1
|
Norris JL, Rogers LO, Young G, Pytko KG, Dannenberg RL, Perreault S, Kaushik V, Antony E, Hedglin M. PCNA encircling primer/template junctions is eliminated by exchange of RPA for Rad51: Implications for the interplay between human DNA damage tolerance pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645792. [PMID: 40236028 PMCID: PMC11996364 DOI: 10.1101/2025.03.27.645792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The DNA genome is constantly exposed to agents, such as ultraviolet radiation (UVR), that can alter or eliminate its coding properties through covalent modifications of the template bases. Many of these damaging modifications (i.e., lesions) persist into S-phase of the cell cycle where they may stall the canonical DNA replication machinery. In humans, these stalling events are circumvented by one of at least three interconnected DNA damage tolerance (DDT) pathways; translesion DNA synthesis (TLS), Template Switching (TS), and Homology-dependent Recombination (HDR). Currently, the functional interplay between these pathways is unclear, leaving wide gaps in our fundamental understanding of human DDT. To gain insights, we focus on the activation mechanisms of the DDT pathways. PCNA sliding clamps encircling primer/template (P/T) junctions of stalled replication sites are central to the activation of both TLS and TS whereas exchange of RPA for Rad51 filaments on the single strand DNA (ssDNA) sequences of stalled replication sites is central to HDR activation. Utilizing direct, ensemble FRET approaches developed by our lab, we independently monitor and directly compare PCNA occupancy and RPA/Rad51 exchange at P/T junctions under a variety of conditions that mimic in vivo scenarios. Collectively, the results reveal that assembly of stable Rad51 filaments at P/T junctions via RPA/Rad51 exchange causes complete and irreversible unloading of the resident PCNA, both in the presence and absence of an abundant PCNA-binding protein complex. Further investigations decipher the mechanism of RPA/Rad51 exchange-dependent unloading of PCNA. Collectively, these studies provide critical insights into the interplay between human DDT pathways and direction for future studies.
Collapse
|
2
|
Ou M, Xu S, Huang Z, Xu X. In silico toxicology investigation of μ-conotoxin KIIIA on human Na + channel Na v1.2. Int J Biol Macromol 2025; 298:140092. [PMID: 39832599 DOI: 10.1016/j.ijbiomac.2025.140092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Conotoxins(CTXs) can specifically act on multiple ion channels, which are crucial for the development of neurobiology and novel targeted drug development. At present, >10,000 kinds of CTXs have been sequenced, it would be extremely laborious to conduct experiments for each. μ-CTX KIIIA is a type of substance that can selectively recognize voltage-gated sodium ion channels. This article constructs four derivatives of KIIIA and predicts their 3D structures; afterwards, their molecular orbital arrangements and physicochemical properties were calculated using DFT; then, predicted their toxicokinetic parameters such as absorption, distribution, metabolism, excretion (ADME) and toxicity (T) through Machine Learning (ML); finally, molecular docking and molecular dynamics are used to investigate the interaction modes and binding affinity. The results indicate that the toxicity of KIIIA and its derivatives (KIIIA-1 -KIIIA-4) to the human body is mainly concentrated in the liver and respiratory tract. Among four derivatives, KIIIA-2 (5 Ser → Arg) has better toxicokinetics properties and its binding energy to Nav1.2 is -65.32 kcal/mol, which is higher than that of wild type(-32.13 kcal/mol). This study indicate that computational toxicology can facilitate the druggability research of CTXs, and KIIIA-2 can be developed as a potential antiepileptic drug.
Collapse
Affiliation(s)
- Minrui Ou
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Suyan Xu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhixuan Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xiaoping Xu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
3
|
Wang F, He Q, Yao NY, O'Donnell ME, Li H. The human ATAD5 has evolved unique structural elements to function exclusively as a PCNA unloader. Nat Struct Mol Biol 2024; 31:1680-1691. [PMID: 38871854 PMCID: PMC11563871 DOI: 10.1038/s41594-024-01332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Humans have three different proliferating cell nuclear antigen (PCNA) clamp-loading complexes: RFC and CTF18-RFC load PCNA onto DNA, but ATAD5-RFC can only unload PCNA from DNA. The underlying structural basis of ATAD5-RFC unloading is unknown. We show here that ATAD5 has two unique locking loops that appear to tie the complex into a rigid structure, and together with a domain that plugs the DNA-binding chamber, prevent conformation changes required for DNA binding, likely explaining why ATAD5-RFC is exclusively a PCNA unloader. These features are conserved in the yeast PCNA unloader Elg1-RFC. We observe intermediates in which PCNA bound to ATAD5-RFC exists as a closed planar ring, a cracked spiral or a gapped spiral. Surprisingly, ATAD5-RFC can open a PCNA gap between PCNA protomers 2 and 3, different from the PCNA protomers 1 and 3 gap observed in all previously characterized clamp loaders.
Collapse
Affiliation(s)
- Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
4
|
Kim S, Park S, Kang N, Ra J, Myung K, Lee KY. Polyubiquitinated PCNA triggers SLX4-mediated break-induced replication in alternative lengthening of telomeres (ALT) cancer cells. Nucleic Acids Res 2024; 52:11785-11805. [PMID: 39291733 PMCID: PMC11514459 DOI: 10.1093/nar/gkae785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Replication stresses are the major source of break-induced replication (BIR). Here, we show that in alternative lengthening of telomeres (ALT) cells, replication stress-induced polyubiquitinated proliferating cell nuclear antigen (PCNA) (polyUb-PCNA) triggers BIR at telomeres and the common fragile site (CFS). Consistently, depleting RAD18, a PCNA ubiquitinating enzyme, reduces the occurrence of ALT-associated promyelocytic leukemia (PML) bodies (APBs) and mitotic DNA synthesis at telomeres and CFS, both of which are mediated by BIR. In contrast, inhibiting ubiquitin-specific protease 1 (USP1), an Ub-PCNA deubiquitinating enzyme, results in an increase in the above phenotypes in a RAD18- and UBE2N (the PCNA polyubiquitinating enzyme)-dependent manner. Furthermore, deficiency of ATAD5, which facilitates USP1 activity and unloads PCNAs, augments recombination-associated phenotypes. Mechanistically, telomeric polyUb-PCNA accumulates SLX4, a nuclease scaffold, at telomeres through its ubiquitin-binding domain and increases telomere damage. Consistently, APB increase induced by Ub-PCNA depends on SLX4 and structure-specific endonucleases. Taken together, our results identified the polyUb-PCNA-SLX4 axis as a trigger for directing BIR.
Collapse
Affiliation(s)
- Sangin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
5
|
Ramirez-Otero MA, Costanzo V. "Bridging the DNA divide": Understanding the interplay between replication- gaps and homologous recombination proteins RAD51 and BRCA1/2. DNA Repair (Amst) 2024; 141:103738. [PMID: 39084178 DOI: 10.1016/j.dnarep.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51's bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
Collapse
Affiliation(s)
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Ryu E, Yoo J, Kang MS, Ha NY, Jang Y, Kim J, Kim Y, Kim BG, Kim S, Myung K, Kang S. ATAD5 functions as a regulatory platform for Ub-PCNA deubiquitination. Proc Natl Acad Sci U S A 2024; 121:e2315759121. [PMID: 39145935 PMCID: PMC11348035 DOI: 10.1073/pnas.2315759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Ubiquitination status of proliferating cell nuclear antigen (PCNA) is crucial for regulating DNA lesion bypass. After the resolution of fork stalling, PCNA is subsequently deubiquitinated, but the underlying mechanism remains undefined. We found that the N-terminal domain of ATAD5 (ATAD5-N), the largest subunit of the PCNA-unloading complex, functions as a scaffold for Ub-PCNA deubiquitination. ATAD5 recognizes DNA-loaded Ub-PCNA through distinct DNA-binding and PCNA-binding motifs. Furthermore, ATAD5 forms a heterotrimeric complex with UAF1-USP1 deubiquitinase, facilitating the deubiquitination of DNA-loaded Ub-PCNA. ATAD5 also enhances the Ub-PCNA deubiquitination by USP7 and USP11 through specific interactions. ATAD5 promotes the distinct deubiquitination process of UAF1-USP1, USP7, and USP11 for poly-Ub-PCNA. Additionally, ATAD5 mutants deficient in UAF1-binding had increased sensitivity to DNA-damaging agents. Our results ultimately reveal that ATAD5 and USPs cooperate to efficiently deubiquitinate Ub-PCNA prior to its release from the DNA in order to safely deactivate the DNA repair process.
Collapse
Affiliation(s)
- Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Na Young Ha
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Yewon Jang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Jinwoo Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Yeongjae Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan44919, Republic of Korea
| |
Collapse
|
7
|
Kang S, Yoo J, Myung K. PCNA cycling dynamics during DNA replication and repair in mammals. Trends Genet 2024; 40:526-539. [PMID: 38485608 DOI: 10.1016/j.tig.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is a eukaryotic replicative DNA clamp. Furthermore, DNA-loaded PCNA functions as a molecular hub during DNA replication and repair. PCNA forms a closed homotrimeric ring that encircles the DNA, and association and dissociation of PCNA from DNA are mediated by clamp-loader complexes. PCNA must be actively released from DNA after completion of its function. If it is not released, abnormal accumulation of PCNA on chromatin will interfere with DNA metabolism. ATAD5 containing replication factor C-like complex (RLC) is a PCNA-unloading clamp-loader complex. ATAD5 deficiency causes various DNA replication and repair problems, leading to genome instability. Here, we review recent progress regarding the understanding of the action mechanisms of PCNA unloading complex in DNA replication/repair pathways.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
8
|
Zheng F, Yao NY, Georgescu RE, Li H, O’Donnell ME. Structure of the PCNA unloader Elg1-RFC. SCIENCE ADVANCES 2024; 10:eadl1739. [PMID: 38427736 PMCID: PMC10906927 DOI: 10.1126/sciadv.adl1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA+ heteropentamer replication factor C (RFC). PCNA encircling duplex DNA is quite stable and is removed from DNA by the dedicated clamp unloader Elg1-RFC. Here, we show the cryo-EM structure of Elg1-RFC in various states with PCNA. The structures reveal essential features of Elg1-RFC that explain how it is dedicated to PCNA unloading. Specifically, Elg1 contains two external loops that block opening of the Elg1-RFC complex for DNA binding, and an "Elg1 plug" domain that fills the central DNA binding chamber, thereby reinforcing the exclusive PCNA unloading activity of Elg1-RFC. Elg1-RFC was capable of unloading PCNA using non-hydrolyzable AMP-PNP. Both RFC and Elg1-RFC could remove PCNA from covalently closed circular DNA, indicating that PCNA unloading occurs by a mechanism that is distinct from PCNA loading. Implications for the PCNA unloading mechanism are discussed.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y. Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| | - Roxana E. Georgescu
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Michael E. O’Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, NY, New York, USA
| |
Collapse
|
9
|
Jiang H, Li L, Ma T, Wang R, Chen X, Xu K, Chen C, Liu Z, Wang H, Huang L. Serine/Threonine Kinase (STK) 33 promotes the proliferation and metastasis of human esophageal squamous cell carcinoma via inflammation-related pathway. Pathol Res Pract 2024; 254:155154. [PMID: 38286054 DOI: 10.1016/j.prp.2024.155154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The serine/threonine kinase (STK) 33 plays a key role in cancer cell proliferation and metastasis. Abnormal STK33 expression is closely related to malignancy of numerous cancers. This study suggests the important role of STK33 in the pathogenesis and metastatic progression of esophageal squamous cell carcinoma (ESCC). STK33 expression in human ESCC tissues was detected by immunohistochemical technique. Further, we analyzed the relationship between STK33 and clinical and pathological factors as well as the prognosis of patients. ECa109 cell line was cultured and transfected with STK33-RNAi lentiviral vector to perform Hochest33342 & PI and metastasis experiments. The TCGA database was used to analyze the STK33 expression level in ESCC. All statistical analyses were performed in SPSS 23.0 software. Differences with P < 0.05 were considered statistically significant. In human ESCC specimens, STK33 was overexpressed and associated with poor prognosis. Silencing STK33 expression suppressed ESCC proliferation, migration, invasion, and tumor growth. STK33 also mediated angiogenesis, TGFβ, and inflammatory response in ESCC. Mechanistic investigations revealed that STK33 regulates ESCC through multiple complex pathways. Dysregulated STK33 signaling promotes ESCC growth and progression. Thus, our findings identified STK33 as a candidate treatment target that improves ESCC therapy.
Collapse
Affiliation(s)
- Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Liping Li
- Public Health and Management College in Ningxia Medical University, Yinchuan 750004, China
| | - Tao Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ruixiao Wang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaozhen Chen
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ke Xu
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Ningxia Armed Police Corps, Yinchuan 750004, China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China; Department of Pathology and Pathophysiology, Shandong University, Cheeloo Healthy Science Center, Jinan 250012, China
| | - Zijin Liu
- Clinical Medical College in Ningxia Medical University, Yinchuan 750004, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; School of Medicine, Shanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Lingyan Huang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
10
|
Herrera LR, Johnson RA, McGlynn K, Gibbs ZA, Davis AJ, Whitehurst AW. The cancer testes antigen, HORMAD1, limits genomic instability in cancer cells by protecting stalled replication forks. J Biol Chem 2023; 299:105348. [PMID: 37838177 PMCID: PMC10656231 DOI: 10.1016/j.jbc.2023.105348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023] Open
Abstract
Tumors anomalously induce the expression of meiotic genes, which are otherwise restricted only to developing gametes. If and how these aberrantly expressed meiotic proteins influence DNA metabolism is not clear, but could have important implications for how tumors acquire and mitigate genomic instability. HORMAD1 is a highly conserved meiotic protein that is frequently expressed in lung adenocarincoma where its expression correlates with reduced patient survival and increased mutation burden. Here, we find that HORMAD1 associates with the replisome and is critical for protecting stalled DNA replication forks. Loss of HORMAD1 leads to nascent DNA strand degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. We find that these phenotypes are due to limited RAD51 loading onto stalled replication forks in the absence of HORMAD1. Ultimately, loss of HORMAD1 leads to increased DNA breaks and chromosomal defects, which is exacerbated dramatically by induction of replication stress. Tumor cells proliferate despite encountering chronic replication stress, placing them on the precipice of catastrophic genomic damage. Our data support the hypothesis that the aberrant expression of HORMAD1 is engaged to attenuate the accumulation of excessive DNA damage due to chronic replication stress, which may otherwise lead to accumulation of toxic levels of genomic instability.
Collapse
Affiliation(s)
- Luis Reza Herrera
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ronnesha A Johnson
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kathleen McGlynn
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zane A Gibbs
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
11
|
Park SH, Kim N, Kang N, Ryu E, Lee EA, Ra JS, Gartner A, Kang S, Myung K, Lee KY. Short-range end resection requires ATAD5-mediated PCNA unloading for faithful homologous recombination. Nucleic Acids Res 2023; 51:10519-10535. [PMID: 37739427 PMCID: PMC10602867 DOI: 10.1093/nar/gkad776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Homologous recombination (HR) requires bidirectional end resection initiated by a nick formed close to a DNA double-strand break (DSB), dysregulation favoring error-prone DNA end-joining pathways. Here we investigate the role of the ATAD5, a PCNA unloading protein, in short-range end resection, long-range resection not being affected by ATAD5 deficiency. Rapid PCNA loading onto DNA at DSB sites depends on the RFC PCNA loader complex and MRE11-RAD50-NBS1 nuclease complexes bound to CtIP. Based on our cytological analyses and on an in vitro system for short-range end resection, we propose that PCNA unloading by ATAD5 is required for the completion of short-range resection. Hampering PCNA unloading also leads to failure to remove the KU70/80 complex from the termini of DSBs hindering DNA repair synthesis and the completion of HR. In line with this model, ATAD5-depleted cells are defective for HR, show increased sensitivity to camptothecin, a drug forming protein-DNA adducts, and an augmented dependency on end-joining pathways. Our study highlights the importance of PCNA regulation at DSB for proper end resection and HR.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Namwoo Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
12
|
Wie M, Khim K, Groehler IV A, Heo S, Woo J, Son K, Lee E, Ra J, Hong S, Schärer O, Choi J, Myung K. Alkylation of nucleobases by 2-chloro- N,N-diethylethanamine hydrochloride (CDEAH) sensitizes PARP1-deficient tumors. NAR Cancer 2023; 5:zcad042. [PMID: 37554969 PMCID: PMC10405566 DOI: 10.1093/narcan/zcad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Targeting BRCA1- and BRCA2-deficient tumors through synthetic lethality using poly(ADP-ribose) polymerase inhibitors (PARPi) has emerged as a successful strategy for cancer therapy. PARPi monotherapy has shown excellent efficacy and safety profiles in clinical practice but is limited by the need for tumor genome mutations in BRCA or other homologous recombination genes as well as the rapid emergence of resistance. In this study, we identified 2-chloro-N,N-diethylethanamine hydrochloride (CDEAH) as a small molecule that selectively kills PARP1- and xeroderma pigmentosum A-deficient cells. CDEAH is a monofunctional alkylating agent that preferentially alkylates guanine nucleobases, forming DNA adducts that can be removed from DNA by either a PARP1-dependent base excision repair or nucleotide excision repair. Treatment of PARP1-deficient cells leads to the formation of strand breaks, an accumulation of cells in S phase and activation of the DNA damage response. Furthermore, CDEAH selectively inhibits PARP1-deficient xenograft tumor growth compared to isogenic PARP1-proficient tumors. Collectively, we report the discovery of an alkylating agent inducing DNA damage that requires PARP1 activity for repair and acts synergistically with PARPi.
Collapse
Affiliation(s)
- Minwoo Wie
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Keon Woo Khim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Arnold S Groehler IV
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Soomin Heo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junhyeok Woo
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kook Son
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Sung You Hong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jang Hyun Choi
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
13
|
Oh JM, Kang Y, Park J, Sung Y, Kim D, Seo Y, Lee E, Ra J, Amarsanaa E, Park YU, Lee S, Hwang J, Kim H, Schärer O, Cho S, Lee C, Takata KI, Lee J, Myung K. MSH2-MSH3 promotes DNA end resection during homologous recombination and blocks polymerase theta-mediated end-joining through interaction with SMARCAD1 and EXO1. Nucleic Acids Res 2023; 51:5584-5602. [PMID: 37140056 PMCID: PMC10287916 DOI: 10.1093/nar/gkad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.
Collapse
Affiliation(s)
- Jung-Min Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Jumi Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yubin Sung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Dayoung Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yuri Seo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Enkhzul Amarsanaa
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Young-Un Park
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seon Young Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Orlando Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Seung Woo Cho
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kei-ichi Takata
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Ja Yil Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| |
Collapse
|
14
|
Tang Z, Liu L, Borlak J. Combined inhibition of histone deacetylase and cytidine deaminase improves epigenetic potency of decitabine in colorectal adenocarcinomas. Clin Epigenetics 2023; 15:89. [PMID: 37208732 DOI: 10.1186/s13148-023-01500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Targeting the epigenome of cancerous diseases represents an innovative approach, and the DNA methylation inhibitor decitabine is recommended for the treatment of hematological malignancies. Although epigenetic alterations are also common to solid tumors, the therapeutic efficacy of decitabine in colorectal adenocarcinomas (COAD) is unfavorable. Current research focuses on an identification of combination therapies either with chemotherapeutics or checkpoint inhibitors in modulating the tumor microenvironment. Here we report a series of molecular investigations to evaluate potency of decitabine, the histone deacetylase inhibitor PBA and the cytidine deaminase (CDA) inhibitor tetrahydrouridine (THU) in patient derived functional and p53 null colon cancer cell lines (CCCL). We focused on the inhibition of cell proliferation, the recovery of tumor suppressors and programmed cell death, and established clinical relevance by evaluating drug responsive genes among 270 COAD patients. Furthermore, we evaluated treatment responses based on CpG island density. RESULTS Decitabine caused marked repression of the DNMT1 protein. Conversely, PBA treatment of CCCL recovered acetylation of histone 3 lysine residues, and this enabled an open chromatin state. Unlike single decitabine treatment, the combined decitabine/PBA treatment caused > 95% inhibition of cell proliferation, prevented cell cycle progression especially in the S and G2-phase and induced programmed cell death. Decitabine and PBA differed in their ability to facilitate re-expression of genes localized on different chromosomes, and the combined decitabine/PBA treatment was most effective in the re-expression of 40 tumor suppressors and 13 genes typically silenced in cancer-associated genomic regions of COAD patients. Furthermore, this treatment repressed expression of 11 survival (anti-apoptotic) genes and augmented expression of X-chromosome inactivated genes, especially the lncRNA Xist to facilitate p53-mediated apoptosis. Pharmacological inhibition of CDA by THU or its gene knockdown prevented decitabine inactivation. Strikingly, PBA treatment recovered the expression of the decitabine drug-uptake transporter SLC15A1, thus enabling high tumor drug-loads. Finally, for 26 drug responsive genes we demonstrated improved survival in COAD patients. CONCLUSION The combined decitabine/PBA/THU drug treatment improved drug potency considerably, and given their existing regulatory approval, our findings merit prospective clinical trials for the triple combination in COAD patients.
Collapse
Affiliation(s)
- Zijiao Tang
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Lu Liu
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Herrera LR, McGlynn K, Gibbs ZA, Davis AJ, Whitehurst AW. The Cancer Testes Antigen, HORMAD1, is a Tumor-Specific Replication Fork Protection Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526348. [PMID: 36778501 PMCID: PMC9915569 DOI: 10.1101/2023.01.31.526348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumors frequently activate the expression of genes that are only otherwise required for meiosis. HORMAD1, which is essential for meiotic recombination in multiple species, is expressed in over 50% of human lung adenocarcinoma cells (LUAD). We previously found that HORMAD1 promotes DNA double strand break (DSB) repair in LUAD. Here, we report that HORMAD1 takes on an additional role in protecting genomic integrity. Specifically, we find HORMAD1 is critical for protecting stalled DNA replication forks in LUAD. Loss of HORMAD1 leads to nascent DNA degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. Moreover, following exogenous induction of DNA replication stress, HORMAD1 deleted cells accumulate single stranded DNA (ssDNA). We find that these phenotypes are the result of a lack of RAD51 and BRCA2 loading onto stalled replication forks. Ultimately, loss of HORMAD1 leads to increased DSBs and chromosomal aberrations in response to replication stress. Collectively, our data support a model where HORMAD1 expression is selected to mitigate DNA replication stress, which would otherwise induce deleterious genomic instability.
Collapse
|
16
|
Wang C, Chan DW, Hendrickson EA. Kinome-wide screening uncovers a role for Bromodomain Protein 3 in DNA double-stranded break repair. DNA Repair (Amst) 2023; 122:103445. [PMID: 36608404 PMCID: PMC10353298 DOI: 10.1016/j.dnarep.2022.103445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Double-stranded breaks (DSBs) are toxic DNA damage and a serious threat to genomic integrity. Thus, all living organisms have evolved multiple mechanisms of DNA DSB repair, the two principal ones being classical-non homologous end joining (C-NHEJ), and homology dependent recombination (HDR). In mammals, C-NHEJ is the predominate DSB repair pathway, but how a cell chooses to repair a particular DSB by a certain pathway is still not mechanistically clear. To uncover novel regulators of DSB repair pathway choice, we performed a kinome-wide screen in a human cell line engineered to express a dominant-negative C-NHEJ factor. The intellectual basis for such a screen was our hypothesis that a C-NHEJ-crippled cell line might need to upregulate other DSB repair pathways, including HDR, in order to survive. This screen identified Bromodomain-containing Protein 3 (BRD3) as a protein whose expression was almost completely ablated specifically in a C-NHEJ-defective cell line. Subsequent experimentation demonstrated that BRD3 is a negative regulator of HDR as BRD3-null cell lines proved to be hyper-recombinogenic for gene conversion, sister chromatid exchanges and gene targeting. Mechanistically, BRD3 appears to be working at the level of Radiation Sensitive 51 (RAD51) recruitment. Overall, our results demonstrate that BRD3 is a novel regulator of human DSB repair pathway choice.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Doug W Chan
- Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Chung HJ, Lee JR, Kim TM, Kim S, Park K, Kim MJ, Jung E, Kim S, Lee EA, Ra JS, Hwang S, Lee JY, Schärer OD, Kim Y, Myung K, Kim H. ZNF212 promotes genomic integrity through direct interaction with TRAIP. Nucleic Acids Res 2023; 51:631-649. [PMID: 36594163 PMCID: PMC9881131 DOI: 10.1093/nar/gkac1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
TRAIP is a key factor involved in the DNA damage response (DDR), homologous recombination (HR) and DNA interstrand crosslink (ICL) repair. However, the exact functions of TRAIP in these processes in mammalian cells are not fully understood. Here we identify the zinc finger protein 212, ZNF212, as a novel binding partner for TRAIP and find that ZNF212 colocalizes with sites of DNA damage. The recruitment of TRAIP or ZNF212 to sites of DNA damage is mutually interdependent. We show that depletion of ZNF212 causes defects in the DDR and HR-mediated repair in a manner epistatic to TRAIP. In addition, an epistatic analysis of Zfp212, the mouse homolog of human ZNF212, in mouse embryonic stem cells (mESCs), shows that it appears to act upstream of both the Neil3 and Fanconi anemia (FA) pathways of ICLs repair. We find that human ZNF212 interacted directly with NEIL3 and promotes its recruitment to ICL lesions. Collectively, our findings identify ZNF212 as a new factor involved in the DDR, HR-mediated repair and ICL repair though direct interaction with TRAIP.
Collapse
Affiliation(s)
| | | | | | | | | | - Myung-Jin Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Eunyoung Jung
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea,Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yonghwan Kim
- Correspondence may also be addressed to Yonghwan Kim. Tel: +82 2 710 9552;
| | - Kyungjae Myung
- Correspondence may also be addressed to Kyungjae Myung. Tel: +82 52 217 5323; Fax: +82 52 217 5519;
| | - Hongtae Kim
- To whom correspondence should be addressed. Tel: +82 52 217 5404; Fax: +82 52 217 5519;
| |
Collapse
|
18
|
Ryu E, Ha NY, Jung W, Yoo J, Myung K, Kang S. Distinct Motifs in ATAD5 C-Terminal Domain Modulate PCNA Unloading Process. Cells 2022; 11:cells11111832. [PMID: 35681528 PMCID: PMC9180478 DOI: 10.3390/cells11111832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a DNA clamp that functions in key roles for DNA replication and repair. After the completion of DNA synthesis, PCNA should be unloaded from DNA in a timely way. The ATAD5-RFC-Like Complex (ATAD5-RLC) unloads PCNA from DNA. However, the mechanism of the PCNA-unloading process remains unclear. In this study, we determined the minimal PCNA-unloading domain (ULD) of ATAD5. We identified several motifs in the ATAD5 ULD that are essential in the PCNA-unloading process. The C-terminus of ULD is required for the stable association of RFC2-5 for active RLC formation. The N-terminus of ULD participates in the opening of the PCNA ring. ATAD5-RLC was more robustly bound to open-liable PCNA compared to the wild type. These results suggest that distinct motifs of the ATAD5 ULD participate in each step of the PCNA-unloading process.
Collapse
Affiliation(s)
- Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Na Young Ha
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
| | - Woojae Jung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Juyeong Yoo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea; (E.R.); (N.Y.H.); (W.J.); (J.Y.); (K.M.)
- Correspondence:
| |
Collapse
|
19
|
Rossi MJ, DiDomenico SF, Patel M, Mazin AV. RAD52: Paradigm of Synthetic Lethality and New Developments. Front Genet 2021; 12:780293. [PMID: 34887904 PMCID: PMC8650160 DOI: 10.3389/fgene.2021.780293] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
DNA double-strand breaks and inter-strand cross-links are the most harmful types of DNA damage that cause genomic instability that lead to cancer development. The highest fidelity pathway for repairing damaged double-stranded DNA is termed Homologous recombination (HR). Rad52 is one of the key HR proteins in eukaryotes. Although it is critical for most DNA repair and recombination events in yeast, knockouts of mammalian RAD52 lack any discernable phenotypes. As a consequence, mammalian RAD52 has been long overlooked. That is changing now, as recent work has shown RAD52 to be critical for backup DNA repair pathways in HR-deficient cancer cells. Novel findings have shed light on RAD52's biochemical activities. RAD52 promotes DNA pairing (D-loop formation), single-strand DNA and DNA:RNA annealing, and inverse strand exchange. These activities contribute to its multiple roles in DNA damage repair including HR, single-strand annealing, break-induced replication, and RNA-mediated repair of DNA. The contributions of RAD52 that are essential to the viability of HR-deficient cancer cells are currently under investigation. These new findings make RAD52 an attractive target for the development of anti-cancer therapies against BRCA-deficient cancers.
Collapse
Affiliation(s)
- Matthew J. Rossi
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | | | | | | |
Collapse
|
20
|
Lee SG, Kim N, Park IB, Park JH, Myung K. Tissue-specific DNA damage response in Mouse Whole-body irradiation. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00195-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Background
Genomic instability is a hallmark of various cancers, and DNA repair is an essential process for maintaining genomic integrity. Mammalian cells have developed various DNA repair mechanisms in response to DNA damage. Compared to the cellular response to DNA damage, the in vivo DNA damage response (DDR) of specific tissues has not been studied extensively.
Objective
In this study, mice were exposed to whole-body gamma (γ)-irradiation to evaluate the specific DDR of various tissues. We treated male C57BL6/J mice with γ-irradiation at different doses, and the DDR protein levels in different tissues were analyzed.
Results
The level of gamma-H2A histone family member X (γH2AX) increased in most organs after exposure to γ-irradiation. In particular, the liver, lung, and kidney tissues showed higher γH2AX induction upon DNA damage, compared to that in the brain, muscle, and testis tissues. RAD51 was highly expressed in the testis, irrespective of irradiation. The levels of proliferating cell nuclear antigen (PCNA) and ubiquitinated PCNA increased in lung tissues upon irradiation, suggesting that the post-replication repair may mainly operate in the lungs in response to γ-irradiation.
Conclusion
These results suggest that each tissue has a preferable repair mechanism in response to γ-irradiation. Therefore, the understanding and application of tissue-specific DNA damage responses could improve the clinical approach of radiotherapy for treating specific cancers.
Collapse
|
21
|
Park SH, Kim Y, Ra JS, Wie MW, Kang MS, Kang S, Myung K, Lee KY. Timely termination of repair DNA synthesis by ATAD5 is important in oxidative DNA damage-induced single-strand break repair. Nucleic Acids Res 2021; 49:11746-11764. [PMID: 34718749 PMCID: PMC8599757 DOI: 10.1093/nar/gkab999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) generate oxidized bases and single-strand breaks (SSBs), which are fixed by base excision repair (BER) and SSB repair (SSBR), respectively. Although excision and repair of damaged bases have been extensively studied, the function of the sliding clamp, proliferating cell nuclear antigen (PCNA), including loading/unloading, remains unclear. We report that, in addition to PCNA loading by replication factor complex C (RFC), timely PCNA unloading by the ATPase family AAA domain-containing protein 5 (ATAD5)-RFC-like complex is important for the repair of ROS-induced SSBs. We found that PCNA was loaded at hydrogen peroxide (H2O2)-generated direct SSBs after the 3'-terminus was converted to the hydroxyl moiety by end-processing enzymes. However, PCNA loading rarely occurred during BER of oxidized or alkylated bases. ATAD5-depleted cells were sensitive to acute H2O2 treatment but not methyl methanesulfonate treatment. Unexpectedly, when PCNA remained on DNA as a result of ATAD5 depletion, H2O2-induced repair DNA synthesis increased in cancerous and normal cells. Based on higher H2O2-induced DNA breakage and SSBR protein enrichment by ATAD5 depletion, we propose that extended repair DNA synthesis increases the likelihood of DNA polymerase stalling, shown by increased PCNA monoubiquitination, and consequently, harmful nick structures are more frequent.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Youyoung Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Min Woo Wie
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
22
|
Park SH, Kim SJ, Myung K, Lee KY. Characterization of subcellular localization of eukaryotic clamp loader/unloader and its regulatory mechanism. Sci Rep 2021; 11:21817. [PMID: 34751190 PMCID: PMC8575788 DOI: 10.1038/s41598-021-01336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity clamp for eukaryotic DNA polymerases and a binding platform for many DNA replication and repair proteins. The enzymatic activities of PCNA loading and unloading have been studied extensively in vitro. However, the subcellular locations of PCNA loaders, replication complex C (RFC) and CTF18-RFC-like-complex (RLC), and PCNA unloader ATAD5-RLC remain elusive, and the role of their subunits RFC2-5 is unknown. Here we used protein fractionation to determine the subcellular localization of RFC and RLCs and affinity purification to find molecular requirements for the newly defined location. All RFC/RLC proteins were detected in the nuclease-resistant pellet fraction. RFC1 and ATAD5 were not detected in the non-ionic detergent-soluble and nuclease-susceptible chromatin fractions, independent of cell cycle or exogenous DNA damage. We found that small RFC proteins contribute to maintaining protein levels of the RFC/RLCs. RFC1, ATAD5, and RFC4 co-immunoprecipitated with lamina-associated polypeptide 2 (LAP2) α which regulates intranuclear lamin A/C. LAP2α knockout consistently reduced detection of RFC/RLCs in the pellet fraction, while marginally affecting total protein levels. Our findings strongly suggest that PCNA-mediated DNA transaction occurs through regulatory machinery associated with nuclear structures, such as the nuclear matrix.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Korea
| | - Seong-Jung Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Korea.
| |
Collapse
|
23
|
Shin U, Nakhro K, Oh CK, Carrington B, Song H, Varshney GK, Kim Y, Song H, Jeon S, Robbins G, Kim S, Yoon S, Choi YJ, Kim YJ, Burgess S, Kang S, Sood R, Lee Y, Myung K. Large-scale generation and phenotypic characterization of zebrafish CRISPR mutants of DNA repair genes. DNA Repair (Amst) 2021; 107:103173. [PMID: 34390914 DOI: 10.1016/j.dnarep.2021.103173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
A systematic knowledge of the roles of DNA repair genes at the level of the organism has been limited due to the lack of appropriate experimental approaches using animal model systems. Zebrafish has become a powerful vertebrate genetic model system with availability due to the ease of genome editing and large-scale phenotype screening. Here, we generated zebrafish mutants for 32 DNA repair and replication genes through multiplexed CRISPR/Cas9-mediated mutagenesis. Large-scale phenotypic characterization of our mutant collection revealed that three genes (atad5a, ddb1, pcna) are essential for proper embryonic development and hematopoiesis; seven genes (apex1, atrip, ino80, mre11a, shfm1, telo2, wrn) are required for growth and development during juvenile stage and six genes (blm, brca2, fanci, rad51, rad54l, rtel1) play critical roles in sex development. Furthermore, mutation in six genes (atad5a, brca2, polk, rad51, shfm1, xrcc1) displayed hypersensitivity to DNA damage agents. Our zebrafish mutant collection provides a unique resource for understanding of the roles of DNA repair genes at the organismal level.
Collapse
Affiliation(s)
- Unbeom Shin
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Khriezhanuo Nakhro
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Anatomy, School of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Blake Carrington
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - HeaIn Song
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA; Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Yeongjae Kim
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyemin Song
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sangeun Jeon
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Gabrielle Robbins
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sangin Kim
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Suhyeon Yoon
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yong Jun Choi
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yoo Jung Kim
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shawn Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoonsung Lee
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
24
|
Pons M, Zeyn Y, Zahn S, Mahendrarajah N, Page BDG, Gunning PT, Moriggl R, Brenner W, Butter F, Krämer OH. Oncogenic Kinase Cascades Induce Molecular Mechanisms That Protect Leukemic Cell Models from Lethal Effects of De Novo dNTP Synthesis Inhibition. Cancers (Basel) 2021; 13:3464. [PMID: 34298678 PMCID: PMC8304262 DOI: 10.3390/cancers13143464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
The ribonucleotide reductase inhibitor hydroxyurea suppresses de novo dNTP synthesis and attenuates the hyperproliferation of leukemic blasts. Mechanisms that determine whether cells undergo apoptosis in response to hydroxyurea are ill-defined. We used unbiased proteomics to uncover which pathways control the transition of the hydroxyurea-induced replication stress into an apoptotic program in chronic and acute myeloid leukemia cells. We noted a decrease in the serine/threonine kinase RAF1/c-RAF in cells that undergo apoptosis in response to clinically relevant doses of hydroxyurea. Using the RAF inhibitor LY3009120, we show that RAF activity determines the sensitivity of leukemic cells toward hydroxyurea. We further disclose that pharmacological inhibition of the RAF downstream target BCL-XL with the drug navitoclax and RNAi combine favorably with hydroxyurea against leukemic cells. BCR-ABL1 and hyperactive FLT3 are tyrosine kinases that causally contribute to the development of leukemia and induce RAF1 and BCL-XL. Accordingly, the ABL inhibitor imatinib and the FLT3 inhibitor quizartinib sensitize leukemic cells to pro-apoptotic effects of hydroxyurea. Moreover, hydroxyurea and navitoclax kill leukemic cells with mutant FLT3 that are resistant to quizartinib. These data reveal cellular susceptibility factors toward hydroxyurea and how they can be exploited to eliminate difficult-to-treat leukemic cells with clinically relevant drug combinations.
Collapse
Affiliation(s)
- Miriam Pons
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| | - Yanira Zeyn
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| | - Stella Zahn
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| | - Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| | - Brent D. G. Page
- Faculty of Pharmaceutical Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, University Medical Center, 55131 Mainz, Germany;
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany;
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; (Y.Z.); (S.Z.); (N.M.)
| |
Collapse
|
25
|
Ju MK, Shin KJ, Lee JR, Khim KW, A Lee E, Ra JS, Kim BG, Jo HS, Yoon JH, Kim TM, Myung K, Choi JH, Kim H, Chae YC. NSMF promotes the replication stress-induced DNA damage response for genome maintenance. Nucleic Acids Res 2021; 49:5605-5622. [PMID: 33963872 PMCID: PMC8191778 DOI: 10.1093/nar/gkab311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.
Collapse
Affiliation(s)
- Min Kyung Ju
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Shin
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joo Rak Lee
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Keon Woo Khim
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Han-Seul Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Tae Moon Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jang Hyun Choi
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Young Chan Chae
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
26
|
Lalonde M, Trauner M, Werner M, Hamperl S. Consequences and Resolution of Transcription-Replication Conflicts. Life (Basel) 2021; 11:life11070637. [PMID: 34209204 PMCID: PMC8303131 DOI: 10.3390/life11070637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription–replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.
Collapse
|
27
|
Sadri Nahand J, Rabiei N, Fathazam R, Taghizadieh M, Ebrahimi MS, Mahjoubin-Tehran M, Bannazadeh Baghi H, Khatami A, Abbasi-Kolli M, Mirzaei HR, Rahimian N, Darvish M, Mirzaei H. Oncogenic viruses and chemoresistance: What do we know? Pharmacol Res 2021; 170:105730. [PMID: 34119621 DOI: 10.1016/j.phrs.2021.105730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Chemoresistance is often referred to as a major leading reason for cancer therapy failure, causing cancer relapse and further metastasis. As a result, an urgent need has been raised to reach a full comprehension of chemoresistance-associated molecular pathways, thereby designing new therapy methods. Many of metastatic tumor masses are found to be related with a viral cause. Although combined therapy is perceived as the model role therapy in such cases, chemoresistant features, which is more common in viral carcinogenesis, often get into way of this kind of therapy, minimizing the chance of survival. Some investigations indicate that the infecting virus dominates other leading factors, i.e., genetic alternations and tumor microenvironment, in development of cancer cell chemoresistance. Herein, we have gathered the available evidence on the mechanisms under which oncogenic viruses cause drug-resistance in chemotherapy.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
28
|
Lo CSY, van Toorn M, Gaggioli V, Paes Dias M, Zhu Y, Manolika EM, Zhao W, van der Does M, Mukherjee C, G S C Souto Gonçalves J, van Royen ME, French PJ, Demmers J, Smal I, Lans H, Wheeler D, Jonkers J, Chaudhuri AR, Marteijn JA, Taneja N. SMARCAD1-mediated active replication fork stability maintains genome integrity. SCIENCE ADVANCES 2021; 7:7/19/eabe7804. [PMID: 33952518 PMCID: PMC8099181 DOI: 10.1126/sciadv.abe7804] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/16/2021] [Indexed: 05/17/2023]
Abstract
The stalled fork protection pathway mediated by breast cancer 1/2 (BRCA1/2) proteins is critical for replication fork stability. However, it is unclear whether additional mechanisms are required to maintain replication fork stability. We describe a hitherto unknown mechanism, by which the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily-A containing DEAD/H box-1 (SMARCAD1) stabilizes active replication forks, that is essential to maintaining resistance towards replication poisons. We find that SMARCAD1 prevents accumulation of 53BP1-associated nucleosomes to preclude toxic enrichment of 53BP1 at the forks. In the absence of SMARCAD1, 53BP1 mediates untimely dissociation of PCNA via the PCNA-unloader ATAD5, causing frequent fork stalling, inefficient fork restart, and accumulation of single-stranded DNA. Although loss of 53BP1 in SMARCAD1 mutants rescues these defects and restores genome stability, this rescued stabilization also requires BRCA1-mediated fork protection. Notably, fork protection-challenged BRCA1-deficient naïve- or chemoresistant tumors require SMARCAD1-mediated active fork stabilization to maintain unperturbed fork progression and cellular proliferation.
Collapse
Affiliation(s)
- Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
- Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Vincent Gaggioli
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Mariana Paes Dias
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Yifan Zhu
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Eleni Maria Manolika
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Wei Zhao
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Marit van der Does
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Chirantani Mukherjee
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - João G S C Souto Gonçalves
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Martin E van Royen
- Department of Pathology, Cancer Treatment Screening Facility (CTSF), Erasmus Optical Imaging Centre (OIC), Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology and Cancer Treatment Screening Facility (CTSF), Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Jeroen Demmers
- Proteomics Center and Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Ihor Smal
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
- Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands.
| |
Collapse
|
29
|
Shen M, Young A, Autexier C. PCNA, a focus on replication stress and the alternative lengthening of telomeres pathway. DNA Repair (Amst) 2021; 100:103055. [PMID: 33581499 DOI: 10.1016/j.dnarep.2021.103055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of telomeres, which are specialized stretches of DNA found at the ends of linear chromosomes, is a crucial step for the immortalization of cancer cells. Approximately 10-15 % of cancer cells use a homologous recombination-based mechanism known as the Alternative Lengthening of Telomeres (ALT) pathway to maintain their telomeres. Telomeres in general pose a challenge to DNA replication owing to their repetitive nature and potential for forming secondary structures. Telomeres in ALT+ cells especially are subject to elevated levels of replication stress compared to telomeres that are maintained by the enzyme telomerase, in part due to the incorporation of telomeric variant repeats at ALT+ telomeres, their on average longer lengths, and their modified chromatin states. Many DNA metabolic strategies exist to counter replication stress and to protect stalled replication forks. The role of proliferating cell nuclear antigen (PCNA) as a platform for recruiting protein partners that participate in several of these DNA replication and repair pathways has been well-documented. We propose that many of these pathways may be active at ALT+ telomeres, either to facilitate DNA replication, to manage replication stress, or during telomere extension. Here, we summarize recent evidence detailing the role of PCNA in pathways including DNA secondary structure resolution, DNA damage bypass, replication fork restart, and DNA damage synthesis. We propose that an examination of PCNA and its post-translational modifications (PTMs) may offer a unique lens by which we might gain insight into the DNA metabolic landscape that is distinctively present at ALT+ telomeres.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Adrian Young
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
30
|
Chronic exposure of humans to high level natural background radiation leads to robust expression of protective stress response proteins. Sci Rep 2021; 11:1777. [PMID: 33469066 PMCID: PMC7815775 DOI: 10.1038/s41598-020-80405-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding exposures to low doses of ionizing radiation are relevant since most environmental, diagnostic radiology and occupational exposures lie in this region. However, the molecular mechanisms that drive cellular responses at these doses, and the subsequent health outcomes, remain unclear. A local monazite-rich high level natural radiation area (HLNRA) in the state of Kerala on the south-west coast of Indian subcontinent show radiation doses extending from ≤ 1 to ≥ 45 mGy/y and thus, serve as a model resource to understand low dose mechanisms directly on healthy humans. We performed quantitative discovery proteomics based on multiplexed isobaric tags (iTRAQ) coupled with LC–MS/MS on human peripheral blood mononuclear cells from HLNRA individuals. Several proteins involved in diverse biological processes such as DNA repair, RNA processing, chromatin modifications and cytoskeletal organization showed distinct expression in HLNRA individuals, suggestive of both recovery and adaptation to low dose radiation. In protein–protein interaction (PPI) networks, YWHAZ (14-3-3ζ) emerged as the top-most hub protein that may direct phosphorylation driven pro-survival cellular processes against radiation stress. PPI networks also identified an integral role for the cytoskeletal protein ACTB, signaling protein PRKACA; and the molecular chaperone HSPA8. The data will allow better integration of radiation biology and epidemiology for risk assessment [Data are available via ProteomeXchange with identifier PXD022380].
Collapse
|
31
|
Lee KY, Park SH. Eukaryotic clamp loaders and unloaders in the maintenance of genome stability. Exp Mol Med 2020; 52:1948-1958. [PMID: 33339954 PMCID: PMC8080817 DOI: 10.1038/s12276-020-00533-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic sliding clamp proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity factor for DNA polymerases and as a binding and acting platform for many proteins. The ring-shaped PCNA homotrimer and the DNA damage checkpoint clamp 9-1-1 are loaded onto DNA by clamp loaders. PCNA can be loaded by the pentameric replication factor C (RFC) complex and the CTF18-RFC-like complex (RLC) in vitro. In cells, each complex loads PCNA for different purposes; RFC-loaded PCNA is essential for DNA replication, while CTF18-RLC-loaded PCNA participates in cohesion establishment and checkpoint activation. After completing its tasks, PCNA is unloaded by ATAD5 (Elg1 in yeast)-RLC. The 9-1-1 clamp is loaded at DNA damage sites by RAD17 (Rad24 in yeast)-RLC. All five RFC complex components, but none of the three large subunits of RLC, CTF18, ATAD5, or RAD17, are essential for cell survival; however, deficiency of the three RLC proteins leads to genomic instability. In this review, we describe recent findings that contribute to the understanding of the basic roles of the RFC complex and RLCs and how genomic instability due to deficiency of the three RLCs is linked to the molecular and cellular activity of RLC, particularly focusing on ATAD5 (Elg1). The attachment and removal of clamp proteins that encircle DNA as it is copied and assist its replication and maintenance is mediated by DNA clamp loader and unloader proteins; defects in loading and unloading can increase the rate of damaging mutations. Kyoo-young Lee and Su Hyung Park at the Institute for Basic Science in Ulsan, South Korea, review current understanding of the activity of clamp loading and unloading proteins. They examine research on the proteins in eukaryotic cells, those containing a cell nucleus, making their discussion relevant to understanding the stability of the human genome. They focus particular attention on a protein called ATAD5, which is involved in unloading the clamp proteins. Deficiencies in ATAD5 function have been implicated in genetic instability that might lead to several different types of cancer.
Collapse
Affiliation(s)
- Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| |
Collapse
|
32
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
33
|
Kim S, Kang N, Park SH, Wells J, Hwang T, Ryu E, Kim BG, Hwang S, Kim SJ, Kang S, Lee S, Stirling P, Myung K, Lee KY. ATAD5 restricts R-loop formation through PCNA unloading and RNA helicase maintenance at the replication fork. Nucleic Acids Res 2020; 48:7218-7238. [PMID: 32542338 PMCID: PMC7367208 DOI: 10.1093/nar/gkaa501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
R-loops are formed when replicative forks collide with the transcriptional machinery and can cause genomic instability. However, it is unclear how R-loops are regulated at transcription-replication conflict (TRC) sites and how replisome proteins are regulated to prevent R-loop formation or mediate R-loop tolerance. Here, we report that ATAD5, a PCNA unloader, plays dual functions to reduce R-loops both under normal and replication stress conditions. ATAD5 interacts with RNA helicases such as DDX1, DDX5, DDX21 and DHX9 and increases the abundance of these helicases at replication forks to facilitate R-loop resolution. Depletion of ATAD5 or ATAD5-interacting RNA helicases consistently increases R-loops during the S phase and reduces the replication rate, both of which are enhanced by replication stress. In addition to R-loop resolution, ATAD5 prevents the generation of new R-loops behind the replication forks by unloading PCNA which, otherwise, accumulates and persists on DNA, causing a collision with the transcription machinery. Depletion of ATAD5 reduces transcription rates due to PCNA accumulation. Consistent with the role of ATAD5 and RNA helicases in maintaining genomic integrity by regulating R-loops, the corresponding genes were mutated or downregulated in several human tumors.
Collapse
Affiliation(s)
- Sangin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - James Wells
- Terry Fox laboratory, BC Cancer Agency, Vancouver, Canada
| | - Taejoo Hwang
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Seong-Jung Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Semin Lee
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Peter Stirling
- Terry Fox laboratory, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| |
Collapse
|
34
|
Wassing IE, Esashi F. RAD51: Beyond the break. Semin Cell Dev Biol 2020; 113:38-46. [PMID: 32938550 PMCID: PMC8082279 DOI: 10.1016/j.semcdb.2020.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 01/30/2023]
Abstract
As the primary catalyst of homologous recombination (HR) in vertebrates, RAD51 has been extensively studied in the context of repair of double-stranded DNA breaks (DSBs). With recent advances in the understanding of RAD51 function extending beyond DSBs, the importance of RAD51 throughout DNA metabolism has become increasingly clear. Here we review the suggested roles of RAD51 beyond HR, specifically focusing on their interplay with DNA replication and the maintenance of genomic stability, in which RAD51 function emerges as a double-edged sword.
Collapse
Affiliation(s)
- Isabel E Wassing
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Kim SJ, Wie M, Park SH, Kim TM, Park JH, Kim S, Myung K, Lee KY. ATAD5 suppresses centrosome over-duplication by regulating UAF1 and ID1. Cell Cycle 2020; 19:1952-1968. [PMID: 32594826 PMCID: PMC7469630 DOI: 10.1080/15384101.2020.1785724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Centrosomes are the primary microtubule-organizing centers that are important for mitotic spindle assembly. Centrosome amplification is commonly observed in human cancer cells and contributes to genomic instability. However, it is not clear how centrosome duplication is dysregulated in cancer cells. Here, we report that ATAD5, a replisome protein that unloads PCNA from chromatin as a replication factor C-like complex (RLC), plays an important role in regulating centrosome duplication. ATAD5 is present at the centrosome, specifically at the base of the mother and daughter centrioles that undergo duplication. UAF1, which interacts with ATAD5 and regulates PCNA deubiquitination as a complex with ubiquitin-specific protease 1, is also localized at the centrosome. Depletion of ATAD5 or UAF1 increases cells with over-duplicated centrosome whereas ATAD5 overexpression reduces such cells. Consistently, the proportion of cells showing the multipolar mode of chromosome segregation is increased among ATAD5-depleted cells. The localization and function of ATAD5 at the centrosomes do not require other RLC subunits. UAF1 interacts and co-localizes with ID1, a protein that increases centrosome amplification upon overexpression. ATAD5 depletion reduces interactions between UAF1 and ID1 and increases ID1 signal at the centrosome, providing a mechanistic framework for understanding the role of ATAD5 in centrosome duplication.
Collapse
Affiliation(s)
- Seong-Jung Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Minwoo Wie
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Tae Moon Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine , Naju-si, Republic of Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science , Ulsan, Korea
| |
Collapse
|
36
|
Giovannini S, Weller MC, Hanzlíková H, Shiota T, Takeda S, Jiricny J. ATAD5 deficiency alters DNA damage metabolism and sensitizes cells to PARP inhibition. Nucleic Acids Res 2020; 48:4928-4939. [PMID: 32297953 PMCID: PMC7229844 DOI: 10.1093/nar/gkaa255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/05/2023] Open
Abstract
Replication factor C (RFC), a heteropentamer of RFC1-5, loads PCNA onto DNA during replication and repair. Once DNA synthesis has ceased, PCNA must be unloaded. Recent findings assign the uloader role primarily to an RFC-like (RLC) complex, in which the largest RFC subunit, RFC1, has been replaced with ATAD5 (ELG1 in Saccharomyces cerevisiae). ATAD5-RLC appears to be indispensable, given that Atad5 knock-out leads to embryonic lethality. In order to learn how the retention of PCNA on DNA might interfere with normal DNA metabolism, we studied the response of ATAD5-depleted cells to several genotoxic agents. We show that ATAD5 deficiency leads to hypersensitivity to methyl methanesulphonate (MMS), camptothecin (CPT) and mitomycin C (MMC), agents that hinder the progression of replication forks. We further show that ATAD5-depleted cells are sensitive to poly(ADP)ribose polymerase (PARP) inhibitors and that the processing of spontaneous oxidative DNA damage contributes towards this sensitivity. We posit that PCNA molecules trapped on DNA interfere with the correct metabolism of arrested replication forks, phenotype reminiscent of defective homologous recombination (HR). As Atad5 heterozygous mice are cancer-prone and as ATAD5 mutations have been identified in breast and endometrial cancers, our finding may open a path towards the therapy of these tumours.
Collapse
Affiliation(s)
- Sara Giovannini
- Institute of Molecular Life Sciences of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Biochemistry of the Swiss Federal Institute of Technology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Marie-Christine Weller
- Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hana Hanzlíková
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142-20 Prague 4, Czech Republic
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Tetsuya Shiota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, 606-8501 Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, 606-8501 Kyoto, Japan
| | - Josef Jiricny
- Institute of Molecular Life Sciences of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Biochemistry of the Swiss Federal Institute of Technology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
- To whom correspondence should be addressed. Tel: +41 44 633 6260;
| |
Collapse
|