1
|
Zhang C, Fan S, Zhang J, Yang G, Cai C, Chen S, Fang Y, Wan W. A multifunctional trap-capture-kill antibacterial system for enhanced wound healing via modified decellularized mushroom aerogels. Bioact Mater 2025; 50:232-245. [PMID: 40276540 PMCID: PMC12019855 DOI: 10.1016/j.bioactmat.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Wound infections are prevalent and can result in prolonged healing times. In this study, we referred to the "trap-capture-kill" antibacterial strategy to create a wound dressing (DS/PDA@GO-L) by coupling graphene oxide (GO) with lysine and coating it onto the decellularized mushroom stem (DS) using polydopamine (PDA). The mechanism of action of the bacteria-killing process involves lysine chemotaxis and the siphoning effect of DS aerogel, with the process of killing the bacteria being initiated via near-infrared photothermal treatment. In vitro studies demonstrated that DS/PDA@GO-L exhibited excellent blood and cell compatibility, while in vivo experiments revealed its remarkable efficacy in combating bacterial infections. Specifically, the combination of DS/PDA@GO-L with photothermal therapy led to the elimination of over 95 % of S. aureus, E. coli, and Pseudomonas aeruginosa. Furthermore, the aerogel, when used in conjunction with photothermal therapy, significantly reduced bacterial infection at the wound site and accelerated wound healing. During the wound's proliferative phase, it notably enhanced vascularization and extracellular matrix deposition. Furthermore, immunohistochemical staining revealed that bacterial clearance led to a reduction in pro-inflammatory responses and a decrease in the expression of pro-inflammatory cytokines, thereby restoring the wound's inflammatory environment to a pro-regenerative state. Taken together, the developed DS/PDA@GO-L holds great potential in the field of infected skin wound healing.
Collapse
Affiliation(s)
- Chuwei Zhang
- Department of Burn and Plastic Surgery, Department of Wound Repair Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Shuai Fan
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jing Zhang
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ganghua Yang
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chao Cai
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Shixuan Chen
- Department of Burn and Plastic Surgery, Department of Wound Repair Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yongjin Fang
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Wenbing Wan
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
2
|
Li L, Ding L, Zhang X, Zhang C, Wang M, Gu Z. Catalytic Atroposelective aza-Grob Fragmentation: An Approach toward Axially Chiral Biarylnitriles. J Am Chem Soc 2025; 147:17209-17216. [PMID: 40327742 DOI: 10.1021/jacs.5c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Grob fragmentation is a powerful synthetic tool for cleaving C-C bonds, which was particularly useful in the construction of seven- to nine-membered carbocycles or heterocycles. This reaction typically breaks one C-C bond and one C-X bond and forms two unsaturated functional groups. As no stereogenic centers are generated, catalytic asymmetric Grob fragmentation has remained unexplored. In this study, we have successfully developed a catalytic asymmetric aza-Grob fragmentation of α-keto oxime esters, achieving atroposelective C-C bond cleavage to construct axially chiral biarylnitriles. Single-crystal X-ray diffraction analysis of oxime esters elucidated the structure-reactivity relationship, highlighting the role of torsional strain. These studies also revealed the unique role of the 2-phenyl benzoyl group in controlling the substrate conformation, tuning reactivity, and stereoselectivity. The 1H NMR titration experiments provided brief insights into the activation mode of the catalyst with the substrate, suggesting a multi-hydrogen-bonding interaction model.
Collapse
Affiliation(s)
- Lin Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Xue Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chengnuo Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
3
|
Shi X, Song J, Wei D. An analysis method including orbital overlap directions for predicting π electron properties and reactivity vectors. Nat Commun 2025; 16:3013. [PMID: 40148315 PMCID: PMC11950387 DOI: 10.1038/s41467-025-58281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
An analysis method with the name of the Projection of Orbital Coefficient Vector (POCV) has been proposed for predicting π electronic properties, aromaticity, and the directional reactivity of molecules including reactivity vectors. This approach significantly differs from previous computational methods by explicitly accounting for orbital overlap directions. Using the POCV method, accurate predictions of π electron properties and directional reactivity indices have been successfully demonstrated across various unsaturated molecules. To illustrate the advantages of POCV over conventional methods, we present several case studies involving the computation of π electron properties and reactivity vectors for diverse molecular systems, including non-planar axially chiral molecules, nucleophilic and electrophilic carbenes, and linear conjugated molecules. Here we show, the POCV method enables accurate prediction of chemical reaction sites with multiple orbital overlap directions, and facilitates the calculations of π electron properties.
Collapse
Affiliation(s)
- Xiaofei Shi
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jinshuai Song
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Donghui Wei
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
4
|
Ou L, Li H, Wang W, Zhao Y, Fu H. Ambient Temperature Cleavages of Amides in an Aqueous Medium for the Ipsilateral Effect of 1,8-Substituents on Naphthalene. Org Lett 2025; 27:2098-2103. [PMID: 39976536 DOI: 10.1021/acs.orglett.5c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
The selective release of a molecule in its native form from a constructed framework is very attractive in the chemical and biological fields. The amide bond is ubiquitous in biological and chemical systems. However, the cleavage of an unmodified typical amide is a great challenge because of its high level of stabilization. Here, couplings of 8-azido-1-naphthoic acid prepared by us with amines afforded 8-azido-1-naphthamides. Reductions of 8-azido in 8-azido-1-naphthamides with sodium sulfide yielded 8-amino-1-naphthamides, and then, fast intramolecular nucleophilic attack of 8-amino to carbonyl of 1-amido in the presence of silica gel as the additive afforded 2,3-benzo[cd]indol-2(1H)-one freeing amines in almost quantitative conversion rates for the ipsilateral effect of 1,8-substituents on naphthalene. Furthermore, this strategy was extended to the cleavages of esters (alkyl 8-azido-1-naphthoates) successfully. The cleavages of amides and esters were performed in an aqueous medium at room temperature with wide functional group tolerance and were suitable for gram-scale production.
Collapse
Affiliation(s)
- Lunyu Ou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongyun Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weifeng Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yufen Zhao
- Yufen Zhao-Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
5
|
Chen B, Feng TT, Zhou DG, Yang LJ. Mechanisms of C(sp 3)-H Functionalization of Acetonitrile or Acetone with Alkynes: A DFT Investigation. J Chem Inf Model 2025; 65:1953-1966. [PMID: 39912650 DOI: 10.1021/acs.jcim.4c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The mechanisms for the C(sp3)-H activation and addition reactions between acetonitrile (or acetone) and alkynes have been investigated with the M06-2X-D3/ma-def2-TZVP method and basis set. The SMD (solvation model based on solute electron density) model was applied to simulate the solvent effect. In the first and second reactions, 2-phenylbut-3-yn-2-ol reacted with acetonitrile and acetone, respectively. First, the C(sp3)-H activations of acetonitrile and acetone could be achieved by PhCOO• and t-BuO• radicals. Then, addition reactions converted 2-phenylbut-3-yn-2-ol into final products P1 and P2. Gibbs free energy surfaces of these two reactions suggest that blue lines would be the favorable paths with lower Gibbs energy barriers, and the terminal C atom of the C≡C bond is the best reactive site. Moreover, the analysis of the IRI (Interaction Region Indicator) reveals the Z- and E-configuration transformations. While in the third and fourth reactions, methyl(2-(phenylethynyl)phenyl)sulfane has interactions with acetonitrile and acetone via some paths, respectively. Gibbs free energy profiles show that the C10 atom, rather than the C11 atom, has priority, and the blue lines are favorable. Furthermore, the action mode of Na2HPO4 could reduce the energy barrier and benefit the reaction. vdW (van der Waals) interactions play an important role in the choice for the reactive site. In the fifth (or sixth) reaction, it happened between 1-(2-(methylthio)phenyl)-3-phenylprop-2-yn-1-one and acetontrile (or acetone) to yield the final product P5 (or P6). The computational results uncovered the blue line is the best path, and the choice for the reactive site depends on the vdW interactions, which reveals the origin of selectivity. In addition, the investigation for the byproducts have been carried out, and these can explain the reason that only the main product is produced. Both of those can agree with the experimental results. The localized orbital locator (LOL) isosurfaces, Laplacian bond order (LBO), electron density of the bond critical point (ρBCP), electron spin density isosurface graphs, and IRI graphs can be used to analyze the structure and reveal the reaction substances.
Collapse
Affiliation(s)
- Bin Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Tian-Tian Feng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Li-Jun Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| |
Collapse
|
6
|
Szabados H, Šebesta R. Recent advances in organocatalytic atroposelective reactions. Beilstein J Org Chem 2025; 21:55-121. [PMID: 39811683 PMCID: PMC11729692 DOI: 10.3762/bjoc.21.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Axial chirality is present in a variety of naturally occurring compounds, and is becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis. Atroposelective organocatalytic reactions are discussed according to the dominant catalyst activation mode. For covalent organocatalysis, the typical enamine and iminium modes are presented, followed by N-heterocyclic carbene-catalyzed reactions. The bulk of the review is devoted to non-covalent activation, where chiral Brønsted acids feature as the most prolific catalytic structure. The last part of the article discusses hydrogen-bond-donating catalysts and other catalyst motifs such as phase-transfer catalysts.
Collapse
Affiliation(s)
- Henrich Szabados
- Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
7
|
Wang QQ, Qiao Y, Wei D. Unraveling proton-coupled electron transfer in cofactor-free oxidase- and oxygenase-catalyzed oxygen activation: a theoretical view. Phys Chem Chem Phys 2024; 27:20-31. [PMID: 39628287 DOI: 10.1039/d4cp03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Oxygen plays a crucial role in the metabolic processes of non-anaerobic organisms. However, a detailed understanding of how triplet oxygen participates in the enzymatic oxidation of organic compounds involved in life processes is still lacking. It is noteworthy that recent studies have found that cofactor-free oxidase- and oxygenase-catalyzed oxygen activation occurs through proton-coupled electron transfer (PCET), which is significantly different from the previously proposed single electron transfer (SET) mechanism. Herein, we summarize the recent advances in the general mechanism of catalytic activation reactions of triplet oxygen by these enzymes. We believe that this review not only helps in providing a deep understanding of the processes involved in oxygen metabolism in organisms but also provides valuable theoretical reference data for designing more efficient enzyme mutants for treating diseases and handling environmental pollution in the future.
Collapse
Affiliation(s)
- Qian-Qian Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
8
|
Qu H, Huo C, Ge J, Xue X, Gu Z, Deng R. Symmetric Anion Mediated Dynamic Kinetic Asymmetric Knoevenagel Reaction for N-C and N-N Atropisomers Synthesis. Angew Chem Int Ed Engl 2024; 63:e202410012. [PMID: 38958836 DOI: 10.1002/anie.202410012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
A symmetric anion mediated dynamic kinetic asymmetric Knoevenagel reaction was established as a general and efficient method for accessing both N-C and N-N atropisomers. The resulting highly enantio-pure pyridine-2,6(1H,3H)-diones exhibit diverse structures and functional groups. The key to excellent regio- and remote enantiocontrol could be owed to the hydrogen bond between the enolate anion and triflamide block of the organocatalyst. This connected the enolate anion and iminium cation by a chiral backbone. The mechanism investigation via control experiments, correlation analysis, and density functional theory calculations further revealed how the stereochemical information was transferred from the catalyst into the axially chiral pyridine-2,6(1H,3H)-diones. The synthetic applications also demonstrated the reaction's potential.
Collapse
Affiliation(s)
- Hongyu Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chenyang Huo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jimeng Ge
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoping Xue
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruixian Deng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
9
|
Gruzdev DA, Telegina AA, Ezhikova MA, Kodess MI, Levit GL, Krasnov VP. Synthesis of Novel Planar-Chiral Charge-Compensated nido-Carborane-Based Amino Acid. Molecules 2024; 29:4487. [PMID: 39339482 PMCID: PMC11434195 DOI: 10.3390/molecules29184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Amino acids with unusual types of chirality and their derivatives have recently attracted attention as precursors in the synthesis of chiral catalysts and peptide analogues with unique properties. In this study, we have synthesized a new nido-carborane-based planar-chiral amino acid, in the molecule of which the amino group is directly bonded to the B(3) atom, and the carboxyl group is attached to the B(9) atom through the CH2S+(Me) fragment. 3-Amino-9-dimethylsulfonio-nido-carborane, prepared in three steps from 3-amino-closo-carborane in a high yield, was a key intermediate in the synthesis of the target planar-chiral amino acid. The carboxymethyl group at the sulfur atom was introduced by the demethylation reaction of the dimethylsulfonio derivative, followed by S-alkylation. The structure of new 3,9-disubstituted nido-carboranes was studied for the first time using NMR spectroscopy. The resonances of all boron atoms in the 11B NMR spectrum of 3-amino-9-dimethylsulfonio-nido-carborane were assigned based on the 2D NMR correlation experiments. The nido-carborane-based planar-chiral amino acid and related compounds are of interest as a basis for peptide-like compounds and chiral ligands.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| |
Collapse
|
10
|
Cen S, Li SS, Zhao Y, Zhao MX, Zhang Z. Catalytic Asymmetric Synthesis of Unnatural Axially Chiral Biaryl δ-Amino Acid Derivatives via a Chiral Phenanthroline-Potassium Catalyst-Enabled Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202407920. [PMID: 38877853 DOI: 10.1002/anie.202407920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 07/31/2024]
Abstract
Axially chiral biaryl δ-amino acids possess significantly different conformational properties and chiral environment from centrally chiral amino acids, therefore, have drawn considerable attention in the fields of synthetic and medicinal chemistry. Herein, a novel chiral phenanthroline-potassium catalyst has been developed by constructing a well-organized axially chiral ligand composed of one 1,10-phenanthroline unit and two axially chiral 1,1'-bi-2-naphthol (BINOL) units. In the presence of this catalyst, good to excellent yields and enantioselectivities (up to 99 % yield, 98 : 2 er) have been achieved in the ring-opening alcoholytic dynamic kinetic resolution of a variety of biaryl lactams, thereby providing an efficient protocol for catalytic asymmetric synthesis of unnatural axially chiral biaryl δ-amino acid derivatives.
Collapse
Affiliation(s)
- Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Shan-Shan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Mei-Xin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
11
|
Wei Z, Zhao Y, Wang T, Li J, Yuan W, Wei L, Yang X. Bridged Biaryl Atropisomers by Organocatalyzed Kinetic Asymmetric Alcoholysis. Org Lett 2024; 26:7110-7115. [PMID: 39150722 DOI: 10.1021/acs.orglett.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We disclose herein an asymmetric synthesis of axially chiral oxazepine-containing bridged biaryls via CPA-catalyzed kinetic asymmetric alcoholysis. Control experiments showed that this CPA-catalyzed alcoholysis was reversible, and lowering the reaction temperature could almost suppress the reversible reaction, thus providing a series of axially chiral oxazepine-containing bridged biaryl compounds in good to excellent enantioselectivities. The gram-scale reactions and facile derivatizations of the enantioenriched products demonstrate the practical utility of this reaction.
Collapse
Affiliation(s)
- Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Tianyi Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wei Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
12
|
Ansari S, Knipe PC. Atropisomeric Foldamers. Chempluschem 2024; 89:e202400218. [PMID: 38683695 DOI: 10.1002/cplu.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
This concept article explores the emerging role of atropisomerism in foldamer chemistry, a field focussed on oligomers that adopt well-defined conformations through non-covalent interactions. Atropisomerism introduces a novel dimension to foldamer design by restricting rotational freedom around single bonds to dictate molecular shape with precision. Despite the prevalence of atropisomeric bonds in organic synthesis, their application within foldamers remains underexplored. Here, we discuss key developments in both backbone and sidechain atropisomerism, and suggest future directions for atropisomeric foldamers in the context of a recent surge in atropselective synthetic methods. We propose that judicious use of atropisomerism may serve as a transformative tool in the construction of shape-defined macromolecules.
Collapse
Affiliation(s)
- Saima Ansari
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Peter C Knipe
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
13
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Deng R, Dong P, Ge J, Zhang W, Xue X, Duan L, Shi L, Gu Z. Regio- and Atroposelective Ring-Opening of 1H-Benzo[4,5]oxazolopyridinones. Angew Chem Int Ed Engl 2024; 63:e202402231. [PMID: 38407456 DOI: 10.1002/anie.202402231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The development of new methods for regio- and stereoselective activation of C-O bonds in ethers holds significant promise for synthetic chemistry, offering advantages in terms of environmental sustainability and economic efficiency. Moreover, the C-N atropisomers represent a fascinating and crucial chiral system, extensively found in natural products, pharmaceutical leads, and the frameworks of advanced materials. In this work, we have introduced a nickel-catalyzed regio- and enantioselective carbon-oxygen arylation reaction for atroposelective synthesis of N-arylisoquinoline-1,3(2H,4H)-diones. The high regioselectivity of C-O cleavage benefits from the high stability of the in situ formed (amido)ethenolate via oxidative addition. Additionally, the self-activation of the aryl C-O bond facilitates the reaction under mild conditions, leading to outstanding enantioselectivities. The diverse post-functionalizations of the axially chiral isoquinoline-1,3(2H,4H)-diones further highlighted the utility of this protocol in preparing valuable C-N atropisomers, including the chiral phosphine ligands.
Collapse
Affiliation(s)
- Ruixian Deng
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Puyang Dong
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jimeng Ge
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wenjing Zhang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoping Xue
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450001, China
| | - Longhui Duan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Linlin Shi
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Yang Y, Wu C, Xing J, Dou X. Developing Biarylhemiboronic Esters for Biaryl Atropisomer Synthesis via Dynamic Kinetic Atroposelective Suzuki-Miyaura Cross-Coupling. J Am Chem Soc 2024; 146:6283-6293. [PMID: 38381856 DOI: 10.1021/jacs.3c14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We herein introduce biarylhemiboronic esters as a new type of bridged biaryl reagent for asymmetric synthesis of axially chiral biaryl structures, and the palladium-catalyzed asymmetric Suzuki-Miyaura cross-coupling of biarylhemiboronic esters is developed. This dynamic kinetic atroposelective coupling reaction exhibits high enantioselectivity, good functional group tolerance, and a broad substrate scope. The synthetic application of the current method was demonstrated by transformations of the product and a programmed synthesis of chiral polyarene. Preliminary mechanistic studies suggested that the reaction proceeded via an enantio-determining dynamic kinetic atroposelective transmetalation step.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Junhao Xing
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
16
|
Cai Y, Zhao Y, Tang K, Zhang H, Mo X, Chen J, Huang Y. Amide C-N bonds activation by A new variant of bifunctional N-heterocyclic carbene. Nat Commun 2024; 15:496. [PMID: 38216571 PMCID: PMC10786861 DOI: 10.1038/s41467-024-44756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
We report an organocatalyst that combines a triazolium N-heterocyclic carbene (NHC) with a squaramide as a hydrogen-bonding donor (HBD), which can effectively catalyze the atroposelective ring-opening of biaryl lactams via a unique amide C-N bond cleavage mode. The free carbene species attacks the amide carbonyl, forming an axially chiral acyl-azolium intermediate. Various axially chiral biaryl amines can be accessed by this methodology with up to 99% ee and 99% yield. By using mercaptan as a catalyst turnover agent, the resulting thioester synthon can be transformed into several interesting atropisomers. Both control experiments and theoretical calculations reveal the crucial role of the hybrid NHC-HBD skeleton, which activates the amide via H-bonding and brings it spatially close to the carbene centre. This discovery illustrates the potential of the NHC-HBD chimera and demonstrates a complementary strategy for amide bond activation and manipulation.
Collapse
Affiliation(s)
- Yuxing Cai
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Yuxin Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kai Tang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Hong Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Xueling Mo
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
17
|
Wei L, Li J, Zhao Y, Zhou Q, Wei Z, Chen Y, Zhang X, Yang X. Chiral Phosphoric Acid Catalyzed Asymmetric Hydrolysis of Biaryl Oxazepines for the Synthesis of Axially Chiral Biaryl Amino Phenol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202306864. [PMID: 37338333 DOI: 10.1002/anie.202306864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The development of catalytic asymmetric reaction with water as the reactant is challenging due to the reactivity- and stereoselectivity-control issues resulted from the low nucleophilicity and the small size of water. We disclose herein a chiral phosphoric acid (CPA) catalyzed atroposelective ring-opening reaction of biaryl oxazepines with water. A series of biaryl oxazepines undergo the CPA catalyzed asymmetric hydrolysis in a highly enantioselective manner. The key for the success of this reaction is the use of a new SPINOL-derived CPA catalyst and the high reactivity of biaryl oxazepine substrates towards water under acidic conditions. Density functional theory calculations suggest that the reaction proceeds via a dynamic kinetic resolution pathway and the CPA catalyzed addition of water to the imine group is both enantio- and rate-determining.
Collapse
Affiliation(s)
- Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuhang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
18
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
19
|
Wu Q, Han J, Huang J, Zhang H, Ren M, Zhang X, Fu Z. Asymmetric synthesis of chiral pyrazolo[3,4- b]pyridin-6-ones under carbene catalysis. Org Biomol Chem 2023; 21:6898-6902. [PMID: 37581413 DOI: 10.1039/d3ob01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A structurally diverse set of chiral pyrazolo[3,4-b]pyridin-6-ones was efficiently prepared in excellent yields with excellent enantioselectivities via N-heterocyclic carbene-catalyzed oxidative [3 + 3] annulation of enals with pyrazol-5-amines. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Qianqian Wu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinna Han
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jie Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Hailong Zhang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Min Ren
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoxiang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenqian Fu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
- Ningbo Institute, Chongqing Technology Innovation Center, Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
20
|
Shi L, Xue X, Hong B, Li Q, Gu Z. Dirhodium(II)/Phosphine Catalyst with Chiral Environment at Bridging Site and Its Application in Enantioselective Atropisomer Synthesis. ACS CENTRAL SCIENCE 2023; 9:748-755. [PMID: 37122446 PMCID: PMC10141619 DOI: 10.1021/acscentsci.2c01207] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 05/03/2023]
Abstract
A dirhodium(II)/phosphine catalyst with a chiral environment at the bridging site was developed for the asymmetric arylation of phenanthrene-9,10-diones with arylboronic acids. In contrast to the classic chiral bridging carboxylic acid (or derivatives) ligand strategy of bimetallic dirhodium(II) catalysis, in this reaction, tuning both axial and bridging ligands realized the first Rh2(OAc)4/phosphine-catalyzed highly enantioselective carbonyl addition reaction. The kinetic analysis reveals that dirhodium(II) and arylboronic acid follow the first-order kinetics, while phenanthrene-9,10-dione is zeroth-order. These data supported the proposed catalytic cycle, where the key intermediate in the rate-determining step involved the dirhodium(II) complex and arylboronic acid. Finally, axially chiral biaryls were prepared based on a newly developed oxidative ring-opening reaction of α-hydroxyl ketones with a base and molecular oxygen, which featured a central-to-axial chirality transfer radical β-scission step.
Collapse
Affiliation(s)
- Lei Shi
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xiaoping Xue
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Biqiong Hong
- College
of Materials and Chemical Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| | - Qigang Li
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- College
of Materials and Chemical Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| |
Collapse
|
21
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
22
|
Cai B, Cui Y, Zhou J, Wang YB, Yang L, Tan B, Wang JJ. Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styrene-Phosphines. Angew Chem Int Ed Engl 2023; 62:e202215820. [PMID: 36424372 DOI: 10.1002/anie.202215820] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
A Cu/CPA co-catalytic system has been developed for achieving the direct hydrophosphinylation of alkynes with phosphine oxides in delivering novel axially chiral phosphorus-containing alkenes in high yields and excellent enantioselectivities (up to 99 % yield and 99 % ee). DFT calculations were performed to elucidate the reaction pathway and the origin of enantiocontrol. This streamlined and modular methodology establishes a new platform for the design and application of new axially chiral styrene-phosphine ligands.
Collapse
Affiliation(s)
- Baohua Cai
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Cui
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Joelle Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
23
|
Yang X, Wei L, Wu Y, Zhou L, Zhang X, Chi YR. Atroposelective Access to 1,3-Oxazepine-Containing Bridged Biaryls via Carbene-Catalyzed Desymmetrization of Imines. Angew Chem Int Ed Engl 2023; 62:e202211977. [PMID: 36087019 DOI: 10.1002/anie.202211977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 02/02/2023]
Abstract
We disclose herein an atroposelective synthesis of novel bridged biaryls containing medium-sized rings via N-heterocyclic carbene organocatalysis. The reaction starts with addition of the carbene catalyst to the aminophenol-derived aldimine substrate. Subsequent oxidation and intramolecular desymmetrization lead to the formation of 1,3-oxazepine-containing bridged biaryls in good yields and excellent enantioselectivities. These novel bridged biaryl products can be readily transformed into chiral phosphite ligands. Preliminary density function theory calculations suggest that the origin of enantioselectivity arises from the more favorable frontier molecular orbital interactions in the transition state leading to the major product.
Collapse
Affiliation(s)
- Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuelin Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liejin Zhou
- Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, P. R. China
| |
Collapse
|
24
|
Yan Y, Li M, Shi Q, Huang M, Li W, Cao L, Zhang X. Atropoenantioselective Arylation of 5‐Amino‐Isothiazoles with Methyl
p
‐Quinone Carboxylate. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingkun Yan
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Quan Shi
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Min Huang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenzhe Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lianyi Cao
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaomei Zhang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
25
|
Advances in Catalytic C–F Bond Activation and Transformation of Aromatic Fluorides. Catalysts 2022. [DOI: 10.3390/catal12121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The activation and transformation of C–F bonds in fluoro-aromatics is a highly desirable process in organic chemistry. It provides synthetic methods/protocols for the generation of organic compounds possessing single or multiple C–F bonds, and effective catalytic systems for further study of the activation mode of inert chemical bonds. Due to the high polarity of the C–F bond and it having the highest bond energy in organics, C–F activation often faces considerable academic challenges. In this mini-review, the important research achievements in the activation and transformation of aromatic C–F bond, catalyzed by transition metal and metal-free systems, are presented.
Collapse
|
26
|
Li L, Xi J, Hong B, Gu Z. From Peripheral Stereogenic Center to Axial Chirality: Synthesis of 3‐Arylthiophene Atropisomers. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lin Li
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
| | - Junwei Xi
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
| | - Biqiong Hong
- College of Materials and Chemical Engineering Minjiang University Fuzhou Fujian 350108 People's Republic of China
| | - Zhenhua Gu
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
- College of Materials and Chemical Engineering Minjiang University Fuzhou Fujian 350108 People's Republic of China
| |
Collapse
|
27
|
Wang G, Huang J, Zhang L, Han J, Zhang X, Huang J, Fu Z, Huang W. N-heterocyclic carbene-catalyzed atroposelective synthesis of axially chiral 5-aryl 2-pyrones from enals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
28
|
Luo Z, Wang W, Tang T, Zhang S, Huang F, Hu D, Tao L, Qian L, Liao J. Torsional Strain‐Independent Catalytic Enantioselective Synthesis of Biaryl Atropisomers. Angew Chem Int Ed Engl 2022; 61:e202211303. [DOI: 10.1002/anie.202211303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhang‐Hong Luo
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Wen‐Tao Wang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Tian‐Yi Tang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Sen Zhang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Fen Huang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Dan Hu
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Ling‐Fei Tao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Linghui Qian
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Jia‐Yu Liao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University Hangzhou 310018 China
| |
Collapse
|
29
|
Luo ZH, Wang WT, Tang TY, Zhang S, Huang F, Hu D, Tao LF, Qian L, Liao JY. Torsional Strain‐Independent Catalytic Enantioselective Synthesis of Biaryl Atropisomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhang-Hong Luo
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Wen-Tao Wang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Tian-Yi Tang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Sen Zhang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Fen Huang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Dan Hu
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Ling-Fei Tao
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Linghui Qian
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Jia-Yu Liao
- Zhejiang University College of Pharmaceutical Sciences 866 Yuhangtang Road 310058 Hangzhou CHINA
| |
Collapse
|
30
|
Desymmetrization of N-Cbz glutarimides through N-heterocyclic carbene organocatalysis. Nat Commun 2022; 13:4042. [PMID: 35831292 PMCID: PMC9279320 DOI: 10.1038/s41467-022-31760-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/29/2022] [Indexed: 01/12/2023] Open
Abstract
Over the past decade, the catalysis of N-heterocyclic carbenes has achieved significant advances. In this area, aldehydes, enals, and esters, are commonly employed as starting materials through various catalytic activation modes. However, NHC-activated strategy of amide and its derivatives remains elusive. Described herein is the realization of asymmetric desymmetrization of N-Cbz glutarimides with alcohols through an imide C-N bond cleavage under NHC organocatalysis. A structurally diverse set of enantioenriched 4-amido esters is generated with acceptable yields and high enantioselectivities. This method features mild reaction conditions, excellent substrate scope, and excellent atom economy. DFT calculations have been performed to explore the detailed reaction mechanism and the origin of the enantioselectivity, which indicate that the strength of the C-H···O hydrogen bond and C–H⋯π interactions should be responsible for the stereoselectivity. The current strategy could open a door for efficient construction of (R)-Rolipram with excellent stereoselectivity. Desymmetrization of achiral building blocks is one of the most efficient ways to access enantiopure compounds of synthetic relevance. Here, the authors desymmetrize glutarimides with alcohols via an imide C–N bond cleavage under NHC organocatalysis.
Collapse
|
31
|
Zhang X, Zhao K, Gu Z. Transition Metal-Catalyzed Biaryl Atropisomer Synthesis via a Torsional Strain Promoted Ring-Opening Reaction. Acc Chem Res 2022; 55:1620-1633. [PMID: 35647705 DOI: 10.1021/acs.accounts.2c00175] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusArising from the restricted rotation of a single bond caused by steric or electronic effects, atropisomerism is one of the few fundamental categories for molecules to manifest their three-dimensional characters into which axially chiral biaryl compounds fall. Despite the widespread occurrence of axially chiral skeletons in natural products, bioactive molecules, and chiral ligands/organocatalysts, catalytic asymmetric methods for the synthesis of these structures still lag behind demand. Major challenges for the preparation of these chiral biaryls include accessing highly sterically hindered variants while controlling the stereoselectivity. A couple of useful strategies have emerged for the direct asymmetric synthesis of these molecules in the last two decades.Recently, we have engaged in catalytic asymmetric synthesis of biaryl atropisomers via transition metal catalysis, including asymmetric ring-openings of dibenzo cyclic compounds. During these studies, we serendipitously discovered that the two substituents adjacent to the axis cause these dibenzo cyclic molecules to be distorted to minimize steric repulsion. The distorted compounds display higher reactivity in the ring-opening reactions than the non-distorted molecules. In other words, torsional strain can promote a ring-opening reaction. On the basis of this concept, we have successfully realized the catalytic asymmetric ring-opening reaction of cyclic diaryliodoniums, dibenzo silanes, and 9H-fluoren-9-ols, which delivered several differently substituted ortho tetra-substituted biaryl atropisomers in high enantioselectivity. The torsional strain not only activates the substrates toward ring-opening under mild conditions but also changes the chemoselectivity of bond-breaking events. In the palladium-catalyzed carboxylation of S-aryl dibenzothiophenium, the torsional strain inversed the bond selectivity from exocyclic C-S bond cleavage to the ring-opening reaction.In this Account, we summarize our studies on copper-, rhodium-, or palladium-catalyzed asymmetric ring-opening reactions of dibenzo cyclic compounds as a useful collection of methods for the straightforward preparation of ortho tetra-substituted biaryl atropisomers with high enantiopurity on the basis of the above-mentioned torsional strain-promoted ring-opening coupling strategy. In the last part, the torsional strain energies are also discussed with the aid of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xue Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Kun Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
32
|
Wang WT, Zhang S, Tao LF, Pan ZQ, Qian L, Liao JY. Cooperative catalysis-enabled C-N bond cleavage of biaryl lactams with activated isocyanides. Chem Commun (Camb) 2022; 58:6292-6295. [PMID: 35531758 DOI: 10.1039/d2cc01625g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The catalytic reaction of biaryl lactams with activated isocyanides is reported for the first time. By employing a cooperative catalytic system, oxazole-containing axially chiral biaryl anilines were obtained in high yields with excellent enantioselectivities. The key to the success lies in the atroposelective amide C-N bond cleavage with activated isocyanides.
Collapse
Affiliation(s)
- Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Sen Zhang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Ling-Fei Tao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Zi-Qi Pan
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China. .,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| |
Collapse
|
33
|
Organocatalytic dynamic kinetic resolution of N-arylindole lactams: atroposelective construction of axially chiral amino acids bearing a C-N chiral axis. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1209-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Xi J, Yang H, Li L, Zhang X, Li C, Gu Z. Atroposelective Kinetic Resolution of 8 H-Indeno[1,2- c]thiophen-8-ols via Pd-Catalyzed C-C Bond Cleavage Reaction. Org Lett 2022; 24:2387-2392. [PMID: 35297631 DOI: 10.1021/acs.orglett.2c00642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work demonstrates a palladium-catalyzed kinetic resolution/ring-opening reaction of 8H-indeno[1,2-c]thiophen-8-ols. The reaction proceeds in a highly regioselective manner, and both optically active thiophene-phenyl atropisomers and stereogenic 8H-indeno[1,2-c]thiophen-8-ols were obtained with high enantiomeric excesses. The synthetic applications of the obtained thiophenyl atropisomers were briefly investigated.
Collapse
Affiliation(s)
- Junwei Xi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Han Yang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Lin Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xue Zhang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chunyu Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
35
|
Wang J, Guo D. Cinchona Alkaloid Catalyzed Dynamic Kinetic Resolution of Biaryl Aldehydes via Asymmetric Decarboxylative Transamination. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1767-6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAn unprecedented Cinchona alkaloid catalyzed atropoenantioselective transamination of biaryl aldehydes with 2,2-diphenylglycine via a cascade decarboxylation and dynamic kinetic resolution strategy is described. This protocol features broad substrate scope and good functional group tolerance and allows the rapid assembly of axially chiral biaryls in high yields with acceptable to good enantioselectivities. In addition, such structural motifs may have potential applications in enantioselective catalysis as chiral ligands or catalysts.
Collapse
|
36
|
Guo L, Wang J, Luo J, Shi Q, Wei D, Chen X. Prediction on chemoselectivity for selected organocatalytic reactions by the DFT version of the Hückel-defined free valence index. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DFT version of the Hückel-defined free valence (HFV) index has been suggested and successfully used for predicting the origin of chemoselectivity in the selected organocatalytic reactions.
Collapse
Affiliation(s)
- Limin Guo
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Juanjuan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
- Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Jing Luo
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Qianqian Shi
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Xuebo Chen
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
- Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| |
Collapse
|
37
|
Wang G, Huang J, Zhang J, Fu Z. Catalytically atroposelective ring-opening of configurationally labile compounds to access axially chiral biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this minireview, we evaluate and summarize the construction of axially chiral biaryls, and briefly state our personal perspectives on the future advancement of this direction.
Collapse
Affiliation(s)
- Guanjie Wang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenqian Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
38
|
Xue X, Hong B, Feng J, Gu Z. Synthesis of 2-Hydroxy-2'-aroyl-1,1'-biaryls via Oxidative Ring-Opening of 9 H-Fluoren-9-ols. Org Lett 2021; 24:496-500. [PMID: 34965144 DOI: 10.1021/acs.orglett.1c03849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An Oxone-mediated oxidative ring-opening reaction of 4,5-disubstituted 9H-fluoren-9-ols by cleavage of a carbon-carbon bond is reported. 2-Hydroxy-2'-aroyl-1,1'-biaryls can be efficiently prepared by simply heating the mixture of fluoren-9-ols, Oxone, and 1,1,1,3,3,3-hexafluoroisopropanol at 60 °C for 4 h. The persulfate-involved ring-expansion processes were proposed and supported by the DFT calculations.
Collapse
Affiliation(s)
- Xiaoping Xue
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jia Feng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.,College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
39
|
Shang Q, Tang H, Liu Y, Yin M, Su L, Xie S, Liu L, Yang W, Chen Y, Dong J, Zhou Y, Yin SF. Cu(i) catalysis for selective condensation/bicycloaromatization of two different arylalkynes: direct and general construction of functionalized C-N axial biaryl compounds. Chem Sci 2021; 13:263-273. [PMID: 35059176 PMCID: PMC8694356 DOI: 10.1039/d1sc03865f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Selective condensation/bicycloaromatization of two different arylalkynes is firstly developed under ligand-free copper(i)-catalysis, which allows the direct synthesis of C-N axial biaryl compounds in high yields with excellent selectivity and functional group tolerance. Due to the critical effects of Cu(i) catalyst and HFIP, many easily occurring undesired reactions are suppressed, and the coupled five-six aromatic rings are constructed via the selective formation of two C(sp2)-N(sp2) bonds and four C(sp2)-C(sp2) bonds. The achievement of moderate enantioselectivity verifies its potential for the simplest asymmetric synthesis of atropoisomeric biaryls. Western blotting demonstrated that the newly developed compounds are promising targets in biology and pharmaceuticals. This unique reaction can construct structurally diverse C-N axial biaryl compounds that have never been reported by other methods, and might be extended to various applications in materials, chemistry, biology, and pharmaceuticals.
Collapse
Affiliation(s)
- Qian Shang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Haifang Tang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Yongping Liu
- School of Medicine, Hunan University of Chinese Medicine Changsha 410208 China
| | - MingMing Yin
- School of Medicine, Hunan University of Chinese Medicine Changsha 410208 China
| | - Lebin Su
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Shimin Xie
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Lixin Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Wen Yang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine Changsha 410208 China
| | - Jianyu Dong
- Department of Educational Science, Hunan First Normal University Changsha 410205 China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
40
|
Medici F, Resta S, Puglisi A, Rossi S, Raimondi L, Benaglia M. Electrochemical Organic Synthesis of Electron-Rich Biaryl Scaffolds: An Update. Molecules 2021; 26:6968. [PMID: 34834060 PMCID: PMC8618477 DOI: 10.3390/molecules26226968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Biaryl scaffolds are widely spread in biologically important natural products, in numerous therapeutic agents, but they are also considered a privileged class of ligands and (organo)catalysts; therefore, the development of efficient alternative methodologies to prepare such compounds is always attracting much attention. The present review discusses the organic electrosynthesis of biaryls starting from phenols, anilines, naphthols, and naphthylamines. The most significant examples of the works reported in the last decade are presented and classified according to the single class of molecules: after the introduction, the first three sections relate to the reactions of phenols, naphthols, and anilines, respectively; the other two sections refer to cross-coupling and miscellaneous reactions.
Collapse
Affiliation(s)
- Fabrizio Medici
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (S.R.); (A.P.); (S.R.); (L.R.)
| | | | | | | | | | - Maurizio Benaglia
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (S.R.); (A.P.); (S.R.); (L.R.)
| |
Collapse
|
41
|
Hao Y, Zhou P, Niu K, Song H, Liu Y, Zhang J, Wang Q. Synthesis of Indole‐ and Pyrrole‐Fused Seven‐Membered Nitrogen Heterocycles via Acid‐Base Switchable Cyclization Involving Cleavage of Amide C−N Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yanke Hao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry Nankai University Tianjin 300071, People's Republic of China
| | - Pan Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry Nankai University Tianjin 300071, People's Republic of China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry Nankai University Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry Nankai University Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry Nankai University Tianjin 300071, People's Republic of China
| | - Jingjing Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry Nankai University Tianjin 300071, People's Republic of China
- College of Basic Science Tianjin Agricultural University Tianjin 300384 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry Nankai University Tianjin 300071, People's Republic of China
| |
Collapse
|
42
|
Guo D, Peng Q, Zhang B, Wang J. Atroposelective Dynamic Kinetic Resolution via In Situ Hemiaminals Catalyzed by N-Heterocyclic Carbene. Org Lett 2021; 23:7765-7770. [PMID: 34569804 DOI: 10.1021/acs.orglett.1c02780] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Axially chiral amino acids and its derivatives are vital building blocks of bioactive molecules, artificial peptides, and asymmetric catalysts. Herein, we report an unprecedented carbene-catalyzed atroposelective dynamic kinetic resolution to access axially chiral amino esters via in situ hemiaminals. This protocol features a broad substrate scope and good functional group tolerance and allows the rapid assembly of axially chiral amino esters in good to high yields with high enantioselectivities.
Collapse
Affiliation(s)
- Donghui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Qiupeng Peng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Bei Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
43
|
Wang G, Zhang M, Guan Y, Zhang Y, Hong X, Wei C, Zheng P, Wei D, Fu Z, Chi YR, Huang W. Desymmetrization of Cyclic 1,3-Diketones under N-Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. RESEARCH 2021; 2021:9867915. [PMID: 34549186 PMCID: PMC8422277 DOI: 10.34133/2021/9867915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Symmetric 1,3-diketones with fluorine or fluorinated substituents on the prochiral carbon remain to be established. Herein, we have developed a novel prochiral fluorinated oxindanyl 1,3-diketone and successfully applied these substrates in carbene-catalyzed asymmetric desymmetrization. Accordingly, a versatile strategy for asymmetric generation of organofluorines with fluorine or fluorinated methyl groups has been developed. Multiple stereogenic centers were selectively constructed with satisfactory outcomes. Structurally diverse enantioenriched organofluorines were generated with excellent results in terms of yields, diastereoselectivities, and enantioselectivities. Notably, exchanging fluorinated methyl groups to fluorine for this prochiral 1,3-diketones leads to switchable stereoselectivity. Mechanistic aspects and origin of stereoselectivity were studied by DFT calculations. Notably, some of the prepared organofluorines demonstrated competitive antibacterial activities.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Min Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yezhi Guan
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xianfang Hong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Pengcheng Zheng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Donghui Wei
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.,Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
44
|
Zhang Y, Guo J, Han J, Zhou X, Cao W, Fu Z. Bifunctional squaramide catalyzed asymmetric synthesis of chiral α-mercaptosilanes. Org Biomol Chem 2021; 19:6412-6416. [PMID: 34235529 DOI: 10.1039/d1ob00981h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bifunctional squaramide-catalyzed nucleophilic addition of thiophenols to easily available β-silyl α,β-unsaturated carbonyl compounds has been successfully developed. A structurally diverse set of chiral α-mercaptosilanes was efficiently prepared in good to excellent yields with acceptable enantioselectivities. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinna Han
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
45
|
Qian L, Tao LF, Wang WT, Jameel E, Luo ZH, Zhang T, Zhao Y, Liao JY. Catalytic Atroposelective Dynamic Kinetic Resolution of Biaryl Lactones with Activated Isocyanides. Org Lett 2021; 23:5086-5091. [PMID: 34110167 DOI: 10.1021/acs.orglett.1c01632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report herein an unprecedented atroposelective dynamic kinetic resolution of Bringmann's lactones with C-nucleophiles. By the use of activated isocyanides as the reagent, a wide range of novel axially chiral oxazole-substituted biaryl phenols were accessed in high yields with high enantioselectivities. Key to the success of this process lies in the tandem atroposelective addition of isocyanides to the lactone substrate followed by a rapid cyclization, overcoming the challenge of stereochemical leakage induced by lactol formation.
Collapse
Affiliation(s)
- Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ling-Fei Tao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ehtesham Jameel
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhang-Hong Luo
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
46
|
Wang T, Wang Y, Xu K, Zhang Y, Guo J, Liu L. Transition‐Metal‐Free DMAP‐Mediated Aromatic Esterification of Amides with Organoboronic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Wang
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
| | - Yanqing Wang
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
| | - Kai Xu
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
| | - Yuheng Zhang
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
| | - Jiarui Guo
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
| | - Lantao Liu
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
- College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
47
|
Jiang P, Guo J, Gong M, Zhou X, Cao W, Fu Z, Huang W. N-Heterocyclic carbene-catalyzed [3 + 3] annulation of bromoenals with 2-aminochromones to access chromeno[2,3- b]pyridinones. Org Biomol Chem 2021; 19:4882-4886. [PMID: 34013952 DOI: 10.1039/d1ob00720c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Heterocyclic carbene-catalyzed [3 + 3] annulation of bromoenals with 2-aminochromones has been successfully developed. A structurally diverse set of chromeno[2,3-b]pyridinones was efficiently constructed in acceptable to excellent yields. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Pengrui Jiang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
48
|
Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Catalytic and Enantioselective Control of the C-N Stereogenic Axis via the Pictet-Spengler Reaction. Angew Chem Int Ed Engl 2021; 60:12279-12283. [PMID: 33651459 DOI: 10.1002/anie.202100363] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/16/2021] [Indexed: 12/11/2022]
Abstract
An unprecedented example of a chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler reaction of N-arylindoles is reported. Highly enantioenriched N-aryl-tetrahydro-β-carbolines with C-N bond axial chirality are obtained via dynamic kinetic resolution. The hydrogen bond donor introduced on the bottom aromatic ring, forming a secondary interaction with the phosphoryl oxygen, is essential to achieving high enantioselectivity. A wide variety of substituents are tolerable with this transformation to provide up to 98 % ee. The application of electron-withdrawing group-substituted benzaldehydes enables the control of both axial and point stereogenicity. Biological evaluation of this new and unique scaffold shows promising antiproliferative activity and emphasizes the significance of atroposelective synthesis.
Collapse
Affiliation(s)
- Ahreum Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Aram Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Sunjung Park
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Sangji Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Hongil Jo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jayoung Song
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Yongseok Kwon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| |
Collapse
|
49
|
Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Catalytic and Enantioselective Control of the C–N Stereogenic Axis via the Pictet–Spengler Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ahreum Kim
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Aram Kim
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Sunjung Park
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Sangji Kim
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Hongil Jo
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Kang Min Ok
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul Republic of Korea
| | - Jayoung Song
- College of Pharmacy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul Republic of Korea
| | - Yongseok Kwon
- Department of Chemistry Sogang University 35 Baekbeom-ro, Mapo-gu Seoul Republic of Korea
| |
Collapse
|
50
|
Chen T, Wang A, Zhang L, Wei C, Huang J, Liu X, Fu Z. Formal [4 + 1] annulation of fluorinated sulfonium salt with cyclic unsaturated imines to access CF 3-substituted pyrroles. Org Biomol Chem 2021; 19:3128-3133. [PMID: 33885566 DOI: 10.1039/d1ob00218j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Formal [4 + 1] annulation of easily available fluorinated sulfonium salt with cyclic unsaturated imines has been successfully developed. A structurally diverse set of CF3-substituted dihydropyrroles was efficiently constructed in acceptable to excellent yields with excellent diastereoselectivities. The resulting CF3-containing dihydropyrroles from this transition metal-free strategy could be easily transformed to pyrroles in good yields under basic conditions.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | |
Collapse
|