46
|
Wang L, Zhao K, Qi Z, Yang Y, Luo W, Yang W, Li L, Hao J, Shi W. Crystalline-Dependent Discharge Process of Locally Enhanced Electrooxidation Activity on Ni 2P. Inorg Chem 2023; 62:2470-2479. [PMID: 36701249 DOI: 10.1021/acs.inorgchem.2c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The state-of-the-art transition-based electrocatalysts in alkaline media generally suffer from unavoidable surface reconstruction during oxygen evolution reaction measurements, leading to the collapse and loss of the crystalline matrix. Low potential discharge offers a gentle way for surface reconstruction and thus realizes the manipulation of the real active site. Nevertheless, the absence of a fundamental understanding focus on this discharge region renders the functional phase, either the crystalline or amorphous matrix, for the controllable reconstruction still undecidable. Herein, we report a scenario to employ different crystalline matrices as electrocatalysts for discharge region reconstruction. The representative low crystalline Ni2P (LC-Ni2P) possesses a relatively weak surface structure compared with highly crystalline or amorphous Ni2P (HC-Ni2P or A-Ni2P), which contributes abundant oxygen vacancies after the discharge process. The fast discharge behavior of LC-Ni2P leads to the uniform distribution of these vacancies and thus endows the inner interface with reactant activating functionality. A high increase in current density of 36.7% is achieved at 2.32 V (vs RHE) for the LC-Ni2P electrode. The understanding of the discharge behavior in this study, on different crystalline matrices, presents insights into the establishment of controllable surface reconstruction for an effective oxygen evolution reaction.
Collapse
Affiliation(s)
- Ling Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| | - Kun Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| | - Zhihao Qi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| | - Yonggang Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| | - Wei Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| | - Wenshu Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| | - Jinhui Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013Jiangsu Province, China
| |
Collapse
|
47
|
Razzaq S, Exner KS. Materials Screening by the Descriptor G max(η): The Free-Energy Span Model in Electrocatalysis. ACS Catal 2023; 13:1740-1758. [PMID: 36776387 PMCID: PMC9903997 DOI: 10.1021/acscatal.2c03997] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/05/2022] [Indexed: 01/18/2023]
Abstract
To move from fossil-based energy resources to a society based on renewables, electrode materials free of precious noble metals are required to efficiently catalyze electrochemical processes in fuel cells, batteries, or electrolyzers. Materials screening operating at minimal computational cost is a powerful method to assess the performance of potential electrode compositions based on heuristic concepts. While the thermodynamic overpotential in combination with the volcano concept refers to the most popular descriptor-based analysis in the literature, this notion cannot reproduce experimental trends reasonably well. About two years ago, the concept of G max(η), based on the idea of the free-energy span model, has been proposed as a universal approach for the screening of electrocatalysts. In contrast to other available descriptor-based methods, G max(η) factors overpotential and kinetic effects by a dedicated evacuation scheme of adsorption free energies into an analysis of trends. In the present perspective, we discuss the application of G max(η) to different electrocatalytic processes, including the oxygen evolution and reduction reactions, the nitrogen reduction reaction, and the selectivity problem of the competing oxygen evolution and peroxide formation reactions, and we outline the advantages of this screening approach over previous investigations.
Collapse
Affiliation(s)
- Samad Razzaq
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
| | - Kai S. Exner
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster
of Excellence RESOLV, 44801 Bochum, Germany
- Center
for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
48
|
Bai H, Feng J, Liu D, Zhou P, Wu R, Kwok CT, Ip WF, Feng W, Sui X, Liu H, Pan H. Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205638. [PMID: 36417556 DOI: 10.1002/smll.202205638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Rucheng Wu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing, 400054, China
| | - Xulei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hongchao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
49
|
Malik AS, Fredin LA. Untangling product selectivity on clean low index rutile TiO 2 surfaces using first-principles calculations. Phys Chem Chem Phys 2023; 25:2203-2211. [PMID: 36594450 DOI: 10.1039/d2cp04939b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Computational modeling of metal oxide surfaces provides an important tool to help untangle complex spectroscopy and measured catalytic reactivity. There are many material properties that make rational catalytic design challenging, and computational methods provide a way to evaluate possible structural factors, like surface structure, individually. The mechanism of water oxidation or oxygen evolution is well studied on some anatase surfaces and the rutile TiO2 (110) surface but has not yet been mapped on other low-index Miller rutile surfaces that are present in most experimental nano-titania catalysts. Here first principles calculations provide new insights into water oxidation mechanisms and reactivity of the most common low-index Miller facets of rutile TiO2. The reactivity of three surfaces, (101), (010), and (001), are explored for the first time and the product selectivity of multistep electron transfer on each surface is compared to the well-studied (110) surface. Density functional theory shows that a peroxo, O(p), intermediate is more favorable for water oxidation on all facets. The ˙OH radical formation is favored on the (001) facet resulting in a high overpotential for oxygen evolution reaction (OER). The (101) and (110) facets have low overpotentials, ∼0.3 V, and favor two-electron proton-coupled electron transfer to produce H2O2. The only facet that prefers direct OER is (001), leading to O2 evolution in a four-electron process with an overpotential of 0.53 V. A volcano plot predicts the selectivity and activity of low-index Miller facets of rutile TiO2, revealing the high activity of the peroxo OER mechanism on the (010) facet.
Collapse
Affiliation(s)
- Anum Shahid Malik
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
50
|
Kim M, Yi J, Park SH, Park SS. Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203791. [PMID: 35853171 DOI: 10.1002/adma.202203791] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical conversion of small molecules, such as CO2 , O2 , and H2 O, has received significant attention as a potential engine for sustainable life. Metal-organic frameworks (MOFs) are a promising class of electrocatalytic materials for such processes. An attractive aspect of utilizing this class of materials as electrocatalysts is that well-known molecular active sites can be introduced to well-defined crystalline heterogeneous catalytic systems with high tunability. This review offers strategic insights into recent studies on MOF-based electrocatalysts by discussing the notable active sites that have been utilized in both homogeneous and heterogeneous catalysts, while highlighting instances where such active sites have been introduced into MOFs. In addition, material design principles enabling the integration of electrochemically active components with the MOF platform are outlined. Viewpoints on the viability of MOFs as an alternative to currently used electrocatalysts are also discussed. Finally, the future direction of MOF-based electrocatalysis research is established.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaekyung Yi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seong-Hyeon Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sarah S Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|