1
|
Simkhada B, Nazario-Yepiz NO, Freymuth PS, Lyman RA, Shankar V, Wiggins K, Flanagan-Steet H, Basu A, Weiss RJ, Anholt RRH, Mackay TFC. A Drosophila model of mucopolysaccharidosis IIIB. Genetics 2025; 229:iyae219. [PMID: 39737777 PMCID: PMC11912869 DOI: 10.1093/genetics/iyae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025] Open
Abstract
Mucopolysaccharidosis type IIIB is a rare lysosomal storage disorder caused by defects in alpha-N-acetylglucosaminidase (NAGLU) and characterized by severe effects in the central nervous system. Mutations in NAGLU cause accumulation of partially degraded heparan sulfate in lysosomes. The consequences of these mutations on whole-genome gene expression and their causal relationships to neural degeneration remain unknown. Here, we used the functional Drosophila melanogaster ortholog of NAGLU, Naglu, to develop a fly model for MPS IIIB induced by gene deletion (NagluKO), missense (NagluY160C), and nonsense (NagluW422X) mutations. We used the Drosophila activity monitoring system to analyze activity and sleep and found sex- and age-dependent hyperactivity and sleep defects in mutant flies. Fluorescence microscopy on mutant fly brains using Lysotracker dye revealed a significant increase in acidic compartments. Differentially expressed genes determined from RNA sequencing of fly brains are involved in biological processes that affect nervous system development. A genetic interaction network constructed using known interacting partners of these genes consists of 2 major subnetworks, one of which is enriched in genes associated with synaptic function and the other with neurodevelopmental processes. Our data indicate that lysosomal dysfunction arising from disruption of heparan sulfate breakdown has widespread effects on the steady state of intracellular vesicle transport, including vesicles associated with synaptic transmission. Evolutionary conservation of fundamental biological processes predicts that the Drosophila model of mucopolysaccharidosis type IIIB can serve as an in vivo system for the future development of therapies for mucopolysaccharidosis type IIIB and related disorders.
Collapse
Affiliation(s)
- Bibhu Simkhada
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Nestor O Nazario-Yepiz
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Patrick S Freymuth
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Rachel A Lyman
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Vijay Shankar
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Kali Wiggins
- Greenwood Genetic Center, JC Self Research Institute, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Heather Flanagan-Steet
- Greenwood Genetic Center, JC Self Research Institute, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Amrita Basu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Ryan J Weiss
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Trudy F C Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
2
|
Jin EJ, Qi YB, Chisholm AD, Jin Y. The BEN domain protein LIN-14 coordinates neuromuscular positioning during epidermal maturation. iScience 2025; 28:111577. [PMID: 39817198 PMCID: PMC11732705 DOI: 10.1016/j.isci.2024.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Development and function of an organism depend on coordinated inter-tissue interaction. How such interactions are maintained during tissue renewal and reorganization remains poorly understood. Here, we find that Caenorhabditis elegans BEN domain transcription factor LIN-14 is required in epidermis for maintaining the position of motor neurons and muscles during developmental tissue reorganization. lin-14 loss of function (lf) mutants display highly penetrant ventral neuromuscular mispositioning. These defects arise post-embryonically during first larval (L1) stage as the maturing epidermis replaces the embryonic ventral epidermis. Tissue-specific and temporally controlled depletion experiments indicate LIN-14 acts within the epidermis for ventral neuromuscular positioning. lin-14(lf) mutants show defects in formation of epidermis-muscle attachment complex hemidesmosomes in the maturing ventral epidermis, leading to detachment of muscles and motor neurons as well as movement defects. Our findings reveal a cell non-autonomous role for LIN-14 in coordinating inter-tissue interaction and neuromuscular positioning during epidermal maturation.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yingchuan Billy Qi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrew D. Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Kavli Institute of Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Bing X, Ke W, Fujioka M, Kurbidaeva A, Levitt S, Levine M, Schedl P, Jaynes JB. Chromosome structure in Drosophila is determined by boundary pairing not loop extrusion. eLife 2024; 13:RP94070. [PMID: 39110499 PMCID: PMC11305675 DOI: 10.7554/elife.94070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Two different models have been proposed to explain how the endpoints of chromatin looped domains ('TADs') in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized, and experimental manipulations of the even skipped TAD boundary, homie, to test the predictions of the 'loop-extrusion' and the 'boundary-pairing' models. Our findings are incompatible with the loop-extrusion model, and instead suggest that the endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head or head-to-tail, with varying degrees of specificity. Although our experiments do not address how partners find each other, the mechanism is unlikely to require loop extrusion.
Collapse
Affiliation(s)
- Xinyang Bing
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Wenfan Ke
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Amina Kurbidaeva
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Sarah Levitt
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Mike Levine
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
4
|
Ibragimov A, Bing XY, Shidlovskii YV, Levine M, Georgiev P, Schedl P. lncRNA read-through regulates the BX-C insulator Fub-1. eLife 2023; 12:e84711. [PMID: 37643473 PMCID: PMC10497285 DOI: 10.7554/elife.84711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Though long non-coding RNAs (lncRNAs) represent a substantial fraction of the Pol II transcripts in multicellular animals, only a few have known functions. Here we report that the blocking activity of the Bithorax complex (BX-C) Fub-1 boundary is segmentally regulated by its own lncRNA. The Fub-1 boundary is located between the Ultrabithorax (Ubx) gene and the bxd/pbx regulatory domain, which is responsible for regulating Ubx expression in parasegment PS6/segment A1. Fub-1 consists of two hypersensitive sites, HS1 and HS2. HS1 is an insulator while HS2 functions primarily as an lncRNA promoter. To activate Ubx expression in PS6/A1, enhancers in the bxd/pbx domain must be able to bypass Fub-1 blocking activity. We show that the expression of the Fub-1 lncRNAs in PS6/A1 from the HS2 promoter inactivates Fub-1 insulating activity. Inactivation is due to read-through as the HS2 promoter must be directed toward HS1 to disrupt blocking.
Collapse
Affiliation(s)
- Airat Ibragimov
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Xin Yang Bing
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
- Department of Biology and General Genetics, Sechenov UniversityMoscowRussian Federation
| | - Michael Levine
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of SciencesMoscowRussian Federation
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
5
|
Pan A, Zeng Y, Liu J, Zhou M, Lai EC, Yu Y. Unanticipated broad phylogeny of BEN DNA-binding domains revealed by structural homology searches. Curr Biol 2023; 33:2270-2282.e2. [PMID: 37236184 PMCID: PMC10348805 DOI: 10.1016/j.cub.2023.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Organization of protein sequences into domain families is a foundation for cataloging and investigating protein functions. However, long-standing strategies based on primary amino acid sequences are blind to the possibility that proteins with dissimilar sequences could have comparable tertiary structures. Building on our recent findings that in silico structural predictions of BEN family DNA-binding domains closely resemble their experimentally determined crystal structures, we exploited the AlphaFold2 database for comprehensive identification of BEN domains. Indeed, we identified numerous novel BEN domains, including members of new subfamilies. For example, while no BEN domain factors had previously been annotated in C. elegans, this species actually encodes multiple BEN proteins. These include key developmental timing genes of orphan domain status, sel-7 and lin-14, the latter being the central target of the founding miRNA lin-4. We also reveal that the domain of unknown function 4806 (DUF4806), which is widely distributed across metazoans, is structurally similar to BEN and comprises a new subtype. Surprisingly, we find that BEN domains resemble both metazoan and non-metazoan homeodomains in 3D conformation and preserve characteristic residues, indicating that despite their inability to be aligned by conventional methods, these DNA-binding modules are probably evolutionarily related. Finally, we broaden the application of structural homology searches by revealing novel human members of DUF3504, which exists on diverse proteins with presumed or known nuclear functions. Overall, our work strongly expands this recently identified family of transcription factors and illustrates the value of 3D structural predictions to annotate protein domains and interpret their functions.
Collapse
Affiliation(s)
- Anyu Pan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yangfan Zeng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jingjing Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengjie Zhou
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
6
|
Örkenby L, Skog S, Ekman H, Gozzo A, Kugelberg U, Ramesh R, Magadi S, Zambanini G, Nordin A, Cantú C, Nätt D, Öst A. Stress-sensitive dynamics of miRNAs and Elba1 in Drosophila embryogenesis. Mol Syst Biol 2023; 19:e11148. [PMID: 36938679 PMCID: PMC10167479 DOI: 10.15252/msb.202211148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
Early-life stress can result in life-long effects that impact adult health and disease risk, but little is known about how such programming is established and maintained. Here, we show that such epigenetic memories can be initiated in the Drosophila embryo before the major wave of zygotic transcription, and higher-order chromatin structures are established. An early short heat shock results in elevated levels of maternal miRNA and reduced levels of a subgroup of zygotic genes in stage 5 embryos. Using a Dicer-1 mutant, we show that the stress-induced decrease in one of these genes, the insulator-binding factor Elba1, is dependent on functional miRNA biogenesis. Reduction in Elba1 correlates with the upregulation of early developmental genes and promotes a sustained weakening of heterochromatin in the adult fly as indicated by an increased expression of the PEV wm4h reporter. We propose that maternal miRNAs, retained in response to an early embryonic heat shock, shape the subsequent de novo heterochromatin establishment that occurs during early development via direct or indirect regulation of some of the earliest expressed genes, including Elba1.
Collapse
Affiliation(s)
- Lovisa Örkenby
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helen Ekman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alessandro Gozzo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rashmi Ramesh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Srivathsa Magadi
- Division of Neurobiology (NEURO), Linköping University, Linköping, Sweden
| | - Gianluca Zambanini
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Anna Nordin
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Claudio Cantú
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Daniel Nätt
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Shtolz N, Mishmar D. The metazoan landscape of mitochondrial DNA gene order and content is shaped by selection and affects mitochondrial transcription. Commun Biol 2023; 6:93. [PMID: 36690686 PMCID: PMC9871016 DOI: 10.1038/s42003-023-04471-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) harbors essential genes in most metazoans, yet the regulatory impact of the multiple evolutionary mtDNA rearrangements has been overlooked. Here, by analyzing mtDNAs from ~8000 metazoans we found high gene content conservation (especially of protein and rRNA genes), and codon preferences for mtDNA-encoded tRNAs across most metazoans. In contrast, mtDNA gene order (MGO) was selectively constrained within but not between phyla, yet certain gene stretches (ATP8-ATP6, ND4-ND4L) were highly conserved across metazoans. Since certain metazoans with different MGOs diverge in mtDNA transcription, we hypothesized that evolutionary mtDNA rearrangements affected mtDNA transcriptional patterns. As a first step to test this hypothesis, we analyzed available RNA-seq data from 53 metazoans. Since polycistron mtDNA transcripts constitute a small fraction of the steady-state RNA, we enriched for polycistronic boundaries by calculating RNA-seq read densities across junctions between gene couples encoded either by the same strand (SSJ) or by different strands (DSJ). We found that organisms whose mtDNA is organized in alternating reverse-strand/forward-strand gene blocks (mostly arthropods), displayed significantly reduced DSJ read counts, in contrast to organisms whose mtDNA genes are preferentially encoded by one strand (all chordates). Our findings suggest that mtDNA rearrangements are selectively constrained and likely impact mtDNA regulation.
Collapse
Affiliation(s)
- Noam Shtolz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
8
|
Yu Y. BEND3 takes the rein. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1210-1212. [PMID: 36648610 DOI: 10.1007/s11427-022-2134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Yang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
9
|
Ma L, Xie D, Luo M, Lin X, Nie H, Chen J, Gao C, Duo S, Han C. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. SCIENCE ADVANCES 2022; 8:eabn1606. [PMID: 35613276 PMCID: PMC9132480 DOI: 10.1126/sciadv.abn1606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/08/2022] [Indexed: 05/07/2023]
Abstract
The chromatin state, which undergoes global changes during spermatogenesis, is critical to meiotic initiation and progression. However, the key regulators involved and the underlying molecular mechanisms remain to be uncovered. Here, we report that mouse BEND2 is specifically expressed in spermatogenic cells around meiotic initiation and that it plays an essential role in meiotic progression. Bend2 gene knockout in male mice arrested meiosis at the transition from zygonema to pachynema, disrupted synapsis and DNA double-strand break repair, and induced nonhomologous chromosomal pairing. BEND2 interacted with chromatin-associated proteins that are components of certain transcription-repressor complexes. BEND2-binding sites were identified in diverse chromatin states and enriched in simple sequence repeats. BEND2 inhibited the expression of genes involved in meiotic initiation and regulated chromatin accessibility and the modification of H3K4me3. Therefore, our study identified BEND2 as a previously unknown key regulator of meiosis, gene expression, and chromatin state during mouse spermatogenesis.
Collapse
Affiliation(s)
- Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hengyu Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxu Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Duo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Zheng L, Liu J, Niu L, Kamran M, Yang AWH, Jolma A, Dai Q, Hughes TR, Patel DJ, Zhang L, Prasanth SG, Yu Y, Ren A, Lai EC. Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins. Genes Dev 2022; 36:225-240. [PMID: 35144965 PMCID: PMC8887127 DOI: 10.1101/gad.348993.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins.
Collapse
Affiliation(s)
- Luqian Zheng
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingjing Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lijie Niu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mohammad Kamran
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ally W H Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Arttu Jolma
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Qi Dai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Long Zhang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
11
|
Nguyen D, Buisine N, Fayol O, Michels AA, Bensaude O, Price DH, Uguen P. An alternative D. melanogaster 7SK snRNP. BMC Mol Cell Biol 2021; 22:43. [PMID: 34461828 PMCID: PMC8406779 DOI: 10.1186/s12860-021-00381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7SK small nuclear RNA (snRNA) found in most metazoans is a key regulator of P-TEFb which in turn regulates RNA polymerase II elongation. Although its primary sequence varies in protostomes, its secondary structure and function are conserved across evolutionary distant taxa. RESULTS Here, we describe a novel ncRNA sharing many features characteristic of 7SK RNAs, in D. melanogaster. We examined the structure of the corresponding gene and determined the expression profiles of the encoded RNA, called snRNA:7SK:94F, during development. It is probably produced from the transcription of a lncRNA which is processed into a mature snRNA. We also addressed its biological function and we show that, like dm7SK, this alternative 7SK interacts in vivo with the different partners of the P-TEFb complex, i.e. HEXIM, LARP7 and Cyclin T. This novel RNA is widely expressed across tissues. CONCLUSION We propose that two distinct 7SK genes might contribute to the formation of the 7SK snRNP complex in D. melanogaster.
Collapse
Affiliation(s)
- Duy Nguyen
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France
| | | | - Olivier Fayol
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France
| | | | - Olivier Bensaude
- IBENS Paris, UMR CNRS 8197; UA INSERM 1024, 75005, Paris, France
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Patricia Uguen
- Université Paris-Saclay, INSERM, CNRS, Interactions cellulaires et physiopathologie hépatique, Bât.440, 91405, Orsay, France.
- Present address: Université Paris-Saclay, CNRS, INSERM, Institut Curie, Intégrité du Génome, ARN et cancer, Bât. 110, 91401, Orsay cedex, France.
| |
Collapse
|
12
|
Kyrchanova O, Klimenko N, Postika N, Bonchuk A, Zolotarev N, Maksimenko O, Georgiev P. Drosophila architectural protein CTCF is not essential for fly survival and is able to function independently of CP190. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194733. [PMID: 34311130 DOI: 10.1016/j.bbagrm.2021.194733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
CTCF is the most likely ancestor of proteins that contain large clusters of C2H2 zinc finger domains (C2H2) and is conserved among most bilateral organisms. In mammals, CTCF functions as the main architectural protein involved in the organization of topology-associated domains (TADs). In vertebrates and Drosophila, CTCF is involved in the regulation of homeotic genes. Previously, it was found that null mutations in the dCTCF gene died as pharate adults, which failed to eclose from their pupal case, or shortly after hatching of adults. Here, we obtained several new null dCTCF mutations and found that the complete inactivation of dCTCF appears is limited mainly to phenotypic manifestations of the Abd-B gene and fertility of adult flies. Many modifiers that are not associated with an independent phenotypic manifestation can significantly enhance the expressivity of the null dCTCF mutations, indicating that other architectural proteins are able to functionally compensate for dCTCF inactivation in Drosophila. We also mapped the 715-735 aa region of dCTCF as being essential for the interaction with the BTB (Broad-Complex, Tramtrack, and Bric a brac) and microtubule-targeting (M) domains of the CP190 protein, which binds to many architectural proteins. However, the mutational analysis showed that the interaction with CP190 was not important for the functional activity of dCTCF in vivo.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Zolotarev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.
| |
Collapse
|
13
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Mapping of functional elements of the Fab-6 boundary involved in the regulation of the Abd-B hox gene in Drosophila melanogaster. Sci Rep 2021; 11:4156. [PMID: 33603202 PMCID: PMC7892861 DOI: 10.1038/s41598-021-83734-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
The autonomy of segment-specific regulatory domains in the Bithorax complex is conferred by boundary elements and associated Polycomb response elements (PREs). The Fab-6 boundary is located at the junction of the iab-5 and iab-6 domains. Previous studies mapped it to a nuclease hypersensitive region 1 (HS1), while the iab-6 PRE was mapped to a second hypersensitive region HS2 nearly 3 kb away. To analyze the role of HS1 and HS2 in boundary we generated deletions of HS1 or HS1 + HS2 that have attP site for boundary replacement experiments. The 1389 bp HS1 deletion can be rescued by a 529 bp core Fab-6 sequence that includes two CTCF sites. However, Fab-6 HS1 cannot rescue the HS1 + HS2 deletion or substitute for another BX-C boundary - Fab-7. For this it must be combined with a PRE, either Fab-7 HS3, or Fab-6 HS2. These findings suggest that the boundary function of Fab-6 HS1 must be bolstered by a second element that has PRE activity.
Collapse
Affiliation(s)
- Nikolay Postika
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| | - Paul Schedl
- grid.419021.f0000 0004 0380 8267Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334 ,grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Pavel Georgiev
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| | - Olga Kyrchanova
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334 ,grid.419021.f0000 0004 0380 8267Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| |
Collapse
|