1
|
Ma L, George GC, Kelley SP, Hutchins KM. Programmable Solid-State [2 + 2] Photocycloadditions of Dienes Directed by Structural Control and Wavelength Selection. J Am Chem Soc 2025; 147:18249-18256. [PMID: 40383918 DOI: 10.1021/jacs.5c05415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Small differences in molecular or solid-state structure can afford significant differences in properties. Here, a diene derivative, 1,3-bis((E)-2-bromostyryl)benzene (2Brm), is synthesized and crystallized into two unique solid-state forms, each exhibiting a different π-π stacking geometry, which imparts distinct reactivity and photoresponsivity. Upon exposure of the two solids to UV-Vis light, a [2 + 2] photocycloaddition occurs to afford regioisomeric products due to the difference in the stacking geometries of the dienes. From a single molecular precursor, we further demonstrate that under different wavelengths of light, the chemical functionality can be programmed into discrete and distinct products containing one, two, or three cyclobutane rings as well as oligomeric/polymeric products. Moreover, the two initial solid forms exhibit wavelength-dependent photomechanical behaviors (i.e., photosalience). This work demonstrates a rare, template-free, self-assembly-based strategy that enables access to a suite of discrete and oligomeric/polymeric products via regiocontrolled solid-state photocycloadditions and further presents potential routes toward the design of photoactuating materials.
Collapse
Affiliation(s)
- Liulei Ma
- Department of Chemistry, University of Missouri, 601 S College Avenue, Columbia, Missouri 65211, United States
| | - Gary C George
- Department of Chemistry, University of Missouri, 601 S College Avenue, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, 601 S College Avenue, Columbia, Missouri 65211, United States
| | - Kristin M Hutchins
- Department of Chemistry, University of Missouri, 601 S College Avenue, Columbia, Missouri 65211, United States
- MU Materials Science & Engineering Institute, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Zhang Q, Pei Z, Song AY, Qi M, Khoo RSH, Yang C, Xia T, Zhou C, Mao H, Huang Z, Lai S, Wang Y, Tan LZ, Reimer JA, Zhang J, Coote ML, Liu Y. Manipulating Aromaticity to Redirect Topochemical Polymerization Pathways. J Am Chem Soc 2025; 147:14715-14724. [PMID: 40232681 DOI: 10.1021/jacs.5c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Topochemical polymerization (TCP) represents an essential route to create regio- and stereoregular polymers through solid-state transformations. Herein, we present an innovative strategy for controlling topochemical polymerization pathways by tailoring the terminal group aromaticity in the para-azaquinodimethane (AQM) ring system. Substituting phenyl groups with less aromatic furyl units extends significant spin density delocalization across the conjugated core upon thermal activation, inducing significant diradicaloid characters at furyl positions and enabling unconventional reactivities in both solution and solid states. Thermal treatment in toluene yields a unique cyclophane dimer formed via furyl-methine C-C coupling, confirmed by X-ray crystallography, while solid-state reactions produce polymers formed via both intercolumnar furyl-methine coupling and intracolumnar methine-methine coupling. The spin-center-directed mechanism underlying these transformations is validated through theoretical modeling and isotopic labeling experiments. This study highlights the prowess of aromaticity modulation in functional pro-aromatic systems, which enables the synthesis of polymers with main chain structures that are otherwise difficult to access.
Collapse
Affiliation(s)
- Qingsong Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhipeng Pei
- Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, SA 5042, Australia
| | - Ah-Young Song
- College of Chemistry Pines Magnetic Resonance Center, University of California, Berkeley, Berkeley, California 94720, United States
| | - Miao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tao Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhiyuan Huang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shiqi Lai
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, SA 5042, Australia
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Pathan JR, Balan H, Das K, Reddy CM, Sureshan KM. Single-Crystal-to-Single-Crystal Synthesis of a Polymer in Two Distinct Topologies. Angew Chem Int Ed Engl 2025; 64:e202500646. [PMID: 39871673 DOI: 10.1002/anie.202500646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/28/2025] [Indexed: 01/29/2025]
Abstract
A squaramide-based monomer, designed for topochemical azide-alkyne cycloaddition (TAAC) polymerization, crystallizes as two polymorphs, M1 and M2, both having crystal packing suitable for topochemical polymerization. The hydrogen-bonding between squaramide units bias the molecular organization in both the polymorphs. 3D packing of H-bonded stacks of monomer lead to juxtaposition of azide and alkyne units of adjacent molecules in a transition-state-like arrangement for their regiospecific cycloaddition reaction. The monomers are arranged as supramolecular sheets and supramolecular helices in polymorph M1 and M2 respectively. Both the polymorphs undergo slow and spontaneous regiospecific TAAC polymerization at room temperature, but react quickly at higher temperatures, resulting in 1,4-traizolyl-linked polymer, with distinct mechanical responses. Upon heating, single crystals of polymorph M1 show expansion followed by contraction without any permanent dimensional change, whereas crystals of polymorph M2 undergo splitting. At moderate temperatures, both the polymorphs undergo single-crystal-to-single-crystal (SCSC) polymerization, resulting in two polymer-polymorphs with distinct topologies that can be studied at atomic resolution by single-crystal X-ray crystallography. The polymorph M1 reacts to polymer P1 with β-sheet-like topology, and polymorph M2 reacts to polymer P2 having polymer chains of helical conformation. Nanoindentation experiments with crystals of these polymers revealed their distinct mechanical properties.
Collapse
Affiliation(s)
- Javed R Pathan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Haripriya Balan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Kaustav Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal, 741246, India
| | - C Malla Reddy
- Department of Chemistry, IIT, Hyderabad, Telangana, 502329, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
4
|
Zhang X, He H, Ge C, Xiang Q, Sato S, Lv M, Chen X, Sun Z. Crystallization-Induced Dimerization and Solution-Phase Bond Dissociation of Stable Dibenzoolympicenyl Radicals. Angew Chem Int Ed Engl 2025; 64:e202418261. [PMID: 39375476 DOI: 10.1002/anie.202418261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Crystallization of organic materials can lead to different assembly structure with different reactivity, but this phenomenon is rarely observed for delocalized hydrocarbon radicals. This report introduces a crystallization-induced radical-radical coupling reaction, which employs a series of stable nonplanar organic π-radicals as reactants. Six stable radical congeners are synthesized, resulting in radical-radical coupling at the allenyl radical site during crystallization to produce close-shell dimers. This coupling reaction is absent in the solution phase, which highlights the importance of preorganization in the lattice. Remarkably, the attempts of cocrystallization of different congeners yielded homocoupling products instead of cross-coupling products. In specific cases, two distinct polymorphs are observed and their reactivity is different according to the distance of the reaction sites. Theoretical calculations indicate that the transition from a metastable preorganized monomer to a dimer is barrierless and spontaneous. The dimer could regenerate free radicals by heating or photoirradiation in the solution phase. This discovery may lead to controllable molecular switches.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Chang Ge
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Sota Sato
- "Integrated Molecular Structure Analysis Laboratory", Department of Applied Chemistry School of Engineering, The University of Tokyo, 6-6-2 Kashiwanoha, Kashiwa-shi, Chiba, 277-0882, Japan
- Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Menglan Lv
- Engineering Research Center for Energy Conversion and Storage Technology of Guizhou, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| |
Collapse
|
5
|
Sebastian B, Sureshan KM. Unclicking the Click: A Depolymerizable Clicked Polymer via Two Consecutive Single-Crystal-to-Single-Crystal Reactions. Angew Chem Int Ed Engl 2025; 64:e202417905. [PMID: 39400926 DOI: 10.1002/anie.202417905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
We report here a clicked polymer that can be depolymerized by a declicking reaction. A designed dipeptide monomer, upon heating its crystals, underwent a single-crystal-to-single-crystal topochemical ene-azide cycloaddition polymerization to form a triazoline-linked polymer, which upon further heating, underwent a remarkable SCSC denitrogenation, resulting in an imine-linked polymer quantitatively. As both the TEAC polymerization and the denitrogenation occurred in SCSC fashion, the structures of the triazoline-linked polymer and the imine-linked polymer could be determined at atomic resolution by SCXRD. Acid hydrolysis of the imine-linked polymer leads to quantitative depolymerization, yielding a dipeptide, showcasing the degradability and depolymerizability of such polymers. This solid-state click polymerization and denitrogenation yielding depolymerizable polymer is attractive over the usual click polymers that cannot be unclicked.
Collapse
Affiliation(s)
- Bichu Sebastian
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India-, 695551
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India-, 695551
| |
Collapse
|
6
|
Li ZQ, Meng L, Chen Z, Zhong YW. Endowing single-crystal polymers with circularly polarized luminescence. Nat Commun 2025; 16:234. [PMID: 39747830 PMCID: PMC11696868 DOI: 10.1038/s41467-024-55181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA]2 showing yellow CPL with a high luminescent dissymmetry factor |glum| of 0.035 and emission quantum yield Φ of 49.7%. Upon photo-induced topochemical [2 + 2] polymerization, single-crystal polyionic polymers of poly-1[( + )/( - )-CSA]2 are obtained. The single-crystal-to-single-crystal (SCSC) photopolymerization is revealed by in situ powder X-ray diffraction, single-crystal X-ray, optical microscopy, infrared, circular dichroism, and CPL spectroscopic analyzes. Interestingly, the photopolymer crystals show blue and handedness-inverted CPL with |glum| of 0.011 (Φ = 14.2%), with respect to the yellow CPL of the monomer crystal. Furthermore, patterned circularly-polarized photonic heterojunctions with alternate blue and yellow CPL sub-blocks are prepared by a mask-assisted photopolymerization method. Our findings provide a vision for fabricating high-performance CPL-active crystalline polymer materials, paving the way for the further development of photo-response chiral systems.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Meng
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry and Life Resources, Renmin University of China, 59# Zhongguancun Street, Haidian District, Beijing, China
| | - Zili Chen
- School of Chemistry and Life Resources, Renmin University of China, 59# Zhongguancun Street, Haidian District, Beijing, China
| | - Yu-Wu Zhong
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, China.
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Contreras-Montoya R, Álvarez de Cienfuegos L, Gavira JA, Steed JW. Supramolecular gels: a versatile crystallization toolbox. Chem Soc Rev 2024; 53:10604-10619. [PMID: 39258871 DOI: 10.1039/d4cs00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Supramolecular gels are unique materials formed through the self-assembly of molecular building blocks, typically low molecular weight gelators (LMWGs), driven by non-covalent interactions. The process of crystallization within supramolecular gels has broadened the scope of the traditional gel-phase crystallization technique offering the possibility of obtaining crystals of higher quality and size. The broad structural diversity of LMWGs allows crystallization in multiple organic and aqueous solvents, favouring screening and optimization processes and the possibility to search for novel polymorphic forms. These supramolecular gels have been used for the crystallization of inorganic, small organic compounds of pharmaceutical interest, and proteins. Results have shown that these gels are not only able to produce crystals of high quality but also to influence polymorphism and physicochemical properties of the crystals, giving rise to crystals with potential new bio- and technological applications. Thus, understanding the principles of crystallization in supramolecular gels is essential for tailoring their properties and applications, ranging from drug delivery systems to composite crystals with tunable stability properties. In this review, we summarize the use of LMWG-based supramolecular gels as media to grow single crystals of a broad range of compounds.
Collapse
Affiliation(s)
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, E-18071, Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC), E-18100, Granada, Spain
| | | |
Collapse
|
8
|
Giorgi M, Masson K, Chentouf S, Commeiras L, Nava P, Chouraqui G. Template-Directed In Crystallo Photopolymerization of a Donor-Acceptor Cyclopropane: When Everything Falls into Place! J Am Chem Soc 2024; 146:17384-17392. [PMID: 38868986 DOI: 10.1021/jacs.4c04899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A single-crystal-to-single-crystal solid-state reaction of vinylogous donor-acceptor cyclopropanes is documented. The enantiospecific synthesis of new products, distinct from those obtained in solution, is achieved for the target compounds. Photopolymerization occurred upon X-ray exposure to the crystals. Notably, in one case, this reactivity exhibits selectivity since an ordered arrangement of polymers and unreacted cocrystallized monomeric conformers has been observed. Structural characterization of the complete transformation monitored through single-crystal X-ray diffraction and supported by molecular dynamics simulations sheds light on the subtle role of crystal packing in the reaction process. Moreover, the X-ray diffraction (XRD)-resolved structure of a donor-acceptor cyclopropane intermediate reveals an elongation in bond length that corroborates the existence of the so-called "push-pull effect".
Collapse
Affiliation(s)
- Michel Giorgi
- Aix Marseille Universite, CNRS, Centrale Méditerranée, FSCM, 13397 Marseille, France
| | - Kévin Masson
- Aix Marseille Universite, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Sara Chentouf
- Aix Marseille Universite, CNRS, Centrale Méditerranée, FSCM, 13397 Marseille, France
| | - Laurent Commeiras
- Aix Marseille Universite, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Paola Nava
- Aix Marseille Universite, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Gaëlle Chouraqui
- Aix Marseille Universite, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| |
Collapse
|
9
|
Pramod T, Khazeber R, Athiyarath V, Sureshan KM. Topochemistry for Difficult Peptide-Polymer Synthesis: Single-Crystal-to-Single-Crystal Synthesis of an Isoleucine-Based Polymer, a Hydrophobic Coating Material. J Am Chem Soc 2024; 146:7257-7265. [PMID: 38253536 DOI: 10.1021/jacs.3c10779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polymers of hydrophobic amino acids are predicted to be potential coating materials for the creation of hydrophobic surfaces. The oligopeptides of hydrophobic amino acids are called "difficult peptides"; as the name suggests, it is difficult to synthesize them by conventional methods. We circumvented this synthetic challenge by adopting topochemical azide-alkyne cycloaddition (TAAC) polymerization of a hydrophobic dipeptide monomer. We designed an Ile-based dipeptide, decorated with azide and alkyne, which arrange in the crystal in a head-to-tail fashion with the azide and alkyne of the adjacent molecules in a ready-to-react orientation. The monomer, on mild heating of its crystals, undergoes regiospecific TAAC polymerization to yield a 1,4-disubstituted-triazole-linked polymer in a single-crystal-to-single-crystal fashion. The solid obtained after evaporation of the monomer solution also maintained crystallinity and underwent regiospecific topochemical polymerization as in the case of crystals. This topochemical polymerization could be studied using different techniques such as FTIR, NMR, DSC, GPC, MALDI, PXRD, and SCXRD. Since the polymer is insoluble in common solvents and hence difficult to coat surfaces, the monomer was first sprayed and evaporated on various surfaces and polymerized on the surface. Such polymer-coated surfaces exhibited water contact angles of up to 134°, showing that this Ile-derived polymer is very hydrophobic and can potentially be used as a coating material for various applications.
Collapse
Affiliation(s)
- Thejus Pramod
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Ravichandran Khazeber
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Vignesh Athiyarath
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Kana M Sureshan
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| |
Collapse
|
10
|
Khazeber R, Kana GS, Sureshan KM. Massive Molecular Motion in Crystal Leads to an Unexpected Helical Covalent Polymer in a Solid-state Polymerization. Angew Chem Int Ed Engl 2024; 63:e202316513. [PMID: 38224551 DOI: 10.1002/anie.202316513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
We designed a proline-derived monomer with azide and alkene functional groups to enable topochemical ene-azide cycloaddition (TEAC) polymerization. In its crystal, the monomer forms supramolecular helices along the 'a' axis through various non-covalent interactions. Along the 'c' axis, the molecules arrange themselves head-to-tail in a wave-like pattern, positioning the azide and alkene groups of adjacent molecules in close proximity and anti-parallel orientation, complying with Schmidt's criteria for topochemical reaction. This prearranged configuration was expected to facilitate smooth topochemical polymerization, resulting in a 1,4-triazoline-linked polymer. Upon heating, the monomer underwent TEAC polymerization in a remarkable single-crystal-to-single-crystal fashion, but, to our surprise, it yielded an unexpected covalent helical polymer linked by 1,5-disubstituted triazoline units. Remarkably, the crystal avoids the ready-to-react arrangement for polymerization, but connects monomer molecules within the supramolecular helix through the cycloaddition of azide and alkene groups, even though they are not in close proximity nor in the expected orientation. This unexpected path, involving a substantial 134° rotation of the alkene group, yields hitherto unknown 1,5-disubstituted triazoline product regiospecifically. This study serves as a cautionary reminder that relying solely on topochemical postulates for predicting reactivity can sometimes be misleading.
Collapse
Affiliation(s)
- Ravichandran Khazeber
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Gautham S Kana
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
11
|
Wang M, Jin Y, Zhang W, Zhao Y. Single-crystal polymers (SCPs): from 1D to 3D architectures. Chem Soc Rev 2023; 52:8165-8193. [PMID: 37929665 DOI: 10.1039/d3cs00553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-crystal polymers (SCPs) with unambiguous chemical structures at atomic-level resolutions have attracted great attention. Obtaining precise structural information of these materials is critical as it enables a deeper understanding of the potential driving forces for specific packing and long-range order, secondary interactions, and kinetic and thermodynamic factors. Such information can ultimately lead to success in controlling the synthesis or engineering of their crystal structures for targeted applications, which could have far-reaching impact. Successful synthesis of SCPs with atomic level control of the structures, especially for those with 2D and 3D architectures, is rare. In this review, we summarize the recent progress in the synthesis of SCPs, including 1D, 2D, and 3D architectures. Solution synthesis, topochemical synthesis, and extreme condition synthesis are summarized and compared. Around 70 examples of SCPs with unambiguous structure information are presented, and their synthesis methods and structural analysis are discussed. This review offers critical insights into the structure-property relationships, providing guidance for the future rational design and bottom-up synthesis of a variety of highly ordered polymers with unprecedented functions and properties.
Collapse
Affiliation(s)
- Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
12
|
Jiang Z, Sun K, Wu H, Dong W, Ma J, Jiang M. Preparation and Characterization of a Novel Morphosis of Dextran and Its Derivatization with Polyethyleneimine. Molecules 2023; 28:7210. [PMID: 37894689 PMCID: PMC10609354 DOI: 10.3390/molecules28207210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Dextran, a variant of α-glucan with a significant proportion of α-(1,6) bonds, exhibits remarkable solubility in water. Nonetheless, the precipitation of dextran has been observed in injection vials during storage. The present study aimed to establish a technique for generating insoluble dextran and analyze its structural properties. Additionally, the potential for positively ionizing IS-dextran with polyethyleneimine was explored, with the ultimate objective of utilizing IS-dextran-PEI as a promising support for enzyme immobilization. As a result, IS-dextran was obtained by the process of slow evaporation with an average molecular weight of 6555 Da and a yield exceeding 60%. The calculated crystallinity of IS-dextran, which reaches 93.62%, is indicative of its irregular and dense structure, thereby accounting for its water insolubility. Furthermore, positive charge modification of IS-dextran, coupled with the incorporation of epichlorohydrin, resulted in all zeta potentials of IS-dextran-PEIs exceeding 30 mV, making it a promising supporting factor for enzyme immobilization.
Collapse
Affiliation(s)
| | | | | | | | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | | |
Collapse
|
13
|
Pathan JR, Bhandary S, Sureshan KM. Two Structurally Different Polymers from a Single Monomer. J Am Chem Soc 2023; 145:22633-22638. [PMID: 37788217 DOI: 10.1021/jacs.3c07767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We designed and synthesized a malonamide-derived monomer, containing azide and alkyne units, for topochemical polymerization to yield nylon (n,3). This monomer on crystallization gave two concomitant polymorphs M1 and M2. Both the polymorphs show crystal packings that are suitable for topochemical azide-alkyne cycloaddition polymerization. On heating, polymorph M1 reacts regiospecifically to give 1,4-disubstituted-1,2,3-triazolyl-linked polymer, whereas polymorph M2 yields 1,5-disubstituted-1,2,3-triazolyl-linked polymer regiospecifically. In the case of polymorph M1, polymerization proceeds perpendicular to the hydrogen bonding direction, whereas in M2, the reaction occurs along the hydrogen bonding direction. This results in the two structurally different polymers having distinct topologies. These single-crystal-to-single-crystal polymerizations allowed us to study their structure at atomic resolution by single-crystal X-ray diffraction. This is the first report on the topochemical synthesis of two structurally isomeric polymers from a single monomer.
Collapse
Affiliation(s)
- Javed R Pathan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Subhrajyoti Bhandary
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
14
|
Athiyarath V, Mathew LA, Zhao Y, Khazeber R, Ramamurty U, Sureshan KM. Rational design and topochemical synthesis of polymorphs of a polymer. Chem Sci 2023; 14:5132-5140. [PMID: 37206383 PMCID: PMC10189859 DOI: 10.1039/d3sc00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Packing a polymer in different ways can give polymorphs of the polymer having different properties. β-Turn forming peptides such as 2-aminoisobutyric acid (Aib)-rich peptides adopt several conformations by varying the dihedral angles. Aiming at this, a β-turn-forming peptide monomer would give different polymorphs and these polymorphs upon topochemical polymerization would yield polymorphs of the polymer, we designed an Aib-rich monomer N3-(Aib)3-NHCH2-C[triple bond, length as m-dash]CH. This monomer crystallizes as two polymorphs and one hydrate. In all forms, the peptide adopts β-turn conformations and arranges in a head-to-tail manner with their azide and alkyne units proximally placed in a ready-to-react alignment. On heating, both the polymorphs undergo topochemical azide-alkyne cycloaddition polymerization. Polymorph I polymerized in a single-crystal-to-single-crystal (SCSC) fashion and the single-crystal X-ray diffraction analysis of the polymer revealed its screw-sense reversing helical structure. Polymorph II maintains its crystallinity during polymerization but gradually becomes amorphous upon storage. The hydrate III undergoes a dehydrative transition to polymorph II. Nanoindentation studies revealed that different polymorphs of the monomer and the corresponding polymers exhibited different mechanical properties, in accordance with their crystal packing. This work demonstrates the promising future of the marriage of polymorphism and topochemistry for obtaining polymorphs of polymers.
Collapse
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Liby Ann Mathew
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Yakai Zhao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University 639798 Singapore
| | - Ravichandran Khazeber
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Upadrasta Ramamurty
- School of Mechanical and Aerospace Engineering, Nanyang Technological University 639798 Singapore
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
15
|
Paolino M, Saletti M, Reale A, Razzano V, Giuliani G, Donati A, Bonechi C, Giorgi G, Mercorillo G, Samperi F, Mróz W, Botta C, Cappelli A. Spontaneous Polymerization of Benzofulvene Monomers Bearing a 4-Pyridylacetylene Substituent in Different Positions of the Benzofulvene Scaffold. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
16
|
Gawdzik B, Bukowska-Śluz I, Koziol AE, Mazur L. Synthesis and Characterization of Biodegradable Polymers Based on Glucose Derivatives. MATERIALS (BASEL, SWITZERLAND) 2022; 16:253. [PMID: 36614592 PMCID: PMC9822088 DOI: 10.3390/ma16010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Syntheses of two new monomers, namely the glucose derivatives 2,3,4,6-tetra-O-acetyl-1 methacryloyl-glucopyranose (MGlc) and 2,3,4,6 tetra-O-acetyl-1-acryloylglucopyranose (AGlc), are presented. Their chemical structures were determined by the FTIR, 1H and 13C NMR spectroscopies, the single-crystal X-ray analysis, supported by the powder X-ray diffraction, and the DSC analyses. Molecules of both monomers exist in the β-anomeric form in the solid state. The variable temperature X-ray diffraction studies, supported by the DSC analyses, revealed AGlc's propensity for polymorphism and temperature-induced phase transitions. MGlc and AGlc crystallised from methanol were polymerized or copolymerized with methyl methacrylate and N-vinylpyrrolidone. The biodegradabilities of polymers as well as thermal and optical properties were studied. The results show that some properties of the obtained homopolymers and copolymers resemble those of PMMA. The main difference is that the AGlc and MGlc homopolymers are biodegradable while PMMA is not. The ternary copolymers, i.e., MGlc/AGlc-MMA-NVP lose more than 10% of their weight after six months.
Collapse
|
17
|
Hema K, Raju C, Bhandary S, Sureshan KM. Tuning the Regioselectivity of Topochemical Polymerization through Cocrystallization of the Monomer with an Inert Isostere. Angew Chem Int Ed Engl 2022; 61:e202210733. [DOI: 10.1002/anie.202210733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry IISER Thiruvananthapuram Kerala 695551 India
- Present address: Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Cijil Raju
- School of Chemistry IISER Thiruvananthapuram Kerala 695551 India
| | | | - Kana M. Sureshan
- School of Chemistry IISER Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
18
|
Raju C, Kunnikuruvan S, Sureshan KM. Topochemical Cycloaddition Reaction between an Azide and an Internal Alkyne. Angew Chem Int Ed Engl 2022; 61:e202210453. [DOI: 10.1002/anie.202210453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Cijil Raju
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala-695551 India
| | - Sooraj Kunnikuruvan
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala-695551 India
| |
Collapse
|
19
|
Hema K, Raju C, Bhandary S, Sureshan KM. Tuning the Regioselectivity of Topochemical Polymerization through Cocrystallization of the Monomer with an Inert Isostere. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry IISER Thiruvananthapuram Kerala 695551 India
- Present address: Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Cijil Raju
- School of Chemistry IISER Thiruvananthapuram Kerala 695551 India
| | | | - Kana M. Sureshan
- School of Chemistry IISER Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
20
|
Topochemical Cycloaddition Reaction between an Azide and an Internal Alkyne. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Khazeber R, Sureshan KM. Single-crystal-to-single-crystal translation of a helical supramolecular polymer to a helical covalent polymer. Proc Natl Acad Sci U S A 2022; 119:e2205320119. [PMID: 35858342 PMCID: PMC9303982 DOI: 10.1073/pnas.2205320119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023] Open
Abstract
Polymers possessing helical conformation in the solid state are in high demand. We report a helical peptide-polymer via the topochemical ene-azide cycloaddition (TEAC) polymerization. The molecules of the designed Gly-Phe-based dipeptide, decorated with ene and azide, assemble in its crystals as β-sheets and as supramolecular helices in two mutually perpendicular directions. While the NH…O H-bonding facilitates β-sheet-like stacking along one direction, weak CH…N H-bonding between the azide-nitrogen and vinylic-hydrogen of molecules belonging to the adjacent stacks arranges them in a head-to-tail manner as supramolecular helices. In the crystal lattice, the azide and alkene of adjacent molecules in the supramolecular helix are suitably preorganized for their TEAC reaction. The dipeptide underwent regio- and stereospecific polymerization upon mild heating in a single-crystal-to-single-crystal fashion, yielding a triazoline-linked helical covalent polymer that could be characterized by single-crystal X-ray diffraction studies. Upon heating, the triazoline-linked polymer undergoes denitrogenation to aziridine-linked polymer, as evidenced by differential scanning calorimetry, thermogravimetric analysis, and solid-state NMR analyses.
Collapse
Affiliation(s)
- Ravichandran Khazeber
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala-695551, India
| | - Kana M. Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala-695551, India
| |
Collapse
|
22
|
Ravi A, Hassan SZ, Bhandary S, Sureshan KM. Topochemical Postulates: Are They Relevant for Topochemical Reactions Occurring at Elevated Temperatures? Angew Chem Int Ed Engl 2022; 61:e202200954. [PMID: 35258143 DOI: 10.1002/anie.202200954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/26/2022]
Abstract
A rigid inositol-derived monomer functionalized with azide and alkyne as the complementary reactive groups (CRGs) crystallized as three distinct polymorphs I-III. Despite the unsuitable orientation of CRGs in the crystals for complete polymerization, all the three polymorphs underwent regiospecific and quantitative topochemical azide-alkyne cycloaddition (TAAC) polymerization upon heating to yield three different polymorphs of 1,2,3-triazol-1,4-diyl-linked-poly-neo-inositol. The molecules in these polymorphs exploit the weak intermolecular interactions, free space in the crystal lattice, and heat energy for their large and cooperative molecular motion to attain a transient reactive orientation, ultimately leading to the regiospecific TAAC reaction yielding distinct crystalline polymers. This study cautions that the overreliance on topochemical postulates for the prediction of topochemical reactivity at high temperatures could be misleading.
Collapse
Affiliation(s)
- Arthi Ravi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, 695551, Vithura, India
| | - Syed Zahid Hassan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, 695551, Vithura, India.,Present Address: Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Subhrajyoti Bhandary
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, 695551, Vithura, India.,Present Address: Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, 695551, Vithura, India
| |
Collapse
|
23
|
Bhandary S, Pathigoolla A, Madhusudhanan MC, Sureshan KM. Azide–Alkyne Interactions: A Crucial Attractive Force for Their Preorganization for Topochemical Cycloaddition Reaction. Chemistry 2022; 28:e202200820. [DOI: 10.1002/chem.202200820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Subhrajyoti Bhandary
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Atchutarao Pathigoolla
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Mithun C. Madhusudhanan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
24
|
Rai R, Sureshan KM. Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels. Angew Chem Int Ed Engl 2022; 61:e202111623. [DOI: 10.1002/anie.202111623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Rishika Rai
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
25
|
Paolino M, Saletti M, Reale A, Razzano V, Giuliani G, Donati A, Bonechi C, Giorgi G, Atrei A, Mauro M, Scamporrino A, Samperi F, Fois E, Tabacchi G, Botta C, Cappelli A. Spontaneous polymerization of benzofulvene derivatives bearing complexed or un-complexed pyridine rings. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Ravi A, Hassan SZ, Bhandary S, Sureshan KM. Topochemical Postulates: Are They Relevant for Topochemical Reactions Occurring at Elevated Temperatures? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arthi Ravi
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram 695551 Vithura India
| | - Syed Zahid Hassan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram 695551 Vithura India
- Present Address: Department of Chemical Engineering Pohang University of Science & Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Subhrajyoti Bhandary
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram 695551 Vithura India
- Present Address: Department of Chemistry Ghent University Krijgslaan 281-S3 9000 Ghent Belgium
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram 695551 Vithura India
| |
Collapse
|
27
|
Davydok A, Luponosov YN, Ponomarenko SA, Grigorian S. In Situ Coupling Applied Voltage and Synchrotron Radiation: Operando Characterization of Transistors. NANOSCALE RESEARCH LETTERS 2022; 17:22. [PMID: 35107638 PMCID: PMC8811105 DOI: 10.1186/s11671-022-03662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
A compact voltage application setup has been developed for in situ electrical testing of organic field effect transistors in combination with X-ray scattering studies at a synchrotron beamlines. Challenges faced during real condition in-operando test of newly developed OFETs originated an idea of creation of a new setup which excludes number of factors that make experiments complicated. The application of the setup is demonstrated on a prototype of an organic transistors based on α,ω-dihexyl-α-quaterthiophene molecules. The new setup allows to monitor material structural changes by X-ray scattering under applied voltage conditions and their direct correlations. The versatile setup eliminates possible shadowing effects and short circuits due to misalignment of the contacts. The electrical stability of the prototypes was characterized by the application of different voltage values. Corresponding structural changes were monitored by grazing X-ray scattering technique before, during and after the voltage was applied. The selected oligothiophene material with proved transistor properties shows high stability and directional anisotropy under applied voltage conditions. Thanks to a compact and flexible design of the setup, different type of small dimension devices could be studied under external voltage conditions at various synchrotron beamlines.
Collapse
Affiliation(s)
- Anton Davydok
- Institute for Materials Physics, Helmholtz-Zentrum Hereon, Notkestr 85, 22607 Hamburg, Germany
| | - Yuriy N. Luponosov
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, Moscow, Russia
| | - Sergey A. Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, Moscow, Russia
| | - Souren Grigorian
- Department of Physics, University of Siegen, Walter-Flex-Straße 3, 57072 Siegen, Germany
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
28
|
Sureshan KM, Rai R. Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kana M Sureshan
- Indian Institute of Science Education and Research Thiruvananthapuram School of Chemistry ThiruvananthapuramMaruthamalaVithura 695551 Thiruvananthapuram INDIA
| | - Rishika Rai
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram Chemistry 695551 Thiruvananthapuram INDIA
| |
Collapse
|
29
|
Athiyarath V, Madhusudhanan MC, Kunnikuruvan S, Sureshan KM. Secondary Structure Tuning of a Pseudoprotein Between β‐Meander and α‐Helical Forms in the Solid‐State. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Mithun C. Madhusudhanan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Sooraj Kunnikuruvan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
30
|
Wei X, Li B, Yang Z, Zhong R, Wang Y, Chen Y, Ding Z, Men G, Yang Z, Zhang H, Yang B, Xu W, Jiang S. Programmable photoresponsive materials based on a single molecule via distinct topochemical reactions. Chem Sci 2021; 12:15588-15595. [PMID: 35003588 PMCID: PMC8654046 DOI: 10.1039/d1sc04053g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Engineering the preorganization of photoactive units remains a big challenge in solid-state photochemistry research. It is of not only theoretical importance in the construction of topochemical reactions but also technological significance in the fabrication of advanced materials. Here, a cyanostilbene derivative, (Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(naphthalen-2-yl) acrylonitrile (BNA), was crystallized into two polymorphs under different conditions. The two crystals, BNA-α and BNA-β, have totally different intra-π-dimer and inter-π-dimer hierarchical architectures on the basis of a very simple monomer, which provides them with distinct reactivities, functions and photoresponsive properties. Firstly, two different types of solid-state [2 + 2] photocycloaddition reaction: (i) a typical olefin-olefin cycloaddition reaction within the symmetric π-dimers of BNA-α and (ii) an unusual olefin-aromatic ring cycloaddition reaction within the offset π-dimers of BNA-β have been observed, respectively. Secondly, the crystal of BNA-α can be bent to 90° without any fracture, exhibiting outstanding flexibility upon UV irradiation, while the reversible photocycloaddition/thermal cleavage process (below 100 °C) accompanied by unique fluorescence changes can be achieved in the crystal of BNA-β. Finally, micro-scale photoactuators and light-writable anti-counterfeiting materials have been successfully fabricated. This work paves a simple way to construct smart materials through a bottom-up way that is realized by manipulating hierarchical architectures in the solid state.
Collapse
Affiliation(s)
- Xiao Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ronglin Zhong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yufei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yanan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zeyang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Guangwen Men
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zairan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
31
|
Ishiwari F, Kawahara S, Kajitani T, Fukushima T. Structure-preserving Solid-state Thermal Huisgen Cycloaddition Polymerization of a Self-assembled Triptycene-based AB3-type Monomer. CHEM LETT 2021. [DOI: 10.1246/cl.210476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shintaro Kawahara
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
32
|
Anderson CL, Li H, Jones CG, Teat SJ, Settineri NS, Dailing EA, Liang J, Mao H, Yang C, Klivansky LM, Li X, Reimer JA, Nelson HM, Liu Y. Solution-processable and functionalizable ultra-high molecular weight polymers via topochemical synthesis. Nat Commun 2021; 12:6818. [PMID: 34819494 PMCID: PMC8613210 DOI: 10.1038/s41467-021-27090-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/01/2021] [Indexed: 01/25/2023] Open
Abstract
Topochemical polymerization reactions hold the promise of producing ultra-high molecular weight crystalline polymers. However, the totality of topochemical polymerization reactions has failed to produce ultra-high molecular weight polymers that are both soluble and display variable functionality, which are restrained by the crystal-packing and reactivity requirements on their respective monomers in the solid state. Herein, we demonstrate the topochemical polymerization reaction of a family of para-azaquinodimethane compounds that undergo facile visible light and thermally initiated polymerization in the solid state, allowing for the first determination of a topochemical polymer crystal structure resolved via the cryoelectron microscopy technique of microcrystal electron diffraction. The topochemical polymerization reaction also displays excellent functional group tolerance, accommodating both solubilizing side chains and reactive groups that allow for post-polymerization functionalization. The thus-produced soluble ultra-high molecular weight polymers display superior capacitive energy storage properties. This study overcomes several synthetic and characterization challenges amongst topochemical polymerization reactions, representing a critical step toward their broader application.
Collapse
Affiliation(s)
- Christopher L Anderson
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - He Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Christopher G Jones
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Eric A Dailing
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jiatao Liang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Liana M Klivansky
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Xinle Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
33
|
Athiyarath V, Madhusudhanan MC, Kunnikuruvan S, Sureshan KM. Secondary Structure Tuning of a Pseudoprotein Between β-Meander and α-Helical Forms in the Solid-State. Angew Chem Int Ed Engl 2021; 61:e202113129. [PMID: 34699112 DOI: 10.1002/anie.202113129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Tuning the secondary structure of a protein or polymer in the solid-state is challenging. Here we report the topochemical synthesis of a pseudoprotein and its secondary structure tuning in the solid-state. We designed the dipeptide monomer N3 -Leu-Ala-NH-CH2 -C≡CH (1) for topochemical azide-alkyne cycloaddition (TAAC) polymerization. Dipeptide 1 adopts an anti-parallel β-sheet-like stacked arrangement in its crystals. Upon heating, the dipeptide undergoes quantitative TAAC polymerization in a crystal-to-crystal fashion yielding large polymers. The reaction occurs between the adjacent monomers in the H-bonded anti-parallel stack, yielding pseudoprotein having a β-meander structure. When dissolved in methanol, this pseudoprotein changes its secondary structure from β-meander to α-helical form and it retains the new secondary structure upon desolvation. This work demonstrates a novel paradigm for tuning the secondary structure of a polymer in the solid-state.
Collapse
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Mithun C Madhusudhanan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Sooraj Kunnikuruvan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
34
|
Lackinger M, Schlüter AD. The Current Understanding of how 2D Polymers Grow Photochemically. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Markus Lackinger
- Technische Universität München Physik Department James-Franck-Str. 1 85748 Garching Germany
- Deutsches Museum Museumsinsel 1 80538 München Germany
| | - A. Dieter Schlüter
- Department of Materials ETH Zürich Vladimir-Prelog-Weg 5 8092 Zürich Switzerland
| |
Collapse
|
35
|
Azide⋅⋅⋅Oxygen Interaction: A Crystal Engineering Tool for Conformational Locking. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Affiliation(s)
- Ravichandran Khazeber
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
37
|
Sureshan KM, Madhusudhanan MC, Balan H, Werz DB. Azide···Oxygen Interaction: A Crystal Engineering Tool for Conformational Locking. Angew Chem Int Ed Engl 2021; 60:22797-22803. [PMID: 34399025 DOI: 10.1002/anie.202106614] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Indexed: 11/09/2022]
Abstract
We have designed, synthesized and crystallized 36 compounds, each containing an azide group and an oxygen atom separated by three bonds. Crystal structure analysis revealed that each of these molecules adopts a conformation in which the azide and oxygen groups orient syn to each other with a short O ··· N b contact. Geometry-optimized structures [using M06-2X/6-311G(d,p) level of theory ] also showed the syn conformation in all 36 of these cases, suggesting that this not merely a crystal packing effect. Quantum topological analysis using Bader's Atoms in Molecules (AIM) theory revealed bond paths and bond critical points (BCP) in these structures suggesting its nature and energetics to be similar to weak hydrogen bonding. The NCI-RDG plot clearly revealed the attractive interaction consisting of electrostatic or dispersive components in all the 36 systems. NBO analysis suggested a weak orbital-relaxation (charge-transfer) contribution of energy for a few (sp2) O-donor systems. Natural population analysis (NPA) and molecular electrostatic potential mapping (MESP) of these crystal structures further revealed the existence of favorable azide-oxygen interaction. A CSD search indicated the frequent and consistent occurrence of this interaction and its role dictating the syn conformation of azide and oxygen in molecules where these groups are separated by 2-4 bonds.
Collapse
Affiliation(s)
- Kana M Sureshan
- Indian Institute of Science Education and Research, School of Chemistry, Thiruvananthapuram, Maruthamala, 695551, Thiruvananthapuram, INDIA
| | - Mithun C Madhusudhanan
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, Maruthamala, Vithura, 795551, Thiruvananthapuram, INDIA
| | - Haripriya Balan
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, Maruthamala, Vithura, 695551, Thiruvananthapuram, INDIA
| | - Daniel B Werz
- TU Braunschweig: Technische Universitat Braunschweig, Institute fur Organic Chemie, Hagenring 30, Braunschweig, 38106, Braunschweig, GERMANY
| |
Collapse
|
38
|
Sureshan KM, Khazeber R. Topochemical Ene-Azide Cycloaddition Reaction. Angew Chem Int Ed Engl 2021; 60:24875-24881. [PMID: 34379367 DOI: 10.1002/anie.202109344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/10/2022]
Abstract
Topochemical reactions, high-yielding solid-state reactions arising from the proximal alignment of reacting partners in the crystal lattice, do not require solvents, catalysts, and additives are of high demand in the context of green processes and environmental safety. However, the bottleneck is the limited number of reactions that can be done in the crystal medium. We present the topochemical ene-azide cycloaddition (TEAC) reaction, wherein alkene and azide groups undergo lattice-controlled cycloaddition reaction giving triazoline in crystals. A designed monomer that arranges in a head-to-tail manner in its crystals pre-organizing the reacting groups of adjacent molecules in proximity undergoes spontaneous cycloaddition reaction in a single-crystal-to-single-crystal fashion, yielding the triazoline-linked polymer. A unique advantage of this reaction is that the triazoline can be converted to aziridine by simple heating, which we exploited for the otherwise challenging post-synthetic backbone modification of the polymer. This reaction may revolutionize the field of polymer science.
Collapse
Affiliation(s)
- Kana M Sureshan
- Indian Institute of Science Education and Research, School of Chemistry, Thiruvananthapuram, Maruthamala, 695551, Thiruvananthapuram, INDIA
| | - Ravichandran Khazeber
- Indian Institute of Science Education and Research Thiruvananthapuram, School of Chemistry, Maruthamala, Vithura, 695551, Thiruvananthapuram, INDIA
| |
Collapse
|
39
|
Giuri D, Marshall LJ, Wilson C, Seddon A, Adams DJ. Understanding gel-to-crystal transitions in supramolecular gels. SOFT MATTER 2021; 17:7221-7226. [PMID: 34286796 DOI: 10.1039/d1sm00770j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most supramolecular gels are stable or assumed to be stable over time, and aging effects are often not studied. However, some gels do show clear changes on aging, and a small number of systems exhibit gel-to-crystal transitions. In these cases, crystals form over time, typically at the expense of the network underpinning the gel; this leads to the gel falling apart. These systems are rare, and little is known about how these gel-to-crystal transitions occur. Here, we use a range of techniques to understand in detail a gel-to-crystal transition for a specific functionalised dipeptide based gelator. We show that the gel-to-crystal transition depends on the final pH of the medium which we control by varying the amount of glucon-δ-lactone (GdL) added. In the gel phase, at low concentrations of GdL, and at early time points with high concentrations of GdL, we are able to show the nanometre scale dimensions of the self-assembled fibre using SAXS; however there is no evidence of molecular ordering of the gel fibres in the WAXS. At low concentrations of GdL, these self-assembled fibres stiffen with time but do not crystallise over the timescale of the SAXS experiment. At high concentrations of GdL, the fibres are already stiffened, and then, as the pH drops further, give way to the presence of crystals which appear to grow preferentially along the direction of the fibre axis. We definitively show therefore that the gel and crystal phase are not the same. Our work shows that many assumptions in the literature are incorrect. Finally, we also show that the sample holder geometry is an important parameter for these experiments, with the rate of crystallisation depending on the holder in which the experiment is carried out.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Libby J Marshall
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK. and Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
40
|
Hu F, Bi X, Chen X, Pan Q, Zhao Y. Single-crystal-to-single-crystal Transformations for the Preparation of Small Molecules, 1D and 2D Polymers Single Crystals. CHEM LETT 2021. [DOI: 10.1246/cl.200931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fan Hu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinwen Bi
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinsheng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qingyan Pan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
41
|
|
42
|
Hema K, Ravi A, Raju C, Sureshan KM. Polymers with advanced structural and supramolecular features synthesized through topochemical polymerization. Chem Sci 2021; 12:5361-5380. [PMID: 34168781 PMCID: PMC8179609 DOI: 10.1039/d0sc07066a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Polymers are an integral part of our daily life. Hence, there are constant efforts towards synthesizing novel polymers with unique properties. As the composition and packing of polymer chains influence polymer's properties, sophisticated control over the molecular and supramolecular structure of the polymer helps tailor its properties as desired. However, such precise control via conventional solution-state synthesis is challenging. Topochemical polymerization (TP), a solvent- and catalyst-free reaction that occurs under the confinement of a crystal lattice, offers profound control over the molecular structure and supramolecular architecture of a polymer and usually results in ordered polymers. In particular, single-crystal-to-single-crystal (SCSC) TP is advantageous as we can correlate the structure and packing of polymer chains with their properties. By designing molecules appended with suitable reactive moieties and utilizing the principles of supramolecular chemistry to align them in a reactive orientation, the synthesis of higher-dimensional polymers and divergent topologies has been achieved via TP. Though there are a few reviews on TP in the literature, an exclusive review showcasing the topochemical synthesis of polymers with advanced structural features is not available. In this perspective, we present selected examples of the topochemical synthesis of organic polymers with sophisticated structures like ladders, tubular polymers, alternating copolymers, polymer blends, and other interesting topologies. We also detail some strategies adopted for obtaining distinct polymers from the same monomer. Finally, we highlight the main challenges and prospects for developing advanced polymers via TP and inspire future directions in this area.
Collapse
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala, Vithura Thiruvananthapuram-695551 India
| | - Arthi Ravi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala, Vithura Thiruvananthapuram-695551 India
| | - Cijil Raju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala, Vithura Thiruvananthapuram-695551 India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala, Vithura Thiruvananthapuram-695551 India
| |
Collapse
|
43
|
Hema K, Ravi A, Raju C, Pathan JR, Rai R, Sureshan KM. Topochemical polymerizations for the solid-state synthesis of organic polymers. Chem Soc Rev 2021; 50:4062-4099. [PMID: 33543741 DOI: 10.1039/d0cs00840k] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Topochemical polymerizations are solid-state reactions driven by the alignment of monomers in the crystalline state. The molecular confinement in the monomer crystal lattice offers precise control over the tacticity, packing and crystallinity of the polymer formed in the topochemical reaction. As topochemical reactions occur under solvent- and catalyst-free conditions, giving products in high yield and selectivity/specificity that do not require tedious chromatographic purification, topochemical polymerizations are highly attractive over traditional solution-phase polymer synthesis. By this method, polymers having sophisticated structures and desired topologies can be availed. Often, such ordered packing confers attractive properties to the topochemically-synthesized polymers. Diverse categories of topochemical polymerizations are known, such as polymerizations via [2+2], [4+4], [4+2], and [3+2] cycloadditions, and polymerization of diynes, triynes, dienes, trienes, and quinodimethanes, each of which proceed under suitable stimuli like heat, light or pressure. Each class of these reactions requires a unique packing arrangement of the corresponding monomers for the smooth reaction and produces polymers with distinct properties. This review is penned with the intent of bringing all the types of topochemical polymerizations into a single platform and communicating the versatility of these lattice-controlled polymerizations. We present a brief history of the development of each category and comprehensively review the topochemical synthesis of fully-organic polymers reported in the last twenty years, particularly in crystals. We mainly focus on the various molecular designs and crystal engineering strategies adopted to align monomers in a suitable orientation for polymerization. Finally, we analyze the current challenges and future perspectives in this research field.
Collapse
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Arthi Ravi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Cijil Raju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Javed R Pathan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Rishika Rai
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
44
|
Zhang Q, Peng W, Li Y, Zhang F, Fan X. Topochemical synthesis of low-dimensional nanomaterials. NANOSCALE 2020; 12:21971-21987. [PMID: 33118593 DOI: 10.1039/d0nr04763e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past several decades, nanomaterials have been extensively studied owing to having a series of unique physical and chemical properties that exceed those of conventional bulk materials. Researchers have developed a lot of strategies for the synthesis of low-dimensional nanomaterials. Among them, topochemical synthesis has attracted increasing attention because it can provide more new nanomaterials by improving and upgrading inexpensive and accessible nanomaterials. In this review, we summarize and analyze many existing topochemical synthesis methods, including selective etching, liquid phase reactions, high-temperature atmosphere reactions, electrochemically assisted methods, etc. The future direction of topochemical synthesis is also proposed.
Collapse
Affiliation(s)
- Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
45
|
Athiyarath V, Sureshan KM. Designed Synthesis of a 1D Polymer in Twist-Stacked Topology via Single-Crystal-to-Single-Crystal Polymerization. Angew Chem Int Ed Engl 2020; 59:15580-15585. [PMID: 32779302 DOI: 10.1002/anie.202006758] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Indexed: 12/16/2022]
Abstract
To synthesize a fully organic 1D polymer in a novel twist-stacked topology, we designed a peptide monomer HC≡CCH2 -NH-Ile-Leu-N3 , which crystallizes with its molecules H-bonded along a six-fold screw axis. These H-bonded columns pack parallelly such that molecules arrange head-to-tail, forming linear non-covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist-stack along the screw axis. Crystals of this monomer, on heating, undergo single-crystal-to-single-crystal (SCSC) topochemical azide-alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4-triazole-linked polymer in a twist-stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre-decided topologies.
Collapse
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
46
|
Athiyarath V, Sureshan KM. Designed Synthesis of a 1D Polymer in Twist‐Stacked Topology via Single‐Crystal‐to‐Single‐Crystal Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vignesh Athiyarath
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
47
|
Hema K, Sureshan KM. β-Sheet to Helical-Sheet Evolution Induced by Topochemical Polymerization: Cross-α-Amyloid-like Packing in a Pseudoprotein with Gly-Phe-Gly Repeats. Angew Chem Int Ed Engl 2020; 59:8854-8859. [PMID: 32149438 DOI: 10.1002/anie.201914975] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Protein-mimics are of great interest for their structure, stability, and properties. We are interested in the synthesis of protein-mimics containing triazole linkages as peptide-bond surrogate by topochemical azide-alkyne cycloaddition (TAAC) polymerization of azide- and alkyne-modified peptides. The rationally designed dipeptide N3 -CH2 CO-Phe-NHCH2 CCH (1) crystallized in a parallel β-sheet arrangement and are head-to-tail aligned in a direction perpendicular to the β-sheet-direction. Upon heating, crystals of 1 underwent single-crystal-to-single-crystal polymerization forming a triazole-linked pseudoprotein with Gly-Phe-Gly repeats. During TAAC polymerization, the pseudoprotein evolved as helical chains. These helical chains are laterally assembled by backbone hydrogen bonding in a direction perpendicular to the helical axis to form helical sheets. This interesting helical-sheet orientation in the crystal resembles the cross-α-amyloids, where α-helices are arranged laterally as sheets.
Collapse
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
48
|
Hema K, Sureshan KM. β‐Sheet to Helical‐Sheet Evolution Induced by Topochemical Polymerization: Cross‐α‐Amyloid‐like Packing in a Pseudoprotein with Gly‐Phe‐Gly Repeats. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
49
|
Wang CG, Chong AML, Pan HM, Sarkar J, Tay XT, Goto A. Recent development in halogen-bonding-catalyzed living radical polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00939c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development and applications of an organocatalyzed living radical polymerization via halogen-bonding catalysis, i.e., reversible complexation mediated polymerization (RCMP), are highlighted.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Amerlyn Ming Liing Chong
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Houwen Matthew Pan
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Xiu Ting Tay
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| |
Collapse
|