1
|
Martinez-Calderon M, Groussin B, Bjelland V, Chevallay E, Fedosseev VN, Himmerlich M, Lorenz P, Manjavacas A, Marsh BA, Neupert H, Rossel RE, Wuensch W, Granados E. Hot electron enhanced photoemission from laser fabricated plasmonic photocathodes. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1975-1983. [PMID: 39635084 PMCID: PMC11501739 DOI: 10.1515/nanoph-2023-0552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2024]
Abstract
Photocathodes are key elements in high-brightness electron sources and ubiquitous in the operation of large-scale accelerators, although their operation is often limited by their quantum efficiency and lifetime. Here, we propose to overcome these limitations by utilizing direct-laser nanostructuring techniques on copper substrates, improving their efficiency and robustness for next-generation electron photoinjectors. When the surface of a metal is nanoengineered with patterns and particles much smaller than the optical wavelength, it can lead to the excitation of localized surface plasmons that produce hot electrons, ultimately contributing to the overall charge produced. In order to quantify the performance of laser-produced plasmonic photocathodes, we measured their quantum efficiency in a typical electron gun setup. Our experimental results suggest that plasmon-induced hot electrons lead to a significant increase in quantum efficiency, showing an overall charge enhancement factor of at least 4.5 and up to 25. A further increase in their efficiency was observed when combined with semiconductor thin-films deposited over the laser processed surfaces, pointing at potential pathways for further optimization. We demonstrate that simple laser-produced plasmonic photocathodes outperform standard metallic photocathodes, and can be directly produced in-situ at the electron gun level in vacuum environments and without any disruptive intervention. This approach could lead to unprecedented efficient and continuous operation of electron sources, and is useful in many applications across scientific disciplines requiring high average and peak current electron beams.
Collapse
Affiliation(s)
| | - Baptiste Groussin
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Victoria Bjelland
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
- Department of Physics, NTNU–Norwegian University of Science and Technology, NO-7491Trondheim, Norway
| | - Eric Chevallay
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | | | - Marcel Himmerlich
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Pierre Lorenz
- Department of Ultra-Precision Surfaces, Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318Leipzig, Germany
| | - Alejandro Manjavacas
- Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones Científicas, 28006Madrid, Spain
| | - Bruce A. Marsh
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Holger Neupert
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Ralf E. Rossel
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Walter Wuensch
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Eduardo Granados
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| |
Collapse
|
2
|
He X, Tian W, Yang L, Bai Z, Li L. Optical and Electrical Modulation Strategies of Photoelectrodes for Photoelectrochemical Water Splitting. SMALL METHODS 2024; 8:e2300350. [PMID: 37330656 DOI: 10.1002/smtd.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Indexed: 06/19/2023]
Abstract
When constructing efficient, cost-effective, and stable photoelectrodes for photoelectrochemical (PEC) systems, the solar-driven photo-to-chemical conversion efficiency of semiconductors is limited by several factors, including the surface catalytic activity, light absorption range, carrier separation, and transfer efficiency. Accordingly, various modulation strategies, such as modifying the light propagation behavior and regulating the absorption range of incident light based on optics and constructing and regulating the built-in electric field of semiconductors based on carrier behaviors in semiconductors, are implemented to improve the PEC performance. Herein, the mechanism and research advancements of optical and electrical modulation strategies for photoelectrodes are reviewed. First, parameters and methods for characterizing the performance and mechanism of photoelectrodes are introduced to reveal the principle and significance of modulation strategies. Then, plasmon and photonic crystal structures and mechanisms are summarized from the perspective of controlling the propagation behavior of incident light. Subsequently, the design of an electrical polarization material, polar surface, and heterojunction structure is elaborated to construct an internal electric field, which serves as the driving force to facilitate the separation and transfer of photogenerated electron-hole pairs. Finally, the challenges and opportunities for developing optical and electrical modulation strategies for photoelectrodes are discussed.
Collapse
Affiliation(s)
- Xianhong He
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- Molecular Biology Laboratory, Center for Disease Immunity and Intervention, School of Medicine, Lishui University, Lishui, Zhejiang, 323000, P. R. China
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
3
|
Pettine J, Padmanabhan P, Shi T, Gingras L, McClintock L, Chang CC, Kwock KWC, Yuan L, Huang Y, Nogan J, Baldwin JK, Adel P, Holzwarth R, Azad AK, Ronning F, Taylor AJ, Prasankumar RP, Lin SZ, Chen HT. Light-driven nanoscale vectorial currents. Nature 2024; 626:984-989. [PMID: 38326619 PMCID: PMC10901733 DOI: 10.1038/s41586-024-07037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics1 and as a means of revealing2,3 or even inducing4,5 broken symmetries. Emerging methods for light-based current control5-16 offer particularly promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. However, optical generation and manipulation of currents at nanometre spatial scales remains a basic challenge and a crucial step towards scalable optoelectronic systems for microelectronics and information science. Here we introduce vectorial optoelectronic metasurfaces in which ultrafast light pulses induce local directional charge flows around symmetry-broken plasmonic nanostructures, with tunable responses and arbitrary patterning down to subdiffractive nanometre scales. Local symmetries and vectorial currents are revealed by polarization-dependent and wavelength-sensitive electrical readout and terahertz (THz) emission, whereas spatially tailored global currents are demonstrated in the direct generation of elusive broadband THz vector beams17. We show that, in graphene, a detailed interplay between electrodynamic, thermodynamic and hydrodynamic degrees of freedom gives rise to rapidly evolving nanoscale driving forces and charge flows under the extremely spatially and temporally localized excitation. These results set the stage for versatile patterning and optical control over nanoscale currents in materials diagnostics, THz spectroscopies, nanomagnetism and ultrafast information processing.
Collapse
Affiliation(s)
- Jacob Pettine
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Prashant Padmanabhan
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Teng Shi
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Luke McClintock
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Physics, University of California, Davis, Davis, CA, USA
| | - Chun-Chieh Chang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kevin W C Kwock
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
- Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, USA
| | - Long Yuan
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Yue Huang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - John Nogan
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, USA
| | - Jon K Baldwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | - Abul K Azad
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Filip Ronning
- Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Antoinette J Taylor
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Rohit P Prasankumar
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
- Intellectual Ventures, Bellevue, WA, USA
| | - Shi-Zeng Lin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hou-Tong Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
4
|
Al-Zubeidi A, Wang Y, Lin J, Flatebo C, Landes CF, Ren H, Link S. d-Band Holes React at the Tips of Gold Nanorods. J Phys Chem Lett 2023:5297-5304. [PMID: 37267074 DOI: 10.1021/acs.jpclett.3c00997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reactive hot spots on plasmonic nanoparticles have attracted attention for photocatalysis as they allow for efficient catalyst design. While sharp tips have been identified as optimal features for field enhancement and hot electron generation, the locations of catalytically promising d-band holes are less clear. Here we exploit d-band hole-enhanced dissolution of gold nanorods as a model reaction to locate reactive hot spots produced from direct interband transitions, while the role of the plasmon is to follow the reaction optically in real time. Using a combination of single-particle electrochemistry and single-particle spectroscopy, we determine that d-band holes increase the rate of gold nanorod electrodissolution at their tips. While nanorods dissolve isotropically in the dark, the same nanoparticles switch to tip-enhanced dissolution upon illimitation with 488 nm light. Electron microscopy confirms that dissolution enhancement is exclusively at the tips of the nanorods, consistent with previous theoretical work that predicts the location of d-band holes. We, therefore, conclude that d-band holes drive reactions selectively at the nanorod tips.
Collapse
Affiliation(s)
- Alexander Al-Zubeidi
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, United States
| | - Jiamu Lin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Charlotte Flatebo
- Applied Physics Program, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, United States
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| |
Collapse
|
5
|
Pettine J, Padmanabhan P, Sirica N, Prasankumar RP, Taylor AJ, Chen HT. Ultrafast terahertz emission from emerging symmetry-broken materials. LIGHT, SCIENCE & APPLICATIONS 2023; 12:133. [PMID: 37258515 PMCID: PMC10232484 DOI: 10.1038/s41377-023-01163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 06/02/2023]
Abstract
Nonlinear optical spectroscopies are powerful tools for investigating both static material properties and light-induced dynamics. Terahertz (THz) emission spectroscopy has emerged in the past several decades as a versatile method for directly tracking the ultrafast evolution of physical properties, quasiparticle distributions, and order parameters within bulk materials and nanoscale interfaces. Ultrafast optically-induced THz radiation is often analyzed mechanistically in terms of relative contributions from nonlinear polarization, magnetization, and various transient free charge currents. While this offers material-specific insights, more fundamental symmetry considerations enable the generalization of measured nonlinear tensors to much broader classes of systems. We thus frame the present discussion in terms of underlying broken symmetries, which enable THz emission by defining a system directionality in space and/or time, as well as more detailed point group symmetries that determine the nonlinear response tensors. Within this framework, we survey a selection of recent studies that utilize THz emission spectroscopy to uncover basic properties and complex behaviors of emerging materials, including strongly correlated, magnetic, multiferroic, and topological systems. We then turn to low-dimensional systems to explore the role of designer nanoscale structuring and corresponding symmetries that enable or enhance THz emission. This serves as a promising route for probing nanoscale physics and ultrafast light-matter interactions, as well as facilitating advances in integrated THz systems. Furthermore, the interplay between intrinsic and extrinsic material symmetries, in addition to hybrid structuring, may stimulate the discovery of exotic properties and phenomena beyond existing material paradigms.
Collapse
Affiliation(s)
- Jacob Pettine
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Prashant Padmanabhan
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Nicholas Sirica
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Rohit P Prasankumar
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Deep Science Fund, Intellectual Ventures, Bellevue, WA, 98005, USA
| | - Antoinette J Taylor
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Hou-Tong Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
6
|
Abstract
Solvated electrons are powerful reducing agents capable of driving some of the most energetically expensive reduction reactions. Their generation under mild and sustainable conditions remains challenging though. Using near-ultraviolet irradiation under low-intensity one-photon conditions coupled with electrochemical and optical detection, we show that the yield of solvated electrons in water is increased more than 10 times for nanoparticle-decorated electrodes compared to smooth silver electrodes. Based on the simulations of electric fields and hot carrier distributions, we determine that hot electrons generated by plasmons are injected into water to form solvated electrons. Both yield enhancement and hot carrier production spectrally follow the plasmonic near-field. The ability to enhance solvated electron yields in a controlled manner by tailoring nanoparticle plasmons opens up a promising strategy for exploiting solvated electrons in chemical reactions.
Collapse
|
7
|
Zhao X, Niu R, Fan S, Jing X, Gao R, Yang H, Wang H, Wang D, Yang Z, Xie Y, She J, Chen P, Meng L. A Dual-Mode NADH Biosensor Based on Gold Nanostars Decorated CoFe 2 Metal-Organic Frameworks to Reveal Dynamics of Cell Metabolism. ACS Sens 2022; 7:2671-2679. [PMID: 36001454 DOI: 10.1021/acssensors.2c01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) is central to metabolism and implicated in various diseases. Herein, nanohybrids of gold nanostars and metal-organic frameworks are devised and demonstrated as a dual-mode NADH sensor, for which colorimetric detection is enabled by its peroxidase-like nanozyme property and Raman detection is realized by its surface-enhanced Raman scattering property with the detection limit as low as 28 pM. More importantly, this probe enables real-time SERS monitoring in living cells, providing a unique tool to investigate dynamic cellular processes involving NADH. Our experiments reveal that metabolism dynamics is accelerated by glucose and is much higher in cancerous cells. The SERS results can also be verified by the colorimetric detection. This sensor provides a new potential to detect biomarkers and their dynamics in situ.
Collapse
Affiliation(s)
- Xiaoping Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruoxin Niu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shu Fan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Rui Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongbo Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heng Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunchuan Xie
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junjun She
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637457, Singapore
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.,Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.,Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Ultrafast plasmonic photoemission in the single-cycle and few-cycle regimes. Sci Rep 2022; 12:3932. [PMID: 35273213 PMCID: PMC8913738 DOI: 10.1038/s41598-022-07259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Due to the highly increased interest in the development of state-of-the-art applications of photoemission in ultrafast electron microscopy, development of photocathodes and many more applications, a correct theoretical understanding of the underlying phenomena is needed. Within the framework of the single active electron approximation the most accurate results can be obtained by the direct solution of the time-dependent Schrödinger equation (TDSE). In this work, after a brief presentation of a numerically improved version of a mixed 1D-TDSE method, we investigated the characteristics of electron spectra obtained from the surface of metal nanoparticles irradiated with ultrashort laser pulses. During our investigation different decay lengths of the plasmonic-enhanced incident field in the vicinity of the metal were considered. Using the simulated spectra we managed to identify the behavior of the cutoff energy as a function of decay length in the strong-field, multiphoton and transition regimes.
Collapse
|
9
|
Medeghini F, Pettine J, Meyer SM, Murphy CJ, Nesbitt DJ. Regulating and Directionally Controlling Electron Emission from Gold Nanorods with Silica Coatings. NANO LETTERS 2022; 22:644-651. [PMID: 34989588 DOI: 10.1021/acs.nanolett.1c03569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dielectric coatings offer a versatile means of manipulating hot carrier emission from nanoplasmonic systems for emerging nanocatalysis and photocathode applications, with uniform coatings acting as regulators and nonuniform coatings providing directional photocurrent control. However, the mechanisms for electron emission through dense and mesoporous silica (SiO2) coatings require further examination. Here, we present a systematic investigation of photoemission from single gold nanorods as a function of dense versus mesoporous silica coating thicknesses. Studies with dense coatings on gold nanostructures clarify the short (∼1 nm) attenuation length responsible for severely reduced transmission through the silica conduction band. By contrast, mesoporous silica is much more transmissive, and a simple geometric model quantitatively recapitulates the electron escape probability through nanoscopic porous channels. Finally, photoelectron velocity map imaging (VMI) studies of nanorods with coating defects verify that photoemission occurs preferentially through the thinner regions, illustrating new opportunities for designing photocurrent distributions on the nanoscale.
Collapse
Affiliation(s)
- Fabio Medeghini
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
| | - Jacob Pettine
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| | - Sean M Meyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Nesbitt
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado─Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work presents a comprehensive review on gas sensors based on localized surface plasmon resonance (LSPR) phenomenon, including the theory of LSPR, the synthesis of nanoparticle-embedded oxide thin films, and strategies to enhance the sensitivity of these optical sensors, supported by simulations of the electromagnetic properties. The LSPR phenomenon is known to be responsible for the unique colour effects observed in the ancient Roman Lycurgus Cup and at the windows of the medieval cathedrals. In both cases, the optical effects result from the interaction of the visible light (scattering and absorption) with the conduction band electrons of noble metal nanoparticles (gold, silver, and gold–silver alloys). These nanoparticles are dispersed in a dielectric matrix with a relatively high refractive index in order to push the resonance to the visible spectral range. At the same time, they have to be located at the surface to make LSPR sensitive to changes in the local dielectric environment, the property that is very attractive for sensing applications. Hence, an overview of gas sensors is presented, including electronic-nose systems, followed by a description of the surface plasmons that arise in noble metal thin films and nanoparticles. Afterwards, metal oxides are explored as robust and sensitive materials to host nanoparticles, followed by preparation methods of nanocomposite plasmonic thin films with sustainable techniques. Finally, several optical properties simulation methods are described, and the optical LSPR sensitivity of gold nanoparticles with different shapes, sensing volumes, and surroundings is calculated using the discrete dipole approximation method.
Collapse
|
11
|
Yakunin AN, Zarkov SV, Avetisyan YA, Akchurin GG, Aban’shin NP, Tuchin VV. Modeling of Laser-Induced Plasmon Effects in GNS-DLC-Based Material for Application in X-ray Source Array Sensors. SENSORS 2021; 21:s21041248. [PMID: 33578701 PMCID: PMC7916327 DOI: 10.3390/s21041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
An important direction in the development of X-ray computed tomography sensors in systems with increased scanning speed and spatial resolution is the creation of an array of miniature current sources. In this paper, we describe a new material based on gold nanostars (GNS) embedded in nanoscale diamond-like carbon (DLC) films (thickness of 20 nm) for constructing a pixel current source with photoinduced electron emission. The effect of localized surface plasmon resonance in GNS on optical properties in the wavelength range from UV to near IR, peculiarities of localization of field and thermal sources, generation of high-energy hot electrons, and mechanisms of their transportation in vacuum are investigated. The advantages of the proposed material and the prospects for using X-ray computed tomography in the matrix source are evaluated.
Collapse
Affiliation(s)
- Alexander N. Yakunin
- Laboratory of System Problems in Control and Automation in Mechanical Engineering, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia
- Correspondence: ; Tel.: +7-845-222-2376
| | - Sergey V. Zarkov
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia; (S.V.Z.); (Y.A.A.); (G.G.A.); (V.V.T.)
| | - Yuri A. Avetisyan
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia; (S.V.Z.); (Y.A.A.); (G.G.A.); (V.V.T.)
| | - Garif G. Akchurin
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia; (S.V.Z.); (Y.A.A.); (G.G.A.); (V.V.T.)
- Department of Optics and Biophotonics, Saratov State University, 410012 Saratov, Russia
| | | | - Valery V. Tuchin
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia; (S.V.Z.); (Y.A.A.); (G.G.A.); (V.V.T.)
- Department of Optics and Biophotonics, Saratov State University, 410012 Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Pettine J, Meyer SM, Medeghini F, Murphy CJ, Nesbitt DJ. Controlling the Spatial and Momentum Distributions of Plasmonic Carriers: Volume vs Surface Effects. ACS NANO 2021; 15:1566-1578. [PMID: 33427462 DOI: 10.1021/acsnano.0c09045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spatial and momentum distributions of excited charge carriers in nanoplasmonic systems depend sensitively on optical excitation parameters and nanoscale geometry, which therefore control the efficiency and functionality of plasmon-enhanced catalysts, photovoltaics, and nanocathodes. Growing appreciation over the past decade for the different roles of volume- vs surface-mediated excitation in such systems has underscored the need for explicit separation and quantification of these pathways. Toward these ends, we utilize angle-resolved photoelectron velocity map imaging to distinguish these processes in gold nanorods of different aspect ratios down to the spherical limit. Despite coupling to the longitudinal surface plasmon, we find that resonantly excited nanorods always exhibit transverse (sideways) multiphoton photoemission distributions due to photoexcitation within volume field enhancement regions rather than at the tip hot spots. This behavior is accurately reproduced via ballistic Monte Carlo modeling, establishing that volume-excited electrons primarily escape through the nanorod sides. Furthermore, we demonstrate optical control over the photoelectron angular distributions via a screening-induced transition from volume (transverse/side) to surface (longitudinal/tip) photoemission with red detuning of the excitation laser. Frequency-dependent cross sections are separately quantified for these mechanisms by comparison with theoretical calculations, combining volume and surface velocity-resolved photoemission modeling. Based on these results, we identify nanomaterial-specific contributions to the photoemission cross sections and offer general nanoplasmonic design principles for controlling photoexcitation/emission distributions via geometry- and frequency-dependent tuning of the volume vs surface fields.
Collapse
Affiliation(s)
- Jacob Pettine
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean M Meyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Fabio Medeghini
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
13
|
Pettine J, Marton Menendez A, Nesbitt DJ. Continuous angular control over anisotropic photoemission from isotropic gold nanoshells. J Chem Phys 2020; 153:101101. [PMID: 32933286 DOI: 10.1063/5.0022181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A variety of applications rely on the efficient generation of hot carriers within metal nanoparticles and charge transfer to surrounding molecules or materials. The optimization of such processes requires a detailed understanding of excited carrier spatial, temporal, and momentum distributions, which also leads to opportunities for active optical control over hot carrier dynamics on nanometer and femtosecond scales. Such capabilities are emerging in nanoplasmonic systems and typically rely on tuning optical polarization and/or frequency to selectively excite one or more discrete hot spots defined by the particle geometry. Here, we introduce a unique case in which hot electron excitation and emission distributions can instead be continuously controlled via linear laser polarization in the azimuthal plane of a gold nanoshell supported on a substrate. In this configuration, it is the laser field that breaks the azimuthal symmetry of the supported nanoshell and determines the plasmonic field distribution. Using angle-resolved photoelectron velocity map imaging, we find that the hot electrons are predominantly emitted orthogonal to the nanoshell dipolar surface plasmon resonance axis defined by the laser polarization. Furthermore, such anisotropic emission is only observed for nanoshells, while solid gold nanospheres are found to be isotropic emitters. We show that all of these effects are recapitulated via simulation of the plasmonic electric field distributions within the nanoparticle volume and ballistic Monte Carlo modeling of the hot electron dynamics. These results demonstrate a highly predictive level of understanding of the underlying physics and possibilities for ultrafast spatiotemporal control over hot carrier dynamics.
Collapse
Affiliation(s)
- Jacob Pettine
- National Institute of Standards and Technology, JILA, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Andrea Marton Menendez
- National Institute of Standards and Technology, JILA, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - David J Nesbitt
- National Institute of Standards and Technology, JILA, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|