1
|
Luo R, Liu J, Wang T, Zhao W, Wang Y, Wen J, Wang H, Ding S, Zhou X. The landscape of malignant transition: Unraveling cancer cell-of-origin and heterogeneous tissue microenvironment. Cancer Lett 2025; 621:217591. [PMID: 40054660 PMCID: PMC12040592 DOI: 10.1016/j.canlet.2025.217591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/12/2025]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
- Ruihan Luo
- Laboratory of Hepatic AI Translation, Frontier Science Center for Disease-Related Molecular Network and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tiangang Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanfei Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hongyu Wang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Center for Nursing Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shanli Ding
- Graduate School of Biomedical Sciences, The University of MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Che J, Wang Y, Feng L, Gragnoli C, Griffin C, Wu R. High-order interaction modeling of tumor-microenvironment crosstalk for tumor growth. Phys Life Rev 2025; 54:11-23. [PMID: 40412053 DOI: 10.1016/j.plrev.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Signaling interactions between cancer cells and nonmalignant cells in the tumor microenvironment (TME) are believed to influence tumor progression and drug resistance. However, the genomic machineries mediating such an influence remain elusive, making it difficult to determine therapeutic targets on the tumor and its microenvironment. Here, we argue that a computational model, derived from the integration of evolutionary game theory and ecosystem theory through allometric scaling law, can chart the genomic atlas of high-order interaction networks involving tumor cells, TME, and tumor mass. We assess the application of this model to identify the causal influence of gene-induced tumor-TME crosstalk on tumor growth. The findings demonstrate that cooperation and competition between tumor cells and their infiltrating microenvironment promote or inhibit tumor growth in diverse ways. We identify specific genes that govern this promotion or inhibition, which can be used as genetic targets to alter tumor growth. This model opens up a new avenue to precisely infer the genomic underpinnings of tumor-TME interactions and their impact on tumor progression from any omics data.
Collapse
Affiliation(s)
- Jincan Che
- Beijing Key Laboratory of Topological Statistics and Applications for Complex Systems, Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, PR China; Center for Computational Biology, School of Grassland Science, Beijing Forestry University, Beijing 100083, PR China
| | - Yu Wang
- Beijing Key Laboratory of Topological Statistics and Applications for Complex Systems, Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, PR China
| | - Li Feng
- Center for Computational Biology, School of Grassland Science, Beijing Forestry University, Beijing 100083, PR China
| | - Claudia Gragnoli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Medicine, Creighton University School of Medicine, Omaha, NE 68124, USA; Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome 00197, Italy
| | - Christopher Griffin
- Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rongling Wu
- Shanghai Institute for Mathematics and Interdisciplinary Sciences, Shanghai 200433, PR China.
| |
Collapse
|
3
|
Xie Y, Wang F, Wei J, Shen Z, Song X, Wang Y, Chen H, Tao L, Zheng J, Lin L, Niu Z, Guan X, Zhou T, Xu Z, Liu Y, Du D, Pan H, Li S, Ji W, Zhou W, Yang Y, Tian J, Xu J, Hu H, Liang X. Noninvasive prognostic classification of ITH in HCC with multi-omics insights and therapeutic implications. SCIENCE ADVANCES 2025; 11:eads8323. [PMID: 40315307 PMCID: PMC12047409 DOI: 10.1126/sciadv.ads8323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/31/2025] [Indexed: 05/04/2025]
Abstract
Intratumoral heterogeneity (ITH) is a critical factor associated with treatment failure and disease relapse in hepatocellular carcinoma (HCC). However, decoding ITH in a noninvasive and comprehensive manner remains a notable challenge. In this study involving 851 patients from five centers, we developed a noninvasive prognostic classification for ITH using radiomics based on multisequence MRI, termed radiomics ITH (RITH) phenotypes. The RITH phenotypes highly correlated with prognosis and pathological ITH. In addition, through an integrated multi-omics analysis, we uncovered the molecular mechanisms underlying RITH, notably enhancing its biological interpretability. Specifically, high-RITH tumors demonstrated an enrichment of cancer-associated fibroblasts and activation of extracellular matrix remodeling. Our approach facilitates the noninvasive refined classification of ITH using radiomics and multi-omics, paving the way for tailored treatment strategies in HCC. Extracellular matrix-receptor interaction could be a potential therapeutic target in patients with high-RITH tumors. Given the routine use of radiologic imaging in oncology, our methodology ignites versatile framework for broader application to other solid tumors.
Collapse
Affiliation(s)
- Yangyang Xie
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Fang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, 430022 Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022 Wuhan, China
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
| | - Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China
- Beijing Key Laboratory of Molecular Imaging, 100190 Beijing, China
| | - Zefeng Shen
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Xue Song
- Department of Respiratory and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 310007 Hangzhou, China
| | - Yali Wang
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Hongjun Chen
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Liye Tao
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Junhao Zheng
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Lanfen Lin
- The College of Computer Science and Technology, Zhejiang University, 310027 Hangzhou, China
| | - Ziwei Niu
- The College of Computer Science and Technology, Zhejiang University, 310027 Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Tianhan Zhou
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 310007 Hangzhou, China
| | - Zhengao Xu
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Yang Liu
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Danwei Du
- Department of Anorectal, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 310000 Hangzhou, China
| | - Haoyu Pan
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Shihao Li
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Wenbin Ji
- Department of Radiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 317000 Taizhou, China
| | - Wei Zhou
- Department of Radiology, Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, 313000 Huzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital, Wenzhou Medical University, 325006 Wenzhou, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China
- Beijing Key Laboratory of Molecular Imaging, 100190 Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 100191 Beijing, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, 710126 Xi’an, China
| | - Junjie Xu
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 310016 Hangzhou, China
- Zhejiang University Cancer Center, 310058 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121 Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
| | - Xiao Liang
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, China
- School of Medicine, Shaoxing University, 312000 Shaoxing, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, 310000 Hangzhou, China
| |
Collapse
|
4
|
Zhou L, Liu CH, Lv D, Sample KM, Rojas Á, Zhang Y, Qiu H, He L, Zheng L, Chen L, Cai B, Hu Y, Romero-Gómez M. Halting hepatocellular carcinoma: Identifying intercellular crosstalk in HBV-driven disease. Cell Rep 2025; 44:115457. [PMID: 40163359 DOI: 10.1016/j.celrep.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/14/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatitis B infection can lead to liver fibrosis and hepatocellular carcinoma (HCC). Despite antiviral therapies, some patients still develop HCC. This study investigates hepatitis B virus (HBV)-induced hepatocyte-hepatic stellate cell (HSC) crosstalk and its role in liver fibrosis and HCC. Using MYC-driven liver cancer stem cell organoids, HCC-patient-derived xenograft (PDX) models, and HBV replication models, this study reveals that HBV transcription affected hepatocyte development, activated the DNA repair pathway, and promoted glycolysis. HBV activated nicotinamide phosphoribosyltransferase (NAMPT) through DNA damage receptor ATR. NAMPT-insulin receptor (INSR)-mediated hepatocyte-HSC crosstalk caused HSCs to develop a myofibroblast phenotype and activated telomere maintenance mechanisms via PARP1 multisite lactylation. Inhibition of the ATR-NAMPT-INSR-PARP1 pathway effectively blocks HBV-induced liver fibrosis and HCC progression. Targeting this pathway could be a promising strategy for chronic HBV infection management.
Collapse
Affiliation(s)
- Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Klarke Michael Sample
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ángela Rojas
- SeLiver Group, Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
| | - Yugu Zhang
- Thoracic Oncology Ward, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huandi Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Linye He
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Li Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Binru Cai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China; Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Manuel Romero-Gómez
- SeLiver Group, Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain.
| |
Collapse
|
5
|
Oh MS, Abascal J, Rennels AK, Salehi-Rad R, Dubinett SM, Liu B. Tumor Heterogeneity and the Immune Response in Non-Small Cell Lung Cancer: Emerging Insights and Implications for Immunotherapy. Cancers (Basel) 2025; 17:1027. [PMID: 40149360 PMCID: PMC11941341 DOI: 10.3390/cancers17061027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Resistance to immune checkpoint inhibitors (ICIs) represents a major challenge for the effective treatment of non-small cell lung cancer (NSCLC). Tumor heterogeneity has been identified as an important mechanism of treatment resistance in cancer and has been increasingly implicated in ICI resistance. The diversity and clonality of tumor neoantigens, which represent the target epitopes for tumor-specific immune cells, have been shown to impact the efficacy of immunotherapy. Advances in genomic techniques have further enhanced our understanding of clonal landscapes within NSCLC and their evolution in response to therapy. In this review, we examine the role of tumor heterogeneity during immune surveillance in NSCLC and highlight its spatial and temporal evolution as revealed by modern technologies. We explore additional sources of heterogeneity, including epigenetic and metabolic factors, that have come under greater scrutiny as potential mediators of the immune response. We finally discuss the implications of tumor heterogeneity on the efficacy of ICIs and highlight potential strategies for overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Michael S. Oh
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (M.S.O.); (J.A.); (A.K.R.); (R.S.-R.); (S.M.D.)
| | - Jensen Abascal
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (M.S.O.); (J.A.); (A.K.R.); (R.S.-R.); (S.M.D.)
| | - Austin K. Rennels
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (M.S.O.); (J.A.); (A.K.R.); (R.S.-R.); (S.M.D.)
| | - Ramin Salehi-Rad
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (M.S.O.); (J.A.); (A.K.R.); (R.S.-R.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Steven M. Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (M.S.O.); (J.A.); (A.K.R.); (R.S.-R.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (M.S.O.); (J.A.); (A.K.R.); (R.S.-R.); (S.M.D.)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Song S, Zhang G, Yao Z, Chen R, Liu K, Zhang T, Zeng G, Wang Z, Liu R. Deep learning based on intratumoral heterogeneity predicts histopathologic grade of hepatocellular carcinoma. BMC Cancer 2025; 25:497. [PMID: 40102774 PMCID: PMC11917083 DOI: 10.1186/s12885-025-13781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVES The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative prediction of histopathologic grade in hepatocellular carcinoma (HCC). MATERIALS AND METHODS A total of 858 patients from primary cohort and two external cohorts were included. 3.0T or 1.5T axial portal venous phase MRI images were collected. We conducted radiomics feature-driven K-means clustering for automatic partition to reveal ITH. 2.5D and 3D deep learning models based on ResNet architecture were trained to extract deep learning hidden features of each subregion. The selected features were used to train Random Forest classifier, which constructed the feature-fusion model. RESULTS The extracted voxel-level radiomics features were unsupervised clustered by K-means to generate three subregions. In the 2.5D deep learning, the feature-fusion model based on ITH had superior predictive efficacy than the whole-tumor model (AUC: 0.82 vs. 0.72; p = 0.004). Even in the validation and external test sets, this model maintained a high AUC of 0.78-0.83, and net reclassification indices indicated that it could improve prediction by 25-28%. Regarding the prognostic value, overall survival (OS) and recurrence-free survival (RFS) could be significantly stratified by the 2.5D feature-fusion model, and multivariable Cox regressions indicated its signature was identified as a risk predictor for OS and RFS (p < 0.05). CONCLUSION The ITH-based feature-fusion model provided a non-invasive method for classifying tumor differentiation in HCC, which may serve as a promising strategy for stratification management.
Collapse
Affiliation(s)
- Shaoming Song
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Gong Zhang
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiyuan Yao
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Hepatobiliary Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Ruiqiu Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Kai Liu
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Tianchen Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Guineng Zeng
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zizheng Wang
- Department of Hepatobiliary Surgery, Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Rong Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
7
|
Chen W, Cha Z, Huang S, Liu R, Chen J, Kamau PM, Lu X, Li B, Liu D. Recombinant α-Toxin BmK-M9 Inhibits Breast Cancer Progression by Regulating β-Catenin In Vivo. Cell Biochem Biophys 2025:10.1007/s12013-025-01711-8. [PMID: 40080350 DOI: 10.1007/s12013-025-01711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Screening bioactive compounds from natural sources, including animals and plants, is a valuable strategy for identifying novel anti-tumor agents. α-Toxin BmK-M9, a key component of scorpion venom, has received limited attention regarding its potential anti-cancer effects and underlying mechanisms in breast cancer. This study investigates the effects and mechanisms of BmK-M9 in breast cancer using in vitro experiments and a nude mouse model. mRNA sequencing was performed to identify affected signaling pathways, while Western blotting and immunohistochemistry were utilized to analyze the Wnt/β-catenin signaling pathway. The results demonstrated that BmK-M9 significantly inhibited breast cancer cell invasion and migration in vitro and suppressed tumor growth in vivo. Transcriptomic analysis revealed that BmK-M9 influenced cellular processes related to proliferation, apoptosis, motility, and metabolism. Furthermore, BmK-M9 markedly downregulated β-catenin expression in the Wnt/β-catenin pathway. These findings suggest that BmK-M9 exerts anti-tumor effects in breast cancer by modulating Wnt/β-catenin signaling, highlighting its potential as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Zhuocen Cha
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
- Oncology department, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, China
| | - Saijun Huang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
- Maternal and Child Health Hospital of Changsha County, Changsha, Hunan, China
| | - Ruimin Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Jiayi Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xingjia Lu
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bowen Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Suoangbaji T, Long R, Ng IOL, Mak LLY, Ho DWH. LiverSCA 2.0: An Enhanced Comprehensive Cell Atlas for Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2025; 17:890. [PMID: 40075736 PMCID: PMC11898674 DOI: 10.3390/cancers17050890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two distinct types of primary liver cancer (PLC) characterized by considerable extents of cellular and molecular heterogeneities. We recently developed a web-based cell atlas called LiverSCA that possesses a user-friendly interface and comprehensive functionalities. It facilitates the exploration of gene expression patterns, cellular compositions, and intercellular communication within the microenvironments of liver and PLC tumors. METHODS To further enhance the documentation of data pinpointing different phenotypes/subtypes of liver and PLC, we extended the catalog of LiverSCA with additional datasets, e.g., ICC and metabolic dysfunction-associated steatotic liver disease/steatosis (MASLD/MASH). RESULTS The current enhanced version of the LiverSCA cell atlas encompasses six phenotypes (normal, HBV-HCC, HCV-HCC, non-viral HCC, ICC, and MASH), 63 patients, and over 248,000 cells. Furthermore, we have incorporated comparative visualization methods that allow users to simultaneously examine and compare gene expression levels between two different phenotypes. CONCLUSIONS We are committed to the continuous development of LiverSCA and envision that it will serve as a valuable resource to support researchers in convenient investigations into the cellular and molecular landscapes of liver and PLC.
Collapse
Affiliation(s)
- Tina Suoangbaji
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; (T.S.); (R.L.); (I.O.-L.N.)
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Renwen Long
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; (T.S.); (R.L.); (I.O.-L.N.)
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; (T.S.); (R.L.); (I.O.-L.N.)
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Loey Lung-Yi Mak
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; (T.S.); (R.L.); (I.O.-L.N.)
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; (T.S.); (R.L.); (I.O.-L.N.)
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Yokomoto-Umakoshi M, Fujita M, Umakoshi H, Ogasawara T, Iwahashi N, Nakatani K, Kaneko H, Fukumoto T, Nakao H, Haji S, Kawamura N, Shimma S, Seki M, Suzuki Y, Izumi Y, Oda Y, Eto M, Ogawa S, Bamba T, Ogawa Y. Multiomics analysis unveils the cellular ecosystem with clinical relevance in aldosterone-producing adenomas with KCNJ5 mutations. Proc Natl Acad Sci U S A 2025; 122:e2421489122. [PMID: 40009643 PMCID: PMC11892633 DOI: 10.1073/pnas.2421489122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Aldosterone-producing adenomas (APA), a major endocrine tumor and leading subtype of primary aldosteronism, cause secondary hypertension with high cardiometabolic risks. Despite potentially producing multiple steroid hormones, detailed cellular mechanisms in APA remain insufficiently studied. Our multiomics analysis focusing on APA with KCNJ5 mutations, which represent the most common genetic form, revealed marked cellular heterogeneity. Tumor cell reprogramming initiated from stress-responsive cells to aldosterone-producing or cortisol-producing cells, with the latter progressing to proliferative stromal-like cells. These cell subtypes showed spatial segregation, and APA exhibited genomic intratumor heterogeneity. Among the nonparenchymal cells, lipid-associated macrophages, which were abundant in APA, might promote the progression of cortisol-producing and stromal-like cells, suggesting their role in the tumor microenvironment. Intratumor cortisol synthesis was correlated with increased blood cortisol levels, which were associated with the development of vertebral fractures, a hallmark of osteoporosis. This study unveils the complex cellular ecosystem with clinical relevance in APA with KCNJ5 mutations, providing insights into tumor biology that could inform future clinical approaches.
Collapse
Affiliation(s)
- Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Tatsuki Ogasawara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Kohta Nakatani
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka812-8582, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Hiroshi Nakao
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Shojiro Haji
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka565-0871, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-8563, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-8563, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto606-8315, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka812-8582, Japan
| |
Collapse
|
10
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:191-205. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Li JD, He RQ, Dang YW, Huang ZG, Xiong DD, Zhang L, Du XF, Chen G. Unveiling expression patterns, mechanisms, and therapeutic opportunities of transmembrane protein 106C: From pan-cancers to hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:92437. [PMID: 39958559 PMCID: PMC11756017 DOI: 10.4251/wjgo.v17.i2.92437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/30/2024] [Accepted: 11/22/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Although transmembrane protein 106C (TMEM106C) has been elucidated to be overexpressed in cancers, its underlying mechanisms have not yet been fully understood. AIM To investigate the expression levels and molecular mechanisms of TMEM106C across 34 different cancer types, including liver hepatocellular carcinoma (LIHC). METHODS We analyzed TMEM106C expression patterns in pan-cancers using microenvironment cell populations counter to evaluate its association with the tumor microenvironment. Gene set enrichment analysis was conducted to identify molecular pathways related to TMEM106C. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis was conducted to identify upstream transcriptional regulators of TMEM106C. In LIHC, we examined mRNA profiles, performed in-house quantitative polymerase chain reaction, immunohistochemistry, and constructed a co-expression gene network. Functional assays, including cell counting kit-8, cell cycle, apoptosis, migration, and invasion, were conducted. The effect of nitidine chloride (NC) on LIHC xenograft was evaluated through RNA sequencing and molecular docking. Finally, potential therapeutic agents targeting TMEM106C were predicted. RESULTS TMEM106C was significantly overexpressed in 27 different cancer types and presaged poor prognosis in four of these types, including LIHC. Across pan-cancers, TMEM106C was inversely correlated to the abundances of immune and stromal cells. Furthermore, TMEM106C was significantly linked to cell cycle and DNA replication pathways in pan-cancers. ChIP-seq analysis predicted CCCTC-binding factor as a pivotal transcriptional factor targeting the TMEM106C gene in pan-cancers. Integrated analysis showed that TMEM106C was upregulated in 4657 LIHC compared with 3652 normal liver tissue [combined standardized mean difference = 1.31 (1.09, 1.52)]. In-house LIHC samples verified the expression status of TMEM106C. Higher TMEM106C expression signified worse survival conditions in LIHC patients treated with sorafenib, a tyrosine kinase inhibitor (TKI). Co-expressed analysis revealed that TMEM106C were significantly enriched in the cell cycle pathway. Knockout experiments demonstrated that TMEM106C plays a crucial role in LIHC cell proliferation, migration, and invasion, with cell cycle arrest occurring at the DNA synthesis phase, and increased apoptosis. Notably, TMEM106C upregulation was attenuated by NC treatment. Finally, TMEM106C expression levels were significantly correlated with the drug sensitivity of anti-hepatocellular carcinoma agents, including JNJ-42756493, a TKI agent. CONCLUSION Overexpressed TMEM106C was predicted as an oncogene in pan-cancers, which may serve as a promising therapeutic target for various cancers, including LIHC. Targeting TMEM106C could potentially offer a novel direction in overcoming TKI resistance specifically in LIHC. Future research directions include in-depth experimental validation and exploration of TMEM106C's role in other cancer types.
Collapse
Affiliation(s)
- Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiu-Fang Du
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
12
|
Chen X, Zhang F, Lu C, Wu R, Yang B, Liao T, Du B, Wu F, Ding J, Fang S, Zhao Z, Chen M, Shu G, Chen W, Ji J. Lactate-Fueled Theranostic Nanoplatforms for Enhanced MRI-Guided Ferroptosis Synergistic with Immunotherapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9155-9172. [PMID: 39901437 DOI: 10.1021/acsami.4c21890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Treatment for hepatocellular carcinoma (HCC) may be improved with ferroptosis, a regulated form of cell death. However, the sensitivity of HCC to ferroptosis was strongly limited by lactic acid. In this study, a platelet membrane (PM)-engineered nanoparticle loaded with erastin, superparamagnetic iron oxide nanoparticles (SPIO) and lactate oxidase (LOX) (termed PM@ESL NPs) was designed for magnetic resonance imaging (MRI)-guided enhanced ferroptosis-immunotherapy of HCC. It was found that PM@ESL NPs could actively accumulate into the tumor due to the tumor-homing ability of PM. Subsequently, PM@ESL NPs could effectively enhance the sensitivity of HCC to ferroptosis by removing the lactic acid in the tumor. The removal of lactic acid also produces hydrogen peroxide (H2O2), which therefore converted into the cytotoxic hydroxyl radicals by the reaction of H2O2 with Fe2+/Fe3+ released from SPIO. Due to the combined ferroptosis and chemodynamic therapy (CDT), PM@ESL NPS showed a strong ability to induce immunogenic cell death (ICD), which could effectively suppress the growth and metastasis of HCC when combined with αPD-L1 immunotherapy. Furthermore, the incorporation of SPIO endows PM@ESL NPs with an outstanding MRI-T2 monitoring capability for HCC treatment. In conclusion, this study introduces a pioneering MRI-guided approach that enhances ferroptosis in tumors and synergistically improves immunotherapy.
Collapse
Affiliation(s)
| | - Feng Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chenying Lu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Ronghua Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Baozhu Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Tingting Liao
- College of pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Baojie Du
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiayi Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gaofeng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Weiqian Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of radiology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- College of pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| |
Collapse
|
13
|
Ramadan A, Kaddah M, Shousha H, El-Kassas M. Personalized treatment approaches in hepatocellular carcinoma. Arab J Gastroenterol 2025; 26:122-128. [PMID: 39765390 DOI: 10.1016/j.ajg.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/13/2024] [Accepted: 08/24/2024] [Indexed: 03/16/2025]
Abstract
Personalized medicine is an emerging field that provides novel approaches to disease's early diagnosis, prevention, treatment, and prognosis based on the patient's criteria in gene expression, environmental factors, lifestyle, and diet. To date, hepatocellular carcinoma (HCC) is a significant global health burden, with an increasing incidence and significant death rates, despite advancements in surveillance, diagnosis, and therapeutic approaches. The majority of HCC lesions develop in patients with liver cirrhosis, carrying the risks of mortality associated with both the tumor burden and the cirrhosis. New therapeutic agents involving immune checkpoint inhibitors and targeted agents have been developed for sequential or concomitant application for advanced HCC but only a tiny percentage of patients benefit from each approach. Moreover, clinicians encounter difficulties determining the most appropriate regimen for each patient. This emphasizes the need for a personalized treatment approach. In other words, patients should no longer undergo treatment based on their tumor's histology but depending on the distinct molecular targets specific to their tumor biology. However, the utilization of precision medicine in managing HCC is still challenging. This review aims to discuss the role of personalized medicine in diagnosing, managing, and defining the prognosis of HCC. We also discuss the role of liquid biopsy and their clinical applications for immunotherapies in HCC. More clinical studies are still necessary to improve the precision of biomarkers used in the treatment decision for patients with HCC.
Collapse
Affiliation(s)
- Ahmed Ramadan
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona Kaddah
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend Shousha
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt; Liver Disease Research Center, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia.
| |
Collapse
|
14
|
Sangro B, Argemi J, Ronot M, Paradis V, Meyer T, Mazzaferro V, Jepsen P, Golfieri R, Galle P, Dawson L, Reig M. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J Hepatol 2025; 82:315-374. [PMID: 39690085 DOI: 10.1016/j.jhep.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for approximately 90% of primary liver cancers. Advances in diagnostic and therapeutic tools, along with improved understanding of their application, are transforming patient treatment. Integrating these innovations into clinical practice presents challenges and necessitates guidance. These clinical practice guidelines offer updated advice for managing patients with HCC and provide a comprehensive review of pertinent data. Key updates from the 2018 EASL guidelines include personalised surveillance based on individual risk assessment and the use of new tools, standardisation of liver imaging procedures and diagnostic criteria, use of minimally invasive surgery in complex cases together with updates on the integrated role of liver transplantation, transitions between surgical, locoregional, and systemic therapies, the role of radiation therapies, and the use of combination immunotherapies at various stages of disease. Above all, there is an absolute need for a multiparametric assessment of individual risks and benefits, considering the patient's perspective, by a multidisciplinary team encompassing various specialties.
Collapse
|
15
|
Zuo X, Li H, Xie S, Shi M, Guan Y, Liu H, Yan R, Zheng A, Li X, Liu J, Gan Y, Shi H, Chen K, Jia S, Chen G, Liao M, Wang Z, Han Y, Liao B. A prognostic model of 8-T/B cell receptor-related signatures for hepatocellular carcinoma. Discov Oncol 2025; 16:105. [PMID: 39890709 PMCID: PMC11785873 DOI: 10.1007/s12672-025-01856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The T cell receptor (TCR) and B cell receptor (BCR) are the receptors on the surface of T or B cell, which are crucial for recognizing tumor antigens. It is profound to establish a practical TCR/BCR-related gene signature prognostic model for the further diagnosis and treatment among HCC patients. METHODS In this study, we categorized gene expression data of HCC patients from The Cancer Genome Altas and identified TCR related genes by the Least Absolute Shrinkage and Selection Operator and multivariate Cox regression analysis. Both the CIBERSORT algorithm and the TB tools were used to analyze the features and heterogeneity of the tumor microenvironment. RESULTS Finally, an 8-gene prognostic model was successfully established and achieved the validation in both the International Cancer Genome Consortium and Nanfang Hospital cohorts. Patients were divided into high-risk and low-risk groups based on the median of the risk scores. We observed that tumor differentiation was worse while the fibrinogen concentration was higher in the high-risk group of patients. Both the number of unique TCR and BCR clonotypes and the expanded clones were higher in the low-risk group than in the high-risk group. CONCLUSIONS Together, our study screened a TCR/BCR-related signature prognostic model, which might turn into a beneficial and practical tool to solve the perplexities of the treatment, prognosis prediction and management for HCC patients.
Collapse
Affiliation(s)
- Xuan Zuo
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Hui Li
- HRYZ Biotech Co., Shenzhen, China
| | - Shi Xie
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengfen Shi
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yujuan Guan
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Huiyuan Liu
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Rong Yan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Anqi Zheng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xueying Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiabang Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yifan Gan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haiyan Shi
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Keng Chen
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Shijie Jia
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Guanmei Chen
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Min Liao
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Zhanhui Wang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | - Baolin Liao
- Department of Hepatology, Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| |
Collapse
|
16
|
Sun Y, Shi G, Yang J, Zhou CZ, Peng C, Luo YH, Pan Y, Wang RQ. Deciphering the heterogeneity and plasticity of the tumor microenvironment in liver cancer provides insights for prognosis. Front Pharmacol 2025; 16:1495280. [PMID: 39950116 PMCID: PMC11821625 DOI: 10.3389/fphar.2025.1495280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Liver cancer exhibits diverse molecular characteristics and distinct immune cell infiltration patterns, which significantly influence patient outcomes. In this study, we thoroughly examined the liver cancer tumor environment by analyzing data from 419,866 individual cells across nine datasets involving 99 patients. By categorizing patients into different groups based on their immune cell profiles, including immune deficiency, B cells-enriched, T cells-enriched and macrophages-enriched, we better understood how these cells change in various patient subgroups. Our investigation of liver metastases from intestinal cancer uncovered a group of mast cells that might promote metastasis through pathways like inositol phosphate metabolism. Using genomic and clinical data from The Cancer Genome Atlas, we identified specific cell components linked to tumor characteristics and genetics. Our detailed study of cancer-associated fibroblasts (CAFs) revealed how they adapt and acquire new functions in the tissue environment, highlighting their flexibility. Additionally, we found a significant connection between CAF-related genes and the prognosis of hepatocellular carcinoma patients. This research provides valuable insights into the makeup of the liver cancer tumor environment and its profound impact on patient outcomes, offering fresh perspectives for managing this challenging disease.
Collapse
Affiliation(s)
- Yihao Sun
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jian Yang
- Department of Respiratory and Critical Care Medicine, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Chun-Zhong Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Chuhan Peng
- Canyon Crest Academy, San Diego, CA, United States
| | - Yu-Hong Luo
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Ying Pan
- Department of Oncology, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
17
|
Wu Y, Fan Y, Miao Y, Li Y, Du G, Chen Z, Diao J, Chen YA, Ye M, You R, Chen A, Chen Y, Li W, Guo W, Dong J, Zhang X, Wang Y, Gu J. uniLIVER: a human liver cell atlas for data-driven cellular state mapping. J Genet Genomics 2025:S1673-8527(25)00032-3. [PMID: 39892777 DOI: 10.1016/j.jgg.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
The liver performs several vital functions such as metabolism, toxin removal, and glucose storage through the coordination of various cell types. With the recent breakthrough of the single-cell/single-nucleus RNA-seq (sc/snRNA-seq) techniques, there is a great opportunity to establish a reference cell map of the liver at single-cell resolution with transcriptome-wise features. In this study, we build a unified liver cell atlas uniLIVER (http://lifeome.net/database/uniliver) by integrative analysis of a large-scale sc/snRNA-seq data collection of normal human liver with 331,125 cells and 79 samples from 6 datasets. Moreover, we introduce LiverCT, a novel machine learning based method for mapping any query dataset to the liver reference map by introducing the definition of "variant" cellular states analogy to the sequence variants in genomic analysis. Applying LiverCT on liver cancer datasets, we find that the "deviated" states of T cells are highly correlated with the stress pathway activities in hepatocellular carcinoma, and the enrichments of tumor cells with the hepatocyte-cholangiocyte "intermediate" states significantly indicate poor prognosis. Besides, we find that the tumor cells of different patients have different zonation tendencies and this zonation tendency is also significantly associated with the prognosis. This reference atlas mapping framework can also be extended to any other tissues.
Collapse
Affiliation(s)
- Yanhong Wu
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yuhan Fan
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yuxin Miao
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yuman Li
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Guifang Du
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Zeyu Chen
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jinmei Diao
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yu-Ann Chen
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Mingli Ye
- Fuzhou Institute of Data Technology, Fuzhou, Fujian 350207, China
| | - Renke You
- Fuzhou Institute of Data Technology, Fuzhou, Fujian 350207, China
| | - Amin Chen
- Fuzhou Institute of Data Technology, Fuzhou, Fujian 350207, China
| | - Yixin Chen
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenrui Li
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenbo Guo
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jiahong Dong
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China.
| | - Jin Gu
- MOE Key Lab of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Li B, Zeng T, Chen C, Wu Y, Huang S, Deng J, Pang J, Cai X, Lin Y, Sun Y, Chong Y, Li X, Gong J, Tang G. Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data. Funct Integr Genomics 2025; 25:11. [PMID: 39798003 DOI: 10.1007/s10142-024-01521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming. This study aimed to construct a model based on PPP-related Genes for risk assessment and prognosis prediction in HCC patients. We integrated RNA-seq and microarray data from TCGA, GEO, and ICGC databases, along with single-cell RNA sequencing (scRNA-seq) data obtained from HCC patients via GEO. Based on the "Seurat" R package, we identified distinct gene clusters related to the PPP within the scRNA-seq data. Using a penalized Cox regression model with least absolute shrinkage and selection operator (LASSO) penalties, we constructed a risk prognosis model. The validity of our risk prognosis model was further confirmed in external cohorts. Additionally, we developed a nomogram capable of accurately predicting overall survival in HCC patients. Furthermore, we explored the predictive potential of our risk model within the immune microenvironment and assessed its relevance to biological function, particularly in the context of immunotherapy. Subsequently, we performed in vitro functional validation of the key genes (ATAD2 and SPP1) in our model. A ten-gene signature associated with the PPP was formulated to enhance the prediction of HCC prognosis and anti-tumor treatment response. Following this, the ROC curve, nomogram, and calibration curve outcomes corroborated the model's robust clinical predictive capability. Functional enrichment analysis unveiled the engagement of the immune system and notable variances in the immune infiltration landscape across the high and low-risk groups. Additionally, tumor mutation frequencies were observed to be elevated in the high-risk group. Based on our analyses, the IC50 values of most identified anticancer agents demonstrated a correlation with the RiskScore. Additionally, the high-risk and low-risk groups exhibited differential sensitivity to various drugs. Cytological experiments revealed that silencing ATAD2 or SPP1 suppresses malignant phenotypes, including viability and migration, in liver cancer cells. In this study, a novel gene signature related to the PPP was developed, demonstrating favorable predictive performance. This signature holds significant guiding value for assessing the prognosis of HCC patients and directing individualized treatment strategies.
Collapse
Affiliation(s)
- Bin Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Zeng
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Cui Chen
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuankai Wu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Shuying Huang
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jing Deng
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiahui Pang
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang Cai
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuxi Lin
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yina Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yutian Chong
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xinhua Li
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Guofang Tang
- Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
| |
Collapse
|
19
|
Feng QS, Shan XF, Yau V, Cai ZG, Xie S. Facilitation of Tumor Stroma-Targeted Therapy: Model Difficulty and Co-Culture Organoid Method. Pharmaceuticals (Basel) 2025; 18:62. [PMID: 39861125 PMCID: PMC11769033 DOI: 10.3390/ph18010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Tumors, as intricate ecosystems, comprise oncocytes and the highly dynamic tumor stroma. Tumor stroma, representing the non-cancerous and non-cellular composition of the tumor microenvironment (TME), plays a crucial role in oncogenesis and progression, through its interactions with biological, chemical, and mechanical signals. This review aims to analyze the challenges of stroma mimicry models, and highlight advanced personalized co-culture approaches for recapitulating tumor stroma using patient-derived tumor organoids (PDTOs). Methods: This review synthesizes findings from recent studies on tumor stroma composition, stromal remodeling, and the spatiotemporal heterogeneities of the TME. It explores popular stroma-related models, co-culture systems integrating PDTOs with stromal elements, and advanced techniques to improve stroma mimicry. Results: Stroma remodeling, driven by stromal cells, highlights the dynamism and heterogeneity of the TME. PDTOs, derived from tumor tissues or cancer-specific stem cells, accurately mimic the tissue-specific and genetic features of primary tumors, making them valuable for drug screening. Co-culture models combining PDTOs with stromal elements effectively recreate the dynamic TME, showing promise in personalized anti-cancer therapy. Advanced co-culture techniques and flexible combinations enhance the precision of tumor-stroma recapitulation. Conclusions: PDTO-based co-culture systems offer a promising platform for stroma mimicry and personalized anti-cancer therapy development. This review underscores the importance of refining these models to advance precision medicine and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiu-Shi Feng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Xiao-Feng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Vicky Yau
- Division of Oral and Maxillofacial Surgery, Columbia Irving Medical Center, New York City, NY 10027, USA;
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| |
Collapse
|
20
|
Sivasubramanian PD, Unnikrishnan G, Kolanthai E, Muthuswamy S. Engineered nanoparticle systems: A review on emerging strategies for enhanced cancer therapeutics. NEXT MATERIALS 2025; 6:100405. [DOI: 10.1016/j.nxmate.2024.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Liu F, Mei B, Xu J, Zou Y, Luo G, Liu H. Machine learning identification of NK cell immune characteristics in hepatocellular carcinoma based on single-cell sequencing and bulk RNA sequencing. Genes Genomics 2025; 47:19-35. [PMID: 39433650 DOI: 10.1007/s13258-024-01581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant tumor; however, its immune microenvironment and mechanisms remain elusive. Single-cell sequencing allows for the exploration of immune characteristics within tumor at the cellular level. However, current knowledge regarding the roles of different immune cell populations in liver cancer progression is limited. OBJECTIVE The main objective of this study is to identify molecular markers with NK cell immune characteristics in hepatocellular carcinoma using various machine learning methods based on Single-Cell Sequencing and Bulk RNA Sequencing. METHODS We collected samples from eight normal liver tissues and eight HCC tumor tissues and performed single-cell RNA sequencing for immune cell clustering and expression profile analysis. Using various bioinformatic approaches, we investigated the immune phenotype associated with natural killer (NK) cells expressing high CD7 level. In addition, we verified the role of CD7 in the growth of HCC after NK cell and HCC cells cocultured by RT-qPCR, MTS and Flow cytometer experiments. Finally, we constructed a machine learning model to develop a prognostic prediction system for HCC based on NK cell-related genes. RESULTS Through single-cell typing, we found that the proportions of hepatocytes and NK cells were significantly elevated in the tumor samples. Moreover, we found that the expression of CD7 was high in HCC and correlated with prognosis. More importantly, Overexpression of CD7 in NK cells significantly inhibited the activity of MHCC97 cells and increased the number of apoptosis of HCC cells (p < 0.05). Furthermore, we observed that NK cells with high CD7 expression were associated with an activated immune phenotype. CONCLUSION Our study found that CD7 is an important biomarker for assessing immune status and predicting survival of HCC patients; hence, it is a potential target for immune therapy against HCC.
Collapse
Affiliation(s)
- Fang Liu
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China.
| | - Baohua Mei
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China
| | - Jianfeng Xu
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China
| | - Yong Zou
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China
| | - Gang Luo
- Department of Hepatobiliary Surgery, Jiujiang First People's Hospital, 48 Taling South Road, Jiujiang City, 332000, Jiangxi Province, China
| | - Haiyu Liu
- College of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| |
Collapse
|
22
|
Li S, Lin Y, Gao X, Zeng D, Cen W, Su Y, Su J, Zeng C, Huang Z, Zeng H, Huang S, Tang M, Li X, Luo M, Huang Z, Liang R, Ye J. Integrative multi-omics analysis reveals a novel subtype of hepatocellular carcinoma with biological and clinical relevance. Front Immunol 2024; 15:1517312. [PMID: 39712016 PMCID: PMC11659151 DOI: 10.3389/fimmu.2024.1517312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and the development of accurate predictive models for prognosis and drug sensitivity remains challenging. Methods We integrated laboratory data and public cohorts to conduct a multi-omics analysis of HCC, which included bulk RNA sequencing, proteomic analysis, single-cell RNA sequencing (scRNA-seq), spatial transcriptomics sequencing (ST-seq), and genome sequencing. We constructed a tumor purity (TP) and tumor microenvironment (TME) prognostic risk model. Proteomic analysis validated the TP-TME-related signatures. Joint analysis of scRNA-seq and ST-seq revealed characteristic clusters associated with TP high-risk subtypes, and immunohistochemistry confirmed the expression of key genes. We conducted functional enrichment analysis, transcription factor activity inference, cell-cell interaction, drug efficacy analysis, and mutation information analysis to identify a novel subtype of HCC. Results Our analyses constructed a robust HCC prognostic risk prediction model. The patients with TP-TME high-risk subtypes predominantly exhibit hypoxia and activation of the Wnt/beta-catenin, Notch, and TGF-beta signaling pathways. Furthermore, we identified a novel subtype, XPO1+Epithelial. This subtype expresses signatures of the TP risk subtype and aligns with the biological behavior of high-risk patients. Additional analyses revealed that XPO1+Epithelial is influenced primarily by fibroblasts via ligand-receptor interactions, such as FN1-(ITGAV+ITGB1), and constitute a significant component of the TP-TME subtype. Moreover, XPO1+Epithelial interact with monocytes/macrophages, T/NK cells, and endothelial cells through ligand-receptor pairs, including MIF-(CD74+CXCR4), MIF-(CD74+CD44), and VEGFA-VEGFR1R2, respectively, thereby promoting the recruitment of immune-suppressive cells and angiogenesis. The ST-seq cohort treated with Tyrosine Kinase Inhibitors (TKIs) and Programmed Cell Death Protein 1 (PD-1) presented elevated levels of TP and TME risk subtype signature genes, as well as XPO1+Epithelial, T-cell, and endothelial cell infiltration in the treatment response group. Drug sensitivity analyses indicated that TP-TME high-risk subtypes, including sorafenib and pembrolizumab, were associated with sensitivity to multiple drugs. Further exploratory analyses revealed that CTLA4, PDCD1, and the cancer antigens MSLN, MUC1, EPCAM, and PROM1 presented significantly increase expression levels in the high-risk subtype group. Conclusions This study constructed a robust prognostic model for HCC and identified novel subgroups at the single-cell level, potentially assisting in the assessment of prognostic risk for HCC patients and facilitating personalized drug therapy.
Collapse
Affiliation(s)
- Shizhou Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Xing Gao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Dandan Zeng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Weijie Cen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Yuejiao Su
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Jingting Su
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Can Zeng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Zhenbo Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Haoyu Zeng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Shilin Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Minchao Tang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Xiaoqing Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Min Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Zhihu Huang
- Department of Clinical Laboratory, Minzu Hospital Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, ;China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China
| |
Collapse
|
23
|
Guo X, Yang F, Liu T, Chen A, Liu D, Pu J, Jia C, Wu Y, Yuan J, Ouyang N, Herz J, Ding Y. Loss of LRP1 Promotes Hepatocellular Carcinoma Progression via UFL1-Mediated Activation of NF-κB Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401672. [PMID: 39405202 PMCID: PMC11615765 DOI: 10.1002/advs.202401672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/11/2024] [Indexed: 12/06/2024]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is thought to be correlated with hepatocellular carcinoma (HCC) invasion and metastasis. However, the precise mechanism through which LRP1 contributes to HCC progression remains unclear. Here, lower LRP1 levels are associated with malignant progression, and poor prognosis in patients with HCC is shown. LRP1 knockdown enhances the tumorigenicity of HCC cells in vitro and in vivo, whereas overexpression of either LRP1 or its β-chain has the opposite effect. Mechanistically, LRP1 knockdown promotes the binding of ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) to OGA and accelerates ubiquitin-mediated OGA degradation, leading to increased O-GlcNAcylation of nuclear factor-kappa B (NF-κB) and subsequent inhibition of pro-apoptotic gene expression. Conversely, exogenously expressed truncated β-chain (β∆) stabilizes OGA by disrupting the association between UFL1 and OGA, consequently abolishing the anti-apoptotic effects of O-GlcNAcylated NF-κB. The findings identify LRP1, particularly its β-chain, as a novel upstream control factor that facilitates the stabilization of the OGA protein, thereby suppressing NF-κB signaling and attenuating HCC progression, thus suggesting a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xingxian Guo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Fan Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Tianyi Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Amei Chen
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqing400030China
| | - Dina Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Jiangxia Pu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Can Jia
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Yuanhong Wu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Junfeng Yuan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Nan Ouyang
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Joachim Herz
- Department of Molecular GeneticsDepartment of NeuroscienceDepartment of Neurology & NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Yinyuan Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| |
Collapse
|
24
|
Budhbaware T, Rathored J, Shende S. Molecular methods in cancer diagnostics: a short review. Ann Med 2024; 56:2353893. [PMID: 38753424 PMCID: PMC11100444 DOI: 10.1080/07853890.2024.2353893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND One of the ailments with the greatest fatality rates in the 21st century is cancer. Globally, molecular methods are widely employed to treat cancer-related disorders, and the body of research on this subject is growing yearly. A thorough and critical summary of the data supporting molecular methods for illnesses linked to cancer is required. OBJECTIVE In order to guide clinical practice and future research, it is important to examine and summarize the systematic reviews (SRs) that evaluate the efficacy and safety of molecular methods for disorders associated to cancer. METHODS We developed a comprehensive search strategy to find relevant articles from electronic databases like PubMed, Google Scholar, Web of Science (WoS), or Scopus. We looked through the literature and determined which diagnostic methods in cancer genetics were particularly reliable. We used phrases like 'cancer genetics', genetic susceptibility, Hereditary cancer, cancer risk assessment, 'cancer diagnostic tools', cancer screening', biomarkers, and molecular diagnostics, reviews and meta-analyses evaluating the efficacy and safety of molecular therapies for cancer-related disorders. Research that only consider treatment modalities that don't necessitate genetic or molecular diagnostics fall under the exclusion criteria. RESULTS The results of this comprehensive review clearly demonstrate the transformative impact of molecular methods in the realm of cancer genetics.This review underscores how these technologies have empowered researchers and clinicians to identify and understand key genetic alterations that drive malignancy, ranging from point mutations to structural variations. Such insights are instrumental in pinpointing critical oncogenic drivers and potential therapeutic targets, thus opening the door for methods in precision medicine that can significantly improve patient outcomes. LIMITATION The search does not specify a timeframe for publication inclusion, it may have missed recent advancements or changes in the field's landscape of molecular methods for cancer. As a result, it may not have included the most recent developments in the field. CONCLUSION After conducting an in-depth study on the molecular methods in cancer genetics, it is evident that these cutting-edge technologies have revolutionized the field of oncology, providing researchers and clinicians with powerful tools to unravel the complexities of cancer at the genetic level. The integration of molecular methods techniques has not only enhanced our understanding of cancer etiology, progression, and treatment response but has also opened new avenues for personalized medicine and targeted therapies, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Tanushree Budhbaware
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| | - Jaishriram Rathored
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| | - Sandesh Shende
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| |
Collapse
|
25
|
Long R, Suoangbaji, Ng IOL, Ho DWH. LiverSCA: A comprehensive and user-friendly cell atlas in human hepatocellular carcinoma. Comput Struct Biotechnol J 2024; 23:2740-2745. [PMID: 39050786 PMCID: PMC11266871 DOI: 10.1016/j.csbj.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
We developed a cell atlas named LiverSCA on human liver cancer single-cell RNA sequencing data. It has a user-friendly web interface and comprehensive functionalities aiming to help researchers to make easy access to cellular and molecular landscapes of the tumor microenvironment in liver cancer. LiverSCA includes a complete analytical pipeline that allow mechanistic exploration on a wide variety of functionalities, such as cell clustering, cell annotation, identification of differentially expressed genes, functional enrichment analysis, analysis of cellular crosstalk, and pseudo-time trajectory analysis. Notably, our intuitive web interface allows users, particularly wet-lab researchers, to easily explore and undertake data discovery, without the need to handle any of the raw data.
Collapse
Affiliation(s)
- Renwen Long
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Suoangbaji
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Pan Y, Zhang Y, Mao D, Fang Z, Ma Y, Jin D, Li S. Multi-omics Insights into PDHA1 as a Predictive Biomarker for Prognosis, Immunotherapy Efficacy, and Drug Sensitivity in Hepatocellular Carcinoma. ACS OMEGA 2024; 9:46492-46504. [PMID: 39583658 PMCID: PMC11579764 DOI: 10.1021/acsomega.4c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
PDHA1 was associated with metabolic reprogramming in tumor progression. However, the clinical value of PDHA1, especially for prediction of drug sensitivity in hepatocellular carcinoma (HCC), has not been fully investigated. In this study, we found that PDHA1 expression was higher in HCC tissues compared to normal tissues and was correlated with poor prognosis in HCC patients. PDHA1 expression was mainly positively associated with immune cell infiltration using the TIMER, XCell, MCPCOUNTER, CIBERSORT, EPIC, and QUANTISEQ algorithms, which was validated by single-cell RNA-sequencing analysis. We also discovered that PDHA1 expression was correlated with six immune checkpoint-related genes. Univariate and multivariate Cox regression analyses revealed that PDHA1 expression was an independent prognostic indicator for HCC patients, and the nomogram incorporating PDHA1 expression exhibited excellent predictive capacity. Furthermore, PDHA1 expression was positively linked to the sensitivity of 5-fluorouracil, gemcitabine, paclitaxel, and sorafenib, and the molecular docking analysis demonstrated their excellent binding affinity.
Collapse
Affiliation(s)
- Yong Pan
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
- State
Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Yiru Zhang
- State
Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Daiwen Mao
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Zhou Fang
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Yingqiu Ma
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Danwen Jin
- Pathological
Diagnosis Center, Zhoushan Hospital, Wenzhou
Medical University, Zhoushan 316021, China
| | - Shibo Li
- Department
of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| |
Collapse
|
27
|
Lin W, Tang L, Zhuo C, Mao X, Shen J, Huang S, Li S, Qin Y, Liao J, Chen Y, Zhang X, Li Y, Song J, Meng L, Dong X, Li Y. scRNA-Seq Analysis Revealed CAFs Regulating HCC Cells via PTN Signaling. J Hepatocell Carcinoma 2024; 11:2269-2281. [PMID: 39582814 PMCID: PMC11583788 DOI: 10.2147/jhc.s493675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play a pivotal role in shaping the microenvironment of hepatocellular carcinoma (HCC). However, the mechanisms through which CAFs influence the progression of HCC remain incompletely understood. Methods Single-cell RNA sequencing datasets (GSE158723 and GSE112271) were retrieved from the Gene Expression Omnibus (GEO) database at the National Center for Biotechnology Information (NCBI) and analyzed using R software. Our analysis suggested that CAFs may promote liver cancer cell development, possibly through the interaction of pleiotrophin (PTN) and syndecan-2 (SDC2). Clinical samples from HCC patients were collected and processed into frozen sections and single-cell suspensions for Masson staining, immunofluorescence staining, and flow cytometry. Additionally, Huh7 liver cancer cells and LO2 normal liver cells were cultured and subjected to immunofluorescence assays using cell slides. Results The proportion of CAFs in cancerous tissues was higher than in adjacent non-cancerous tissues, and pleiotrophin (PTN) expression was elevated in cancer tissues compared to adjacent tissues. These findings aligned with the results of the single-cell RNA sequencing (scRNA-seq) analysis. Furthermore, SDC2 expression was significantly upregulated in Huh7 liver cancer cells compared to LO2 normal liver cells. Discussion This study suggests that CAFs may contribute to HCC progression via the PTN/SDC2 signaling pathway. Our findings provide deeper insights into the interactions between CAFs and HCC cells within the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Wenxian Lin
- Key Laboratory of Molecular Pathology for Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Lizhu Tang
- Key Laboratory of Molecular Pathology for Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Radiation Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, The People’s Republic of China
| | - Chenyi Zhuo
- Key Laboratory of Molecular Pathology for Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
| | - Xiuli Mao
- Key Laboratory of Molecular Pathology for Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Jiajia Shen
- Department of Laboratory Medicine, Nanning Maternity and Child Health Hospital & Nanning Women and Children’s Hospital, Nanning, 530011, The People’s Republic of China
| | - Shaoang Huang
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
| | - Shangyang Li
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Department of Laboratory Medicine, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Yujuan Qin
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Ju Liao
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
| | - Yuhong Chen
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, The People’s Republic of China
| | - Xiamin Zhang
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Yuting Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530200, The People’s Republic of China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Lingzhang Meng
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Xiaofeng Dong
- Department of Hepatobiliary, Pancreas and Spleen Surgery, Guangxi Academy of Medical Sciences & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, The People’s Republic of China
| | - Yueyong Li
- Department of Interventional Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, The People’s Republic of China
| |
Collapse
|
28
|
Kustiawan PM, Siregar KAAK, Jauhar MM, Ramadhan D, Mardliyati E, Syaifie PH. Network pharmacology and bioinformatic integrative analysis reveals candidate gene targets and potential therapeutic of East Kalimantan propolis against hepatocellular carcinoma. Heliyon 2024; 10:e39142. [PMID: 39524833 PMCID: PMC11544044 DOI: 10.1016/j.heliyon.2024.e39142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Hepatocellular Carcinoma (HCC) is commonly treated with surgery, liver transplantation, and chemotherapy, but recurrence and metastasis remain challenges. Natural complementary therapies like propolis, known for its hepatoprotective properties, are gaining interest due to limited efficacy and toxicity of conventional chemotherapy. This study aims to identify core targets for HCC, assess the therapeutic potential of East Kalimantan propolis (EKP) from stingless bees, and analyze the molecular interactions. Methods EKP compounds were analyzed using target prediction tools related to HCC, alongside clinical data from the Gene Expression Omnibus (GEO) database, to identify overlapping genes with clinical relevance. The selected genes were then subjected to protein-protein interaction (PPI), GO and KEGG enrichment, immunohistochemical comparison and survival analysis to identify potential core targets and related pathways for HCC therapy. Furthermore, molecular docking and dynamics were conducted to verify the molecular interactions and stability of EKP compounds with targets. Results 108 genes have been selected as HCC potential targets, which mostly associated with MicroRNAs in cancer, chemical carcinogenesis, and viral carcinogenesis pathways. These targets were obtained by overlapping genes from GEO clinical databases and target predictors. PPI network analysis revealed 4 main targets of propolis in HCC. Furthermore, differential expression genes, survival analysis, and Immunohistochemical analysis from databases suggested that AKR1C3 and MAPK1 promote HCC progression and shorten survival rate of HCC patients. Molecular docking and dynamic studies confirmed strong binding affinity and stability of Baicalein, Chrysin, Quercetin, and Myricetin with receptor targets within simulation time. Conclusions This study provides insight into the mechanism of action of EKP on HCC and identifies AKR1C3 and MAPK1 as candidate target treatments for future drug development.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, 15314, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, 15314, Indonesia
| | - Donny Ramadhan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, 15314, Indonesia
| |
Collapse
|
29
|
Yin Z, Song Y, Wang L. Single-cell RNA sequencing reveals the landscape of the cellular ecosystem of primary hepatocellular carcinoma. Cancer Cell Int 2024; 24:379. [PMID: 39543644 PMCID: PMC11566594 DOI: 10.1186/s12935-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) cells, along with multiple nonmalignant stromal cells, such as fibroblasts, endothelial cells and immune cells, comprise an intricate cellular ecosystem, undergo dynamic phenotypic changes and present complicated cellular interactions, thus synergistically facilitating HCC initiation and progression and leading to treatment resistance. Clarifying the heterogeneity, cell plasticity and complexity of the cellular ecosystem of HCC will be highly beneficial for understanding HCC development and identifying novel therapeutic targets. Single-cell RNA sequencing (scRNA-seq) refers to profiling the transcriptome at single-cell resolution, and the development of scRNA-seq technology and analysis algorithms has greatly promoted the analysis of cell composition, cell subpopulation heterogeneity, development trajectory and cell-to-cell interactions in cell populations. In this review, we systematically summarized and discussed scRNA-seq in treatment-naive primary HCC and revealed the global cell composition of HCC; the widespread molecular heterogeneity of HCC cells; the molecular subtypes of fibroblasts; the cell composition, functional states and development trajectory of immune cells; and the frequent interactions between different cell types to systematically draw the landscape of the cellular ecosystem of primary HCC.
Collapse
Affiliation(s)
- Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China.
| | - Yilin Song
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
30
|
Jiang G, Wang Z, Cheng Z, Wang W, Lu S, Zhang Z, Anene CA, Khan F, Chen Y, Bailey E, Xu H, Dong Y, Chen P, Zhang Z, Gao D, Wang Z, Miao J, Xue X, Wang P, Zhang L, Gangeswaran R, Liu P, Chard Dunmall LS, Li J, Guo Y, Dong J, Lemoine NR, Li W, Wang J, Wang Y. The integrated molecular and histological analysis defines subtypes of esophageal squamous cell carcinoma. Nat Commun 2024; 15:8988. [PMID: 39419971 PMCID: PMC11487165 DOI: 10.1038/s41467-024-53164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is highly heterogeneous. Our understanding of full molecular and immune landscape of ESCC remains limited, hindering the development of personalised therapeutic strategies. To address this, we perform genomic-transcriptomic characterizations and AI-aided histopathological image analysis of 120 Chinese ESCC patients. Here we show that ESCC can be categorized into differentiated, metabolic, immunogenic and stemness subtypes based on bulk and single-cell RNA-seq, each exhibiting specific molecular and histopathological features based on an amalgamated deep-learning model. The stemness subgroup with signature genes, such as WFDC2, SFRP1, LGR6 and VWA2, has the poorest prognosis and is associated with downregulated immune activities, a high frequency of EP300 mutation/activation, functional mutation enrichment in Wnt signalling and the highest level of intratumoural heterogeneity. The immune profiling by transcriptomics and immunohistochemistry reveals ESCC cells overexpress natural killer cell markers XCL1 and CD160 as immune evasion. Strikingly, XCL1 expression also affects the sensitivity of ESCC cells to common chemotherapy drugs. This study opens avenues for ESCC treatment and provides a valuable public resource to better understand ESCC.
Collapse
Affiliation(s)
- Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhizhong Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shuangshuang Lu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zifang Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Chinedu A Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
- Centre for Biomedical Science Research, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Faraz Khan
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Yue Chen
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Emma Bailey
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Huisha Xu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yunshu Dong
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peinan Chen
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongxian Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dongling Gao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhimin Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jinxin Miao
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xia Xue
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Rathi Gangeswaran
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Peng Liu
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Junkuo Li
- Department of Molecular Pathology, Anyang Cancer Hospital, Anyang City, 455000, Henan Province, People's Republic of China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Jianzeng Dong
- Department of Cardiology, Centre for Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China
| | - Nicholas R Lemoine
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
31
|
Zheng SS, Wu JF, Wu WX, Hu JW, Zhang D, Huang C, Zhang BH. CBX1 is involved in hepatocellular carcinoma progression and resistance to sorafenib and lenvatinib via IGF-1R/AKT/SNAIL signaling pathway. Hepatol Int 2024; 18:1499-1515. [PMID: 38769286 PMCID: PMC11461582 DOI: 10.1007/s12072-024-10696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Chromobox Homolog 1 (CBX1) plays a crucial role in the pathogenesis of numerous diseases, including the evolution and advancement of diverse cancers. The role of CBX1 in pan-cancer and its mechanism in hepatocellular carcinoma (HCC), however, remains to be further investigated. METHODS Bioinformatics approaches were harnessed to scrutinize CBX1's expression profile, its association with tumor staging, and its potential impact on patient outcomes across various cancers. Single-cell RNA sequencing data facilitated the investigation of CBX1 expression patterns at the individual cell level. The CBX1 expression levels in HCC and adjacent non-tumor tissues were quantified through Real-Time Polymerase Chain Reaction (RT-PCR), Western Blotting (WB), and Immunohistochemical analyses. A tissue microarray was employed to explore the relationship between CBX1 levels, patient prognosis, and clinicopathological characteristics in HCC. Various in vitro assays-including CCK-8, colony formation, Transwell invasion, and scratch tests-were conducted to assess the proliferative and motility properties of HCC cells upon modulation of CBX1 expression. Moreover, the functional impact of CBX1 on HCC was further discerned through xenograft studies in nude mice. RESULTS CBX1 was found to be upregulated in most cancer forms, with heightened expression correlating with adverse patient prognoses. Within the context of HCC, elevated levels of CBX1 were consistently indicative of poorer clinical outcomes. Suppression of CBX1 through knockdown methodologies markedly diminished HCC cell proliferation, invasive capabilities, migratory activity, Epithelial-mesenchymal transition (EMT) processes, and resistance to Tyrosine kinase inhibitors (TKIs). Contrastingly, CBX1 augmentation facilitated the opposite effects. Subsequent investigative efforts revealed CBX1 to be a promoter of EMT and a contributor to increased TKI resistance within HCC cells, mediated via the IGF-1R/AKT/SNAIL signaling axis. The oncogenic activities of CBX1 proved to be attenuable either by AKT pathway inhibition or by targeted silencing of IGF-1R. CONCLUSIONS The broad overexpression of CBX1 in pan-cancer and specifically in HCC positions it as a putative oncogenic entity. It is implicated in forwarding HCC progression and exacerbating TKI resistance through its interaction with the IGF-1R/AKT/SNAIL signaling cascade.
Collapse
Affiliation(s)
- Su-Su Zheng
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
| | - Jing-Fang Wu
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei-Xun Wu
- Department of Liver Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
| | - Jin-Wu Hu
- Department of Liver Cancer, Shanghai Geriatrics Medical Center, 2560 Chunshen Road, Shanghai, 201104, China
| | - Dai Zhang
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cheng Huang
- Department of Liver Surgery, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo-Heng Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China.
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Center for Evidence-Based Medicine, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Gu JX, Huang K, Zhao WL, Zheng XM, Wu YQ, Yan SR, Huang YG, Hu P. NCAPD2 augments the tumorigenesis and progression of human liver cancer via the PI3K‑Akt‑mTOR signaling pathway. Int J Mol Med 2024; 54:84. [PMID: 39092569 PMCID: PMC11315656 DOI: 10.3892/ijmm.2024.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Non‑SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single‑cell sequencing data, gene‑set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M‑phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3‑kinase (PI3K)‑Akt‑mammalian target of rapamycin (mTOR)/c‑Myc signaling pathway and epithelial‑mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease‑specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M‑phase transition, activation of the PI3K‑Akt‑mTOR/c‑Myc signaling pathway and EMT progression in human liver cancer cells.
Collapse
Affiliation(s)
- Jiang-Xue Gu
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ke Huang
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wei-Lin Zhao
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiao-Ming Zheng
- Central Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Qin Wu
- Central Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shi-Rong Yan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Gang Huang
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Pei Hu
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Hepatocellular Carcinoma, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
33
|
Taherifard E, Tran K, Saeed A, Yasin JA, Saeed A. Biomarkers for Immunotherapy Efficacy in Advanced Hepatocellular Carcinoma: A Comprehensive Review. Diagnostics (Basel) 2024; 14:2054. [PMID: 39335733 PMCID: PMC11431712 DOI: 10.3390/diagnostics14182054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver malignancy and the sixth most common cancer globally, remains fatal for many patients with inappropriate responses to treatment. Recent advancements in immunotherapy have transformed the treatment landscape for advanced HCC. However, variability in patient responses to immunotherapy highlights the need for biomarkers that can predict treatment outcomes. This manuscript comprehensively reviews the evolving role of biomarkers in immunotherapy efficacy, spanning from blood-derived indicators-alpha-fetoprotein, inflammatory markers, cytokines, circulating tumor cells, and their DNA-to tissue-derived indicators-programmed cell death ligand 1 expression, tumor mutational burden, microsatellite instability, and tumor-infiltrating lymphocytes. The current body of evidence suggests that these biomarkers hold promise for improving patient selection and predicting immunotherapy outcomes. Each biomarker offers unique insights into disease biology and the immune landscape of HCC, potentially enhancing the precision of treatment strategies. However, challenges such as methodological variability, high costs, inconsistent findings, and the need for large-scale validation in well-powered two-arm trial studies persist, making them currently unsuitable for integration into standard care. Addressing these challenges through standardized techniques and implementation of further studies will be critical for the future incorporation of these biomarkers into clinical practice for advanced HCC.
Collapse
Affiliation(s)
- Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Krystal Tran
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA
| | - Jehad Amer Yasin
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
34
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
35
|
Wusiman M, Huang SY, Liu ZY, He TT, Fang AP, Li MC, Yang MT, Wang C, Zhang YJ, Zhu HL. Serum S-adenosylhomocysteine, rather than homocysteine, is associated with hepatocellular carcinoma survival: a prospective cohort study. Am J Clin Nutr 2024; 120:481-490. [PMID: 39025328 DOI: 10.1016/j.ajcnut.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Emerging evidence suggested that S-adenosylhomocysteine (SAH) may be a better serum biomarker for cardiovascular disease than homocysteine (Hcy). However, the role of SAH in hepatocellular carcinoma (HCC) prognosis remains unclear. OBJECTIVES We aimed to prospectively explore the relationships between serum SAH and related metabolites [Hcy, S-adenosylmethionine (SAM)] with HCC survival, and to evaluate the effect modifications by gene polymorphisms in one-carbon metabolism key enzymes. METHODS We included 1080 newly diagnosed patients with HCC from the Guangdong Liver Cancer Cohort. Serum SAH, Hcy, and SAM were measured utilizing high-performance liquid chromatography-tandem mass spectrometry. Gene polymorphisms in one-carbon metabolism key enzymes were identified using kompetitive allele-specific polymerase chain reaction. Primary outcomes were liver cancer-specific survival (LCSS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using multivariate Cox proportional hazards models. RESULTS After a median follow-up of 3.6 y, 601 deaths occurred, with 552 (92%) attributed to HCC. Multivariable analysis revealed that patients in the highest quartile of serum SAH concentrations were significantly associated with worse survival compared with those in the lowest quartile, with HRs of 1.58 (95% CI: 1.19, 2.10; P-trend = 0.002) for LCSS and 1.54 (95% CI: 1.18, 2.02; P-trend = 0.001) for OS. There were no significant interactions between serum SAH concentrations and genetic variants of one-carbon metabolism key enzymes. No significant associations were found between serum Hcy, SAM concentrations, and SAM/SAH ratio with LCSS or OS. CONCLUSIONS Higher serum SAH concentrations, rather than Hcy, were independently associated with worse survival in patients with HCC, regardless of the genetic variants of one-carbon metabolism key enzymes. These findings suggest that SAH may be a novel metabolism-related prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Maierhaba Wusiman
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Si-Yu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tong-Tong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meng-Chu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meng-Tao Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangzhou, China.
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Wang S, Ye W, Yang K, Lv X, Luan J. Prognostic Hypoxia-Angiogenesis-Related Gene Signature in Hepatocellular Carcinoma, in Which HILPDA Contributes to Tumor Progression. J Inflamm Res 2024; 17:5663-5683. [PMID: 39219818 PMCID: PMC11365521 DOI: 10.2147/jir.s476388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is the predominant form of liver cancer. Hypoxia can be involved in HCC tumor growth, invasion and metastasis through inducing angiogenesis. Nevertheless, the assessment of the impact of hypoxia and angiogenesis on the prognosis of HCC remains inadequate. Methods According to hypoxia-angiogenesis-related genes (HARGs) expression information and clinical data from patients within the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort, we constructed a prognostic model (HARG-score) using bioinformatic tools. In addition to assessing the predictive ability of this prognostic model in both Liver Cancer-Riken-Japan (LIRI-JP) and GSE14520 cohorts, we analyzed the correlation between HARG-score and clinical characteristics, immune infiltration and immunotherapy efficacy. Moreover, we investigated the exact role and underlying mechanism of key HARGs through molecular experiments. Results We constructed a 5-gene prognostic model HARG-score consisting of hypoxia-inducible lipid droplet-associated (HILPDA), erythropoietin (EPO), solute carrier family 2 member 1 (SLC2A1), proteasome subunit alpha type 7 (PSMA7) and cAMP responsive element-binding protein 1 (CREB1) through differentially expressed HARGs. The findings demonstrated that HARG-score was a good predictor of the prognosis of HCC patients from distinct cohorts and was correlated with clinical characteristics and immune infiltration. Furthermore, the HARG-score was identified as an independent prognostic factor. Lower HARG-score implied greater immunotherapy efficacy and better response. The expression and prognostic significance of these 5 genes were additionally validated in clinical data. In addition, experimental data revealed that the key gene HILPDA contributes to the progression of HCC through facilitating angiogenesis and affecting the expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA4). Conclusion HARG-score has promising applications in prognosis prediction of HCC patients, in which HILPDA may be a latent prognostic biomarker and therapeutic target, providing a foundation for further research and treatment of HCC.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People’s Republic of China
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241002, People’s Republic of China
| |
Collapse
|
37
|
Jing SY, Liu D, Feng N, Dong H, Wang HQ, Yan X, Chen XF, Qu MC, Lin P, Yi B, Feng F, Chen L, Wang HY, Li H, He YF. Spatial multiomics reveals a subpopulation of fibroblasts associated with cancer stemness in human hepatocellular carcinoma. Genome Med 2024; 16:98. [PMID: 39138551 PMCID: PMC11320883 DOI: 10.1186/s13073-024-01367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are the prominent cell type in the tumor microenvironment (TME), and CAF subsets have been identified in various tumors. However, how CAFs spatially coordinate other cell populations within the liver TME to promote cancer progression remains unclear. METHODS We combined multi-region proteomics (6 patients, 24 samples), 10X Genomics Visium spatial transcriptomics (11 patients, 25 samples), and multiplexed imaging (92 patients, 264 samples) technologies to decipher the expression heterogeneity, functional diversity, spatial distribution, colocalization, and interaction of fibroblasts. The newly identified CAF subpopulation was validated by cells isolated from 5 liver cancer patients and in vitro functional assays. RESULTS We identified a liver CAF subpopulation, marked by the expression of COL1A2, COL4A1, COL4A2, CTGF, and FSTL1, and named F5-CAF. F5-CAF is preferentially located within and around tumor nests and colocalizes with cancer cells with higher stemness in hepatocellular carcinoma (HCC). Multiplexed staining of 92 patients and the bulk transcriptome of 371 patients demonstrated that the abundance of F5-CAFs in HCC was associated with a worse prognosis. Further in vitro experiments showed that F5-CAFs isolated from liver cancer patients can promote the proliferation and stemness of HCC cells. CONCLUSIONS We identified a CAF subpopulation F5-CAF in liver cancer, which is associated with cancer stemness and unfavorable prognosis. Our results provide potential mechanisms by which the CAF subset in the TME promotes the development of liver cancer by supporting the survival of cancer stem cells.
Collapse
Affiliation(s)
- Si-Yu Jing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Dan Liu
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Na Feng
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, People's Republic of China
| | - He-Qi Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Xi Yan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Xu-Feng Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Min-Cheng Qu
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
| | - Ping Lin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Bin Yi
- Department of Organ Transplantation, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
| | - Lei Chen
- National Center for Liver Cancer and International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, 200438, People's Republic of China.
| | - Hong-Yang Wang
- National Center for Liver Cancer and International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education and Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, People's Republic of China.
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| | - Yu-Fei He
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China.
| |
Collapse
|
38
|
Chen K, Shuen TWH, Chow PKH. The association between tumour heterogeneity and immune evasion mechanisms in hepatocellular carcinoma and its clinical implications. Br J Cancer 2024; 131:420-429. [PMID: 38760445 PMCID: PMC11300599 DOI: 10.1038/s41416-024-02684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. The emergence of combination therapy, atezolizumab (anti-PDL1, immune checkpoint inhibitor) and bevacizumab (anti-VEGF) has revolutionised the management of HCC. Despite this breakthrough, the best overall response rate with first-line systemic therapy is only about 30%, owing to intra-tumoural heterogeneity, complex tumour microenvironment and the lack of predictive biomarkers. Many groups have attempted to classify HCC based on the immune microenvironment and have consistently observed better outcomes in immunologically "hot" HCC. We summarised possible mechanisms of tumour immune evasion based on the latest literature and the rationale for combination/sequential therapy to improve treatment response. Lastly, we proposed future strategies and therapies to overcome HCC immune evasion to further improve treatment outcomes of HCC.
Collapse
Affiliation(s)
- Kaina Chen
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Timothy W H Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Pierce K H Chow
- Duke-NUS Medical School, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore, Singapore.
- Program in Translational and Clinical Liver Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
39
|
Yang T, Huang L, He J, Luo L, Guo W, Chen H, Jiang X, Huang L, Ma S, Liu X. Establishment of diagnostic model and identification of diagnostic markers between liver cancer and cirrhosis based on multi-chip and machine learning. Clin Exp Pharmacol Physiol 2024; 51:e13907. [PMID: 38965675 DOI: 10.1111/1440-1681.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Most cases of hepatocellular carcinoma (HCC) arise as a consequence of cirrhosis. In this study, our objective is to construct a comprehensive diagnostic model that investigates the diagnostic markers distinguishing between cirrhosis and HCC. METHODS Based on multiple GEO datasets containing cirrhosis and HCC samples, we used lasso regression, random forest (RF)-recursive feature elimination (RFE) and receiver operator characteristic analysis to screen for characteristic genes. Subsequently, we integrated these genes into a multivariable logistic regression model and validated the linear prediction scores in both training and validation cohorts. The ssGSEA algorithm was used to estimate the fraction of infiltrating immune cells in the samples. Finally, molecular typing for patients with cirrhosis was performed using the CCP algorithm. RESULTS The study identified 137 differentially expressed genes (DEGs) and selected five significant genes (CXCL14, CAP2, FCN2, CCBE1 and UBE2C) to construct a diagnostic model. In both the training and validation cohorts, the model exhibited an area under the curve (AUC) greater than 0.9 and a kappa value of approximately 0.9. Additionally, the calibration curve demonstrated excellent concordance between observed and predicted incidence rates. Comparatively, HCC displayed overall downregulation of infiltrating immune cells compared to cirrhosis. Notably, CCBE1 showed strong correlations with the tumour immune microenvironment as well as genes associated with cell death and cellular ageing processes. Furthermore, cirrhosis subtypes with high linear predictive scores were enriched in multiple cancer-related pathways. CONCLUSION In conclusion, we successfully identified diagnostic markers distinguishing between cirrhosis and hepatocellular carcinoma and developed a novel diagnostic model for discriminating the two conditions. CCBE1 might exert a pivotal role in regulating the tumour microenvironment, cell death and senescence.
Collapse
Affiliation(s)
- Tianpeng Yang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lu Huang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jiale He
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lihong Luo
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Weiting Guo
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Huajian Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Xinyue Jiang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Li Huang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Brazovskaja A, Gomes T, Holtackers R, Wahle P, Körner C, He Z, Schaffer T, Eckel JC, Hänsel R, Santel M, Seimiya M, Denecke T, Dannemann M, Brosch M, Hampe J, Seehofer D, Damm G, Camp JG, Treutlein B. Cell atlas of the regenerating human liver after portal vein embolization. Nat Commun 2024; 15:5827. [PMID: 38992008 PMCID: PMC11239663 DOI: 10.1038/s41467-024-49236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
The liver has the remarkable capacity to regenerate. In the clinic, regeneration is induced by portal vein embolization, which redirects portal blood flow, resulting in liver hypertrophy in locations with increased blood supply, and atrophy of embolized segments. Here, we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the regenerating liver. Our data unveils pervasive upregulation of genes associated with developmental processes, cellular adhesion, and inflammation in post-portal vein embolization liver, disrupted portal-central hepatocyte zonation, and altered cell subtype composition of endothelial and immune cells. Interlineage crosstalk analysis reveals mesenchymal cells as an interaction hub between immune and endothelial cells, and highlights the importance of extracellular matrix proteins in liver regeneration. Moreover, we establish tissue-scale iterative indirect immunofluorescence imaging for high-dimensional spatial analysis of perivascular microenvironments, uncovering changes to tissue architecture in regenerating liver lobules. Altogether, our data is a rich resource revealing cellular and histological changes in human liver regeneration.
Collapse
Affiliation(s)
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Rene Holtackers
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Philipp Wahle
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christiane Körner
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Theresa Schaffer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julian Connor Eckel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - René Hänsel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, Leipzig University, Leipzig, Germany
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany.
| | - J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
41
|
Yang K, Nong J, Xie H, Wan Z, Zhou X, Liu J, Qin C, Luo J, Zhu G, Peng T. DPF2 overexpression correlates with immune infiltration and dismal prognosis in hepatocellular carcinoma. J Cancer 2024; 15:4668-4685. [PMID: 39006087 PMCID: PMC11242344 DOI: 10.7150/jca.97437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Double plant homeodomain finger 2 (DPF2), belonging to the d4 family of structural domains, has been associated with various human malignancies. However, its impact on hepatocellular carcinoma (HCC) remains unclear. The objective of this study is to elucidate the role of DPF2 in the diagnosis and prognosis of HCC. Methods: DPF2 gene expression in HCC and adjacent tissues was analyzed using Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, validated by immunohistochemical staining of Guangxi specimens and data from the Human Protein Atlas (HPA). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to identify DPF2's potential pathways and functions in HCC. DPF2's mutation and methylation statuses were assessed via cBioPortal and MethSurv. The association between DPF2 and immune infiltration was investigated by TIMER. The prognostic value of DPF2 in HCC was established through Kaplan-Meier and Cox regression analyses. Results: DPF2 levels were significantly higher in HCC than normal tissues (p<0.001), correlating with more severe HCC features (p<0.05). Higher DPF2 expression predicted poorer overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). DPF2 involvement was noted in critical signaling pathways including the cell cycle and Wnt. It also correlated with T helper cells, Th2 cells, and immune checkpoints like CTLA-4, PD-1, and PD-L1. Conclusion: High DPF2 expression, associated with poor HCC prognosis, may disrupt tumor immune balance and promote immune evasion. DPF2 could potentially be utilized as a biomarker for diagnosing and prognosticating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kejian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jusen Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zuyin Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chongjiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianzhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Key Laboratory of early Prevention & Treatment for regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
42
|
Peeters F, Cappuyns S, Piqué-Gili M, Phillips G, Verslype C, Lambrechts D, Dekervel J. Applications of single-cell multi-omics in liver cancer. JHEP Rep 2024; 6:101094. [PMID: 39022385 PMCID: PMC11252522 DOI: 10.1016/j.jhepr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Primary liver cancer, more specifically hepatocellular carcinoma (HCC), remains a significant global health problem associated with increasing incidence and mortality. Clinical, biological, and molecular heterogeneity are well-known hallmarks of cancer and HCC is considered one of the most heterogeneous tumour types, displaying substantial inter-patient, intertumoural and intratumoural variability. This heterogeneity plays a pivotal role in hepatocarcinogenesis, metastasis, relapse and drug response or resistance. Unimodal single-cell sequencing techniques have already revolutionised our understanding of the different layers of molecular hierarchy in the tumour microenvironment of HCC. By highlighting the cellular heterogeneity and the intricate interactions among cancer, immune and stromal cells before and during treatment, these techniques have contributed to a deeper comprehension of tumour clonality, hematogenous spreading and the mechanisms of action of immune checkpoint inhibitors. However, major questions remain to be elucidated, with the identification of biomarkers predicting response or resistance to immunotherapy-based regimens representing an important unmet clinical need. Although the application of single-cell multi-omics in liver cancer research has been limited thus far, a revolution of individualised care for patients with HCC will only be possible by integrating various unimodal methods into multi-omics methodologies at the single-cell resolution. In this review, we will highlight the different established single-cell sequencing techniques and explore their biological and clinical impact on liver cancer research, while casting a glance at the future role of multi-omics in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Frederik Peeters
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Marta Piqué-Gili
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gino Phillips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Hu Y, Geng Q, Wang L, Wang Y, Huang C, Fan Z, Kong D. Research progress and application of liver organoids for disease modeling and regenerative therapy. J Mol Med (Berl) 2024; 102:859-874. [PMID: 38802517 PMCID: PMC11213763 DOI: 10.1007/s00109-024-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The liver is a major metabolic organ of the human body and has a high incidence of diseases. In recent years, the annual incidence of liver disease has increased, seriously endangering human life and health. The study of the occurrence and development mechanism of liver diseases, discovery of new therapeutic targets, and establishment of new methods of medical treatment are major issues related to the national economy and people's livelihood. The development of stable and effective research models is expected to provide new insights into the pathogenesis of liver diseases and the search for more effective treatment options. Organoid technology is a new in vitro culture system, and organoids constructed by human cells can simulate the morphological structure, gene expression, and glucose and lipid metabolism of organs in vivo, providing a new model for related research on liver diseases. This paper reviews the latest research progress on liver organoids from the establishment of cell sources and application of liver organoids and discusses their application potential in the field of liver disease research.
Collapse
Affiliation(s)
- Yang Hu
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Qiao Geng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Lu Wang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Yi Wang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Chuyue Huang
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China
| | - Zhimin Fan
- Department of Angioenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing, 210022, Jiangsu, China.
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
44
|
Samaei SS, Daryab M, Gholami S, Rezaee A, Fatehi N, Roshannia R, Hashemi S, Javani N, Rahmanian P, Amani-Beni R, Zandieh MA, Nabavi N, Rashidi M, Malgard N, Hashemi M, Taheriazam A. Multifunctional and stimuli-responsive liposomes in hepatocellular carcinoma diagnosis and therapy. Transl Oncol 2024; 45:101975. [PMID: 38692195 PMCID: PMC11070928 DOI: 10.1016/j.tranon.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, mainly occurring in Asian countries with an increased incidence rate globally. Currently, several kinds of therapies have been deployed for HCC therapy including surgical resection, chemotherapy, radiotherapy and immunotherapy. However, this tumor is still incurable, requiring novel strategies for its treatment. The nanomedicine has provided the new insights regarding the treatment of cancer that liposomes as lipid-based nanoparticles, have been widely applied in cancer therapy due to their biocompaitiblity, high drug loading and ease of synthesis and modification. The current review evaluates the application of liposomes for the HCC therapy. The drugs and genes lack targeting ability into tumor tissues and cells. Therefore, loading drugs or genes on liposomes can increase their accumulation in tumor site for HCC suppression. Moreover, the stimuli-responsive liposomes including pH-, redox- and light-sensitive liposomes are able to deliver drug into tumor microenvironment to improve therapeutic index. Since a number of receptors upregulate on HCC cells, the functionalization of liposomes with lactoferrin and peptides can promote the targeting ability towards HCC cells. Moreover, phototherapy can be induced by liposomes through loading phtoosensitizers to stimulate photothermal- and photodynamic-driven ablation of HCC cells. Overall, the findings are in line with the fact that liposomes are promising nanocarriers for the treatment of HCC.
Collapse
Affiliation(s)
- Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatehi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Roshannia
- Faculty of Life Science and Bio-technology, Shahid Beheshti University, Tehran, Iran
| | - Saeed Hashemi
- Faculty of Veterinary Medicine, Department of Clinical Sciences, University of Shahrekord, Shahrekord, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Amani-Beni
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Neda Malgard
- Department of Internal medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
45
|
Varlamova EG. Molecular Mechanisms of the Therapeutic Effect of Selenium Nanoparticles in Hepatocellular Carcinoma. Cells 2024; 13:1102. [PMID: 38994955 PMCID: PMC11240755 DOI: 10.3390/cells13131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
This review describes and summarizes, for the first time, the molecular mechanisms of the cytotoxic effect of selenium nanoparticles of various origins on hepatocellular carcinoma cells. The text provides information from recent years indicating the regulation of various signaling pathways and endoplasmic reticulum stress by selenium nanoparticles; the pathways of cell death of liver cancer cells as a result of exposure to selenium nanoparticles are considered. Particular attention is paid to the participation of selenoproteins and selenium-containing thioredoxin reductases and glutathione peroxidases in these processes. Previously, there were no reviews that fully reflected the cytotoxic effects of selenium nanoparticles specifically in hepatocellular carcinoma, despite the fact that many reviews and experimental articles have been devoted to the causes of this disease and the molecular mechanisms of regulation of cytotoxic effects by other agents. The relevance of this review is primarily explained by the fact that despite the development of various drugs and approaches for the treatment and prevention of hepatocellular carcinoma, this disease is still the fourth leading cause of death in the world. For this reason, a complete understanding of the latest trends in the treatment of oncology of various etiologies, especially hepatocellular carcinoma, is extremely important.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
46
|
Li Y, Chen H, Zhang B, Liu J, Ma J, Ma W, Lu S. TMEM147: A Promising Cancer Biomarker Associated with Immune Cell Infiltration and Prognosis in LIHC-Insights from a Comprehensive Pan-Cancer Genomic Analysis. ACS OMEGA 2024; 9:27137-27157. [PMID: 38947838 PMCID: PMC11209882 DOI: 10.1021/acsomega.4c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Previous studies have demonstrated the regulatory roles of Transmembrane protein 147 (TMEM147) in various diseases, including cancer. However, systematic pan-cancer analyses investigating the role of TMEM147 in diagnosis, prognosis, and immunological prediction are lacking. An analysis of data from The Cancer Genome Atlas (TCGA) revealed differential TMEM147 expression across various types of cancer as well as within immune and molecular cancer subtypes. Moreover, high TMEM147 expression was associated with poor disease-specific survival (DSS), overall survival (OS), and progression-free interval (PFI) across cancers, suggesting its potential as a prognostic biomarker. Our study further revealed a significant correlation between TMEM147 expression and T helper cell and Tcm cell infiltration in most cancer types. In the case of liver hepatocellular carcinoma (LIHC), the effect of TMEM147 on prognosis varied among different clinical subtypes. Additionally, functional enrichment analysis revealed an association between TMEM147 and metabolic pathways. Finally, experiments on the MIHA cell line and four LIHC cell lines confirmed the role of TMEM147 in promoting liver cancer cell proliferation, further confirming the clinical value of TMEM147 in liver cancer diagnosis. Our findings suggest that TMEM147 may serve as a diagnostic and prognostic biomarker across cancers while also playing a significant role in LIHC.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Hanxiang Chen
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Bingyang Zhang
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Junjun Liu
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Jianping Ma
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Wanshan Ma
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| | - Sumei Lu
- Department of Clinical Laboratory
Medicine, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan 250000, China
| |
Collapse
|
47
|
Ji Y, An Q, Wen X, Xu Z, Xia Z, Xia Z, Hu Q, Lei S. Liver cancer from the perspective of single-cell sequencing: a review combined with bibliometric analysis. J Cancer Res Clin Oncol 2024; 150:316. [PMID: 38910204 PMCID: PMC11194221 DOI: 10.1007/s00432-024-05855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Liver cancer (LC) is a prevalent malignancy and a leading cause of cancer-related mortality worldwide. Extensive research has been conducted to enhance patient outcomes and develop effective prevention strategies, ranging from molecular mechanisms to clinical interventions. Single-cell sequencing, as a novel bioanalysis technology, has significantly contributed to the understanding of the global cognition and dynamic changes in liver cancer. However, there is a lack of bibliometric analysis in this specific research area. Therefore, the objective of this study is to provide a comprehensive overview of the knowledge structure and research hotspots in the field of single-cell sequencing in liver cancer research through the use of bibliometrics. METHOD Publications related to the application of single-cell sequencing technology to liver cancer research as of December 31, 2023, were searched on the web of science core collection (WoSCC) database. VOSviewers, CiteSpace, and R package "bibliometrix" were used to conduct this bibliometric analysis. RESULTS A total of 331 publications from 34 countries, primarily led by China and the United States, were included in this study. The research focuses on the application of single cell sequencing technology to liver cancer, and the number of related publications has been increasing year by year. The main research institutions involved in this field are Fudan University, Sun Yat-Sen University, and the Chinese Academy of Sciences. Frontiers in Immunology and Nature Communications is the most popular journal in this field, while Cell is the most frequently co-cited journal. These publications are authored by 2799 individuals, with Fan Jia and Zhou Jian having the most published papers, and Llovet Jm being the most frequently co-cited author. The use of single cell sequencing to explore the immune microenvironment of liver cancer, as well as its implications in immunotherapy and chemotherapy, remains the central focus of this field. The emerging research hotspots are characterized by keywords such as 'Gene-Expression', 'Prognosis', 'Tumor Heterogeneity', 'Immunoregulation', and 'Tumor Immune Microenvironment'. CONCLUSION This is the first bibliometric study that comprehensively summarizes the research trends and developments on the application of single cell sequencing in liver cancer. The study identifies recent research frontiers and hot directions, providing a valuable reference for researchers exploring the landscape of liver cancer, understanding the composition of the immune microenvironment, and utilizing single-cell sequencing technology to guide and enhance the prognosis of liver cancer patients.
Collapse
Affiliation(s)
- Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
48
|
Jin Y, Zuo Y, Li G, Liu W, Pan Y, Fan T, Fu X, Yao X, Peng Y. Advances in spatial transcriptomics and its applications in cancer research. Mol Cancer 2024; 23:129. [PMID: 38902727 PMCID: PMC11188176 DOI: 10.1186/s12943-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Malignant tumors have increasing morbidity and high mortality, and their occurrence and development is a complicate process. The development of sequencing technologies enabled us to gain a better understanding of the underlying genetic and molecular mechanisms in tumors. In recent years, the spatial transcriptomics sequencing technologies have been developed rapidly and allow the quantification and illustration of gene expression in the spatial context of tissues. Compared with the traditional transcriptomics technologies, spatial transcriptomics technologies not only detect gene expression levels in cells, but also inform the spatial location of genes within tissues, cell composition of biological tissues, and interaction between cells. Here we summarize the development of spatial transcriptomics technologies, spatial transcriptomics tools and its application in cancer research. We also discuss the limitations and challenges of current spatial transcriptomics approaches, as well as future development and prospects.
Collapse
Affiliation(s)
- Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojun Yao
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
49
|
Szilveszter RM, Muntean M, Florea A. Molecular Mechanisms in Tumorigenesis of Hepatocellular Carcinoma and in Target Treatments-An Overview. Biomolecules 2024; 14:656. [PMID: 38927059 PMCID: PMC11201617 DOI: 10.3390/biom14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatocellular carcinoma is the most common primary malignancy of the liver, with hepatocellular differentiation. It is ranked sixth among the most common cancers worldwide and is the third leading cause of cancer-related deaths. The most important etiological factors discussed here are viral infection (HBV, HCV), exposure to aflatoxin B1, metabolic syndrome, and obesity (as an independent factor). Directly or indirectly, they induce chromosomal aberrations, mutations, and epigenetic changes in specific genes involved in intracellular signaling pathways, responsible for synthesis of growth factors, cell proliferation, differentiation, survival, the metastasis process (including the epithelial-mesenchymal transition and the expression of adhesion molecules), and angiogenesis. All these disrupted molecular mechanisms contribute to hepatocarcinogenesis. Furthermore, equally important is the interaction between tumor cells and the components of the tumor microenvironment: inflammatory cells and macrophages-predominantly with a pro-tumoral role-hepatic stellate cells, tumor-associated fibroblasts, cancer stem cells, extracellular vesicles, and the extracellular matrix. In this paper, we reviewed the molecular biology of hepatocellular carcinoma and the intricate mechanisms involved in hepatocarcinogenesis, and we highlighted how certain signaling pathways can be pharmacologically influenced at various levels with specific molecules. Additionally, we mentioned several examples of recent clinical trials and briefly described the current treatment protocol according to the NCCN guidelines.
Collapse
Affiliation(s)
- Raluca-Margit Szilveszter
- Department of Pathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400340 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
- Cluj County Emergency Clinical Hospital, 400340 Cluj-Napoca, Romania
| | - Mara Muntean
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| |
Collapse
|
50
|
Wang H, Qian YW, Dong H, Cong WM. Pathologic assessment of hepatocellular carcinoma in the era of immunotherapy: a narrative review. Hepatobiliary Surg Nutr 2024; 13:472-493. [PMID: 38911201 PMCID: PMC11190517 DOI: 10.21037/hbsn-22-527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/23/2023] [Indexed: 06/25/2024]
Abstract
Background and Objective Immune checkpoint inhibitor (ICI)-based therapy has achieved impressive success in various cancer types. Several ICIs have been unprecedentedly approved as the treatment regimens for advanced hepatocellular carcinoma (HCC) in recent decade. Meanwhile, numerous clinical trials are being performed to exploit more ICIs into initially unresectable HCC and postoperative HCC to expectantly induce adequate tumor downstaging for further resection or implement adjuvant treatment for relapse-free survival, respectively. In this review, we aim to summarize some pragmatic histomorphologic, immunohistochemical, and molecular pathologic parameters which promisingly indicate the response of neoadjuvant/conversion ICI-related therapy and predict the efficacy of adjuvant/therapeutic ICI-related therapy for HCC. Methods We searched PubMed using the terms hepatocellular carcinoma, immunotherapy, immune checkpoint inhibitor, immune checkpoint blockade, conversion therapy, neoadjuvant therapy, adjuvant therapy, biomarker, pathologic evaluation, pathologic assessment till February 2023. Key Content and Findings Although there is no consensus regarding the pathologic evaluation of relevant HCC specimens, it is encouraging that a few of studies have concentrated on this field, and moreover, the methods and parameters noted on other cancer types are also worthy of reference. For the pathologic assessment of HCC specimens underwent immunotherapy, a suitable sampling scheme, identifying immunotherapy-related pathologic response, and quantification of pathologic response rate should be emphasized. For the patients of HCC who are scheduled to receive immunotherapy, tumor-infiltrating lymphocyte, intratumoral tertiary lymphoid structure, programmed cell death ligand 1, Wnt/β-catenin, microsatellite instability and mismatch repair, tumor mutational burden and tumor neoantigen, as well as some other signaling pathways are the potential predictive biomarkers of treatment response of ICI. Conclusions The management of HCC in the era of immunotherapy arises a brand-new pathological challenge that is to provide an immunotherapy-related diagnostic report. Albeit many related researches are preclinical or insufficient, they may tremendously alter the immunotherapy strategy of HCC in future.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - You-Wen Qian
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wen-Ming Cong
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|