1
|
Schönherr R, Eichler N, Sornaly FA, Boger J, Frevert AM, Lahey‐Rudolph JM, Meyer H, Weymar L, Redecke L. Intracellular protein crystallization in living insect cells. FEBS Open Bio 2025; 15:551-562. [PMID: 40153432 PMCID: PMC11961387 DOI: 10.1002/2211-5463.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/30/2025] Open
Abstract
Crystallization of recombinant proteins in living cells is an emerging approach complementing conventional crystallization techniques. Homogeneous microcrystals well suited for serial diffraction experiments at X-ray free-electron lasers and synchrotron sources can be produced in a quasi-native environment, without the need for target protein purification. Several protein structures have already been solved; however, exploiting the full potential of this approach requires a systematic and versatile screening strategy for intracellular crystal growth. Recently, we published InCellCryst, a streamlined pipeline for producing microcrystals within living insect cells. Here, we present the detailed protocol, including optimized target gene expression using a baculovirus vector system, crystal formation, detection, and serial X-ray diffraction directly in the cells. The specific environment within the different cellular compartments acts as a screening parameter to maximize the probability of crystal growth. If successful, diffraction data can be collected 24 days after the start of target gene cloning.
Collapse
Affiliation(s)
| | - Nina Eichler
- Institute of BiochemistryUniversity of LübeckGermany
| | | | - Juliane Boger
- Institute of BiochemistryUniversity of LübeckGermany
| | | | - Janine Mia Lahey‐Rudolph
- Institute of BiochemistryUniversity of LübeckGermany
- Center for Free‐Electron Laser Science (CFEL)HamburgGermany
- Present address:
Department of Applied Natural Sciences, TH LübeckUniversity of Applied SciencesLübeckGermany
| | - Hannah Meyer
- Institute of BiochemistryUniversity of LübeckGermany
| | - Lisa Weymar
- Institute of BiochemistryUniversity of LübeckGermany
| | - Lars Redecke
- Institute of BiochemistryUniversity of LübeckGermany
- Photon Science, Deutsches Elektronen Synchrotron (DESY)HamburgGermany
| |
Collapse
|
2
|
Zhou B, Zhao Q, Hou G, He J, Sha N, Zheng K, Peng H, Wang W, Zhou Y, Chen T, Jiang Y. IMPDH2 dephosphorylation under FGFR signaling promotes S-phase progression and tumor growth. Cell Rep 2025; 44:115116. [PMID: 39739531 DOI: 10.1016/j.celrep.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/06/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Inosine monophosphate dehydrogenase 2 (IMPDH2) is highly expressed in human cancers; however, its physiological relevance under growth signaling remains to be investigated. Here, we show that IMPDH2 serine 122 is phosphorylated by CDK1, and this modification attenuates the catalytic activity of IMPDH2 for IMP oxidation and simultaneously represses its allosteric modulation by purine nucleotides. Fibroblast growth factor receptor (FGFR) signaling activation triggers IMPDH2-Ser122 dephosphorylation mediated by protein phosphatase 2A (PP2A), which is dependent on FGFR3-mediated PPP2R1A-Tyr261 phosphorylation leading to PPP2CA-PPP2R1A-IMPDH2 interactions. In turn, Ser122 dephosphorylation positively modulates IMPDH2 activity and contributes to guanine nucleotide synthesis and purine homeostasis, thereby facilitating S-phase completion and cell proliferation. Accordingly, IMPDH2 dephosphorylation is implicated in FGFR activation-enhanced tumorigenesis, and the low level of IMPDH2-Ser122 phosphorylation predicts the poor prognosis of patients with colorectal cancer. These findings illustrate a regulatory mechanism of purine nucleotide production under FGFR signaling, in which the oncogenic effect of reinforced IMPDH2 activity is underscored.
Collapse
Affiliation(s)
- Bei Zhou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Zhao
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofang Hou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing He
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Sha
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Zheng
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Peng
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Wang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuhui Jiang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Zhou R, Qu J, Liu X, Lin F, Ohulchanskyy TY, Alifu N, Qu J, Yin DC. Biopharmaceutical drug delivery and phototherapy using protein crystals. Adv Drug Deliv Rev 2025; 216:115480. [PMID: 39613032 DOI: 10.1016/j.addr.2024.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Biopharmaceutical drugs, including proteins, peptides, and antibodies, are renowned for their high specificity and efficacy, fundamentally transforming disease treatment paradigms. However, their structural complexity presents challenges for their formulation and delivery. Protein crystals, characterized by high purity, high stability and a porous structure for biopharmaceutical drug encapsulation, providing a potential avenue for formulating and delivering biopharmaceutical drugs. There is increasing interest in engineering protein crystals to delivery biopharmaceutical drugs for biomedical applications. This review summarizes the recent advances in biopharmaceutical drug delivery and phototherapy using protein crystals. First, we evaluate the advantages of using protein crystals for biopharmaceutical drugs delivery. Next, we outline the strategies for in vitro and in vivo crystallization to prepare protein crystals. Importantly, the review highlights the advanced applications of protein crystals in biopharmaceutical drug delivery, tumor phototherapy, and other optical fields. Finally, it provides insights into future perspectives of biopharmaceutical drug delivery using protein crystals. This comprehensive review aims to provide effective insights into design of protein crystals to simplify biopharmaceutical drug delivery and improve disease treatment.
Collapse
Affiliation(s)
- Renbin Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Jinghan Qu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Xuejiao Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Fangrui Lin
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Nuernisha Alifu
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
4
|
Henkel A, Oberthür D. A snapshot love story: what serial crystallography has done and will do for us. Acta Crystallogr D Struct Biol 2024; 80:563-579. [PMID: 38984902 PMCID: PMC11301758 DOI: 10.1107/s2059798324005588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Serial crystallography, born from groundbreaking experiments at the Linac Coherent Light Source in 2009, has evolved into a pivotal technique in structural biology. Initially pioneered at X-ray free-electron laser facilities, it has now expanded to synchrotron-radiation facilities globally, with dedicated experimental stations enhancing its accessibility. This review gives an overview of current developments in serial crystallography, emphasizing recent results in time-resolved crystallography, and discussing challenges and shortcomings.
Collapse
Affiliation(s)
- Alessandra Henkel
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
| |
Collapse
|
5
|
Kardoost A, Schönherr R, Deiter C, Redecke L, Lorenzen K, Schulz J, de Diego I. Convolutional neural network approach for the automated identification of in cellulo crystals. J Appl Crystallogr 2024; 57:266-275. [PMID: 38596734 PMCID: PMC11001417 DOI: 10.1107/s1600576724000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach.
Collapse
Affiliation(s)
- Amirhossein Kardoost
- Sample Environment and Characterization Group, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Schleswig-Holstein, Germany
| | - Robert Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Schleswig-Holstein, Germany
| | - Carsten Deiter
- Sample Environment and Characterization Group, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Schleswig-Holstein, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Schleswig-Holstein, Germany
- Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kristina Lorenzen
- Sample Environment and Characterization Group, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Schleswig-Holstein, Germany
| | - Joachim Schulz
- Sample Environment and Characterization Group, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Schleswig-Holstein, Germany
| | - Iñaki de Diego
- Sample Environment and Characterization Group, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Schleswig-Holstein, Germany
| |
Collapse
|
6
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
7
|
Woulfe J, Munoz DG, Gray DA, Jinnah HA, Ivanova A. Inosine monophosphate dehydrogenase intranuclear inclusions are markers of aging and neuronal stress in the human substantia nigra. Neurobiol Aging 2024; 134:43-56. [PMID: 37992544 DOI: 10.1016/j.neurobiolaging.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- John Woulfe
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - David G Munoz
- Li Ka Shing Knowledge Institute & Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Unity Health, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics & Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyona Ivanova
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children and Neurosurgery Research Department, St. Michael's Hospital, Toronto Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Cell-free protein crystallization for nanocrystal structure determination. Sci Rep 2022; 12:16031. [PMID: 36192567 PMCID: PMC9530169 DOI: 10.1038/s41598-022-19681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
In-cell protein crystallization (ICPC) has been investigated as a technique to support the advancement of structural biology because it does not require protein purification and a complicated crystallization process. However, only a few protein structures have been reported because these crystals formed incidentally in living cells and are insufficient in size and quality for structure analysis. Here, we have developed a cell-free protein crystallization (CFPC) method, which involves direct protein crystallization using cell-free protein synthesis. We have succeeded in crystallization and structure determination of nano-sized polyhedra crystal (PhC) at a high resolution of 1.80 Å. Furthermore, nanocrystals were synthesized at a reaction scale of only 20 μL using the dialysis method, enabling structural analysis at a resolution of 1.95 Å. To further demonstrate the potential of CFPC, we attempted to determine the structure of crystalline inclusion protein A (CipA), whose structure had not yet been determined. We added chemical reagents as a twinning inhibitor to the CFPC solution, which enabled us to determine the structure of CipA at 2.11 Å resolution. This technology greatly expands the high-throughput structure determination method of unstable, low-yield, fusion, and substrate-biding proteins that have been difficult to analyze with conventional methods.
Collapse
|
9
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
10
|
Nipah Virus Infection Generates Ordered Structures in Cellulo. Viruses 2022; 14:v14071523. [PMID: 35891503 PMCID: PMC9317923 DOI: 10.3390/v14071523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus with a fatality rate of up to 92% in humans. While several pathogenic mechanisms used by NiV to counteract host immune defense responses have been described, all of the processes that take place in cells during infection are not fully characterized. Here, we describe the formation of ordered intracellular structures during NiV infection. We observed that these structures are formed specifically during NiV infection, but not with other viruses from the same Mononegavirales order (namely Ebola virus) or from other orders such as Bunyavirales (Junín virus). We also determined the kinetics of the appearance of these structures and their cellular localization at the cellular periphery. Finally, we confirmed the presence of these NiV-specific ordered structures using structured illumination microscopy (SIM), as well as their localization by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and correlative light and electron microscopy (CLEM). Herein, we describe a cytopathogenic mechanism that provides a new insight into NiV biology. These newly described ordered structures could provide a target for novel antiviral approaches.
Collapse
|
11
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
12
|
Approaches to advance drug discovery for neglected tropical diseases. Drug Discov Today 2022; 27:2278-2287. [DOI: 10.1016/j.drudis.2022.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022]
|
13
|
Zhao Y, Mo S, Yu L, Li X, Hao Y, Zhang W, Zhang Q, Wang P, Wang X, Wang C, Zhang L. Crystalline State Determines the Potency of Galectin-10 Protein Assembly to Induce Inflammation. NANO LETTERS 2022; 22:2350-2357. [PMID: 35274950 DOI: 10.1021/acs.nanolett.1c04817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein crystallization is a prevalent phenomenon existing in the formation of intricate protein-assembled structures in living cells. Whether the crystallization of a protein would exert a specific biological function, however, remains poorly understood. Here, we reconstructed a recombinant galectin-10 (gal-10) protein and artificially engineered a gal-10 protein assembly in two distinguishable states: i.e., an insoluble crystalline state and a soluble state. The potency of the gal-10 protein in either the crystalline state or the soluble state to induce chemokine or cytokine release in the primary human nasal epithelial cells and nasal polyps derived from chronic rhinosinusitis patients with nasal polyps was investigated. The crystalline gal-10 upregulated the gene expression of chemokines or cytokines, including IL-1β, IL-6, IL-8, TNF-α, and GM-CSF, in patient-derived primary cells and nasal polyps. In contrast, soluble gal-10 displayed a diminished potency to induce inflammation. Our results demonstrate that the gal-10 protein potency of activating inflammation is correlated with its crystalline state.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Xiaolu Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yun Hao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Qi Zhang
- Department of Ultrapathology of Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ping Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, People's Republic of China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
14
|
Nass Kovacs G. Potential of X-ray free-electron lasers for challenging targets in structure-based drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:101-110. [PMID: 34906320 DOI: 10.1016/j.ddtec.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
X-ray crystallography has provided the vast majority of three-dimensional macromolecular structures. Most of these are high-resolution structures that enable a detailed understanding of the underlying molecular mechanisms. The standardized workflows and robust infrastructure of synchrotron-based macromolecular crystallography (MX) offer the high throughput essential to cost-conscious investigations in structure- and fragment-based drug discovery. Nonetheless conventional MX is limited by fundamental bottlenecks, in particular X-ray radiation damage, which limits the amount of data extractable from a crystal. While this limit can in principle be circumvented by using larger crystals, crystals of the requisite size often cannot be obtained in sufficient quality. That is especially true for membrane protein crystals, which constitute the majority of current drug targets. This conventional paradigm for MX-suitable samples changed dramatically with the advent of serial femtosecond crystallography (SFX) based on the ultra-short and extremely intense X-ray pulses of X-ray Free-Electron Lasers. SFX provides high-resolution structures from tiny crystals and does so with uniquely low levels of radiation damage. This has yielded a number of novel structures for G-protein coupled receptors, one of the most relevant membrane protein superfamilies for drug discovery, as well as tantalizing advances in time-resolved crystallography that elucidate protein dynamics. This article attempts to map the potential of SFX for drug discovery, while providing the reader with an overview of the yet remaining technical challenges associated with such a novel technique as SFX.
Collapse
Affiliation(s)
- Gabriela Nass Kovacs
- Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany.
| |
Collapse
|
15
|
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, Milne CJ. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCRJ 2021; 8:905-920. [PMID: 34804544 PMCID: PMC8562661 DOI: 10.1107/s2052252521008046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.
Collapse
Affiliation(s)
- Karol Nass
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Florian Dworkowski
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Daniel James
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | | - Demet Kekilli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Laura Vera
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Tobias Weinert
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Jörg Standfuss
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | |
Collapse
|
16
|
Lahey-Rudolph JM, Schönherr R, Barthelmess M, Fischer P, Seuring C, Wagner A, Meents A, Redecke L. Fixed-target serial femtosecond crystallography using in cellulo grown microcrystals. IUCRJ 2021; 8:665-677. [PMID: 34258014 PMCID: PMC8256716 DOI: 10.1107/s2052252521005297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/18/2021] [Indexed: 05/05/2023]
Abstract
The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12 min at the Linac Coherent Light Source, a 1.8 Å resolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.
Collapse
Affiliation(s)
- J. Mia Lahey-Rudolph
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Miriam Barthelmess
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Pontus Fischer
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Carolin Seuring
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, 22671 Hamburg, Germany
| | - Armin Wagner
- Diamond Light Source, Diamond House DH2-52, Chilton, Didcot OX11 0DE, United Kingdom
| | - Alke Meents
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
17
|
Tetreau G, Andreeva EA, Banneville AS, De Zitter E, Colletier JP. Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins? Toxins (Basel) 2021; 13:toxins13070441. [PMID: 34206749 PMCID: PMC8309801 DOI: 10.3390/toxins13070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
The development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, Bacillus thuringiensis (Bt) has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of Bt protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after. In this article, we explore whether the crystallization machinery of Bt can be hijacked as a means to produce (micro)crystalline formulations of proteins for three different applications: (i) to develop new bioinsecticidal formulations based on rationally improved crystalline toxins, (ii) to functionalize crystals with specific characteristics for biotechnological and medical applications, and (iii) to produce microcrystals of custom proteins for structural biology. By developing the needs of these different fields to figure out if and how Bt could meet each specific requirement, we discuss the already published and/or patented attempts and provide guidelines for future investigations in some underexplored yet promising domains.
Collapse
|
18
|
Hasegawa H, Wei KY, Thomas M, Li P, Kinderman F, Franey H, Liu L, Jacobsen F. Light chain subunit of a poorly soluble human IgG2λ crystallizes in physiological pH environment both in cellulo and in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119078. [PMID: 34118277 DOI: 10.1016/j.bbamcr.2021.119078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Prominent inclusion bodies can develop in the endoplasmic reticulum (ER) when overexpressed antibodies possess intrinsically high condensation propensities. These observations suggest that antibodies deemed to show notable solubility problems may reveal such characteristics preemptively in the form of ER-associated inclusion bodies during antibody overexpression. To define the relationships between solubility problems and inclusion body phenotypes, we investigated the biosynthesis of a model human IgG2λ that shows severe opalescence in an acidic formulation buffer yet retains high solubility at physiological pH. Consistent with the pH-dependent solubility characteristics, the model antibody did not induce notable inclusion body in the physiological pH environment of the ER lumen. However, when individual subunit chains of the antibody were expressed separately, the light chain (LC) spontaneously induced notable crystal-like inclusion bodies in the ER. The LC crystallization event was readily reproducible in vitro by simply concentrating the purified LC protein at physiological pH. Two independent structural determinants for the LC crystallization were identified through rational mutagenesis approach by monitoring the effect of amino acid substitutions on intracellular LC crystallogenesis. The effect of mutations on crystallization was also recapitulated in vitro using purified LC proteins. Importantly, when introduced directly into the model antibody, a mutation that prevents the LC crystallization remediated the antibody's solubility problem without compromising the secretory output or antigen binding. These results illustrate that the ER can serve as a "physiological test tube" that not only reports secretory cargo's high condensation propensity at physiological pH, but also provides an orthogonal method that guides antibody engineering strategy.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, USA.
| | - Kathy Y Wei
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, USA
| | - Melissa Thomas
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, USA
| | - Peng Li
- Department of Therapeutic Discovery, Amgen Inc., South San Francisco, CA 94080, USA
| | - Francis Kinderman
- Department of Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Heather Franey
- Department of Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Ling Liu
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Frederick Jacobsen
- Department of Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA 91320, USA
| |
Collapse
|
19
|
Norton-Baker B, Mehrabi P, Boger J, Schönherr R, von Stetten D, Schikora H, Kwok AO, Martin RW, Miller RJD, Redecke L, Schulz EC. A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip. Acta Crystallogr D Struct Biol 2021; 77:820-834. [PMID: 34076595 PMCID: PMC8171066 DOI: 10.1107/s2059798321003855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/10/2021] [Indexed: 11/12/2022] Open
Abstract
Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively unexplored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Pedram Mehrabi
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Juliane Boger
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Hendrik Schikora
- Scientific Support Unit Machine Physics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - R. J. Dwayne Miller
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St George Street, Toronto, ON M5S 3H6, Canada
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Eike C. Schulz
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
20
|
Advancements in macromolecular crystallography: from past to present. Emerg Top Life Sci 2021; 5:127-149. [PMID: 33969867 DOI: 10.1042/etls20200316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Protein Crystallography or Macromolecular Crystallography (MX) started as a new discipline of science with the pioneering work on the determination of the protein crystal structures by John Kendrew in 1958 and Max Perutz in 1960. The incredible achievements in MX are attributed to the development of advanced tools, methodologies, and automation in every aspect of the structure determination process, which have reduced the time required for solving protein structures from years to a few days, as evident from the tens of thousands of crystal structures of macromolecules available in PDB. The advent of brilliant synchrotron sources, fast detectors, and novel sample delivery methods has shifted the paradigm from static structures to understanding the dynamic picture of macromolecules; further propelled by X-ray Free Electron Lasers (XFELs) that explore the femtosecond regime. The revival of the Laue diffraction has also enabled the understanding of macromolecules through time-resolved crystallography. In this review, we present some of the astonishing method-related and technological advancements that have contributed to the progress of MX. Even with the rapid evolution of several methods for structure determination, the developments in MX will keep this technique relevant and it will continue to play a pivotal role in gaining unprecedented atomic-level details as well as revealing the dynamics of biological macromolecules. With many exciting developments awaiting in the upcoming years, MX has the potential to contribute significantly to the growth of modern biology by unraveling the mechanisms of complex biological processes as well as impacting the area of drug designing.
Collapse
|
21
|
Beyond X-rays: an overview of emerging structural biology methods. Emerg Top Life Sci 2021; 5:221-230. [DOI: 10.1042/etls20200272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
Structural biologists rely on X-ray crystallography as the main technique for determining the three-dimensional structures of macromolecules; however, in recent years, new methods that go beyond X-ray-based technologies are broadening the selection of tools to understand molecular structure and function. Simultaneously, national facilities are developing programming tools and maintaining personnel to aid novice structural biologists in de novo structure determination. The combination of X-ray free electron lasers (XFELs) and serial femtosecond crystallography (SFX) now enable time-resolved structure determination that allows for capture of dynamic processes, such as reaction mechanism and conformational flexibility. XFEL and SFX, along with microcrystal electron diffraction (MicroED), help side-step the need for large crystals for structural studies. Moreover, advances in cryogenic electron microscopy (cryo-EM) as a tool for structure determination is revolutionizing how difficult to crystallize macromolecules and/or complexes can be visualized at the atomic scale. This review aims to provide a broad overview of these new methods and to guide readers to more in-depth literature of these methods.
Collapse
|
22
|
Han H, Round E, Schubert R, Gül Y, Makroczyová J, Meza D, Heuser P, Aepfelbacher M, Barák I, Betzel C, Fromme P, Kursula I, Nissen P, Tereschenko E, Schulz J, Uetrecht C, Ulicný J, Wilmanns M, Hajdu J, Lamzin VS, Lorenzen K. The XBI BioLab for life science experiments at the European XFEL. J Appl Crystallogr 2021; 54:7-21. [PMID: 33833637 PMCID: PMC7941304 DOI: 10.1107/s1600576720013989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines. The XBI BioLab of the European XFEL (XBI denotes XFEL Biology Infrastructure) is an integrated user facility connected to the beamlines for supporting a wide range of biological experiments. The laboratory was financed and built by a collaboration between the European XFEL and the XBI User Consortium, whose members come from Finland, Germany, the Slovak Republic, Sweden and the USA, with observers from Denmark and the Russian Federation. Arranged around a central wet laboratory, the XBI BioLab provides facilities for sample preparation and scoring, laboratories for growing prokaryotic and eukaryotic cells, a Bio Safety Level 2 laboratory, sample purification and characterization facilities, a crystallization laboratory, an anaerobic laboratory, an aerosol laboratory, a vacuum laboratory for injector tests, and laboratories for optical microscopy, atomic force microscopy and electron microscopy. Here, an overview of the XBI facility is given and some of the results of the first user experiments are highlighted.
Collapse
Affiliation(s)
- Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Ekaterina Round
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Yasmin Gül
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jana Makroczyová
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Domingo Meza
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Philipp Heuser
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK – 8000 Aarhus C, Denmark
| | - Elena Tereschenko
- Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky prospekt, Moscow, 117333, Russian Federation
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Charlotte Uetrecht
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jozef Ulicný
- Department of Biophysics, Institute of Physics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Janos Hajdu
- The European Extreme Light Infrastructure, Institute of Physics, Academy of Sciences of the Czech Republic, Za Radnici 835, 25241 Dolní Břežany, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
23
|
Lahey-Rudolph JM, Schönherr R, Jeffries CM, Blanchet CE, Boger J, Ferreira Ramos AS, Riekehr WM, Triandafillidis DP, Valmas A, Margiolaki I, Svergun D, Redecke L. Rapid screening of in cellulo grown protein crystals via a small-angle X-ray scattering/X-ray powder diffraction synergistic approach. J Appl Crystallogr 2020; 53:1169-1180. [PMID: 33117106 PMCID: PMC7534541 DOI: 10.1107/s1600576720010687] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
Abstract
Crystallization of recombinant proteins in living cells is an exciting new approach for structural biology that provides an alternative to the time-consuming optimization of protein purification and extensive crystal screening steps. Exploiting the potential of this approach requires a more detailed understanding of the cellular processes involved and versatile screening strategies for crystals in a cell culture. Particularly if the target protein forms crystalline structures of unknown morphology only in a small fraction of cells, their detection by applying standard visualization techniques can be time consuming and difficult owing to the environmental challenges imposed by the living cells. In this study, a high-brilliance and low-background bioSAXS beamline is employed for rapid and sensitive detection of protein microcrystals grown within insect cells. On the basis of the presence of Bragg peaks in the recorded small-angle X-ray scattering profiles, it is possible to assess within seconds whether a cell culture contains microcrystals, even in a small percentage of cells. Since such information cannot be obtained by other established detection methods in this time frame, this screening approach has the potential to overcome one of the bottlenecks of intracellular crystal detection. Moreover, the association of the Bragg peak positions in the scattering curves with the unit-cell composition of the protein crystals raises the possibility of investigating the impact of environmental conditions on the crystal structure of the intracellular protein crystals. This information provides valuable insights helping to further understand the in cellulo crystallization process.
Collapse
Affiliation(s)
- Janine Mia Lahey-Rudolph
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - Robert Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Clément E. Blanchet
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Juliane Boger
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | | | - Winnie Maria Riekehr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | | | - Alexandros Valmas
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras GR-26500, Greece
| | - Irene Margiolaki
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras GR-26500, Greece
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
24
|
Lawrence JM, Orlans J, Evans G, Orville AM, Foadi J, Aller P. High-throughput in situ experimental phasing. Acta Crystallogr D Struct Biol 2020; 76:790-801. [PMID: 32744261 PMCID: PMC7397491 DOI: 10.1107/s2059798320009109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i); Institut National des Sciences Appliquées de Lyon (INSA Lyon); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|