1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Sun Y, He J, Chen W, Wang Y, Wang K, Zhou M, Zheng Y. Inhalable DNase I@Au hybrid nanoparticles for radiation sensitization and metastasis inhibition by elimination of neutrophil extracellular traps. Biomaterials 2025; 317:123095. [PMID: 39813970 DOI: 10.1016/j.biomaterials.2025.123095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
High-dose radiation therapy is a widely used clinical strategy to inhibit tumor growth. However, the rapid generation of excessive reactive oxygen species (ROS) triggers the formation of neutrophil extracellular traps (NETs), which capture free tumor cells in the bloodstream, promoting metastasis. In this study, we developed a hybrid nanoparticle composed of DNase I and gold (DNase I@Au) to enhance radiotherapy efficacy while mitigating metastasis by precisely eliminating NETs. The DNase I@Au nanoparticles, administered via aerosol inhalation, are efficiently delivered to lung tumor tissue, improving radiosensitization and reducing tumor size. Crucially, the nanoparticles could gradually release DNase I, effectively degrading ROS-induced NETs and preventing the interaction of free malignant cells with tumor sites or vasculature, thereby inhibiting metastasis. Therefore, we provide an enzyme and sensitizer co-loaded strategy that offers a promising approach to improve the therapeutic outcome of radiotherapy and reduce the risk of lung cancer metastasis under ROS stimulation.
Collapse
Affiliation(s)
- Yuchao Sun
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jian He
- University-University of Edinburgh Institute (ZJU-UoE Institute), and liangzhu Laboratory, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yongfang Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Min Zhou
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; University-University of Edinburgh Institute (ZJU-UoE Institute), and liangzhu Laboratory, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Key Laboratory of Cancer Prevention and Intervention of China (MOE), Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yichun Zheng
- Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
3
|
Khairani AF, Shalannandia WA, Bashari MH, Atik N. Aaptamine Alters Vimentin Expression and Migration Capability of Triple-Negative Breast Cancer Cells. J Exp Pharmacol 2025; 17:239-247. [PMID: 40420842 PMCID: PMC12105642 DOI: 10.2147/jep.s512099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Purpose This study aimed to explore the effect of Aaptamine, an alkaloid derived from marine sponges, on the vimentin expression in both mRNA and protein levels and the migration capacity of breast cancer cells. Methods The triple-negative breast cancer cell line MDA-MB-231 was used for in vitro experiments. Low-cytotoxicity concentrations of Aaptamine (12.5 to 50 μM) were given to MDA-MB-231 cells. The vimentin mRNA and protein expression were evaluated using RT-qPCR and immunofluorescence, respectively, 72 h after Aaptamine treatment. The migration scratch assay was conducted for 48 hours. Results Aaptamine treatment in three different doses did not affect the expression of vimentin at the mRNA level while significantly lowering vimentin protein expression at the concentration of 12.5 µM. In addition, Aaptamine significantly inhibited breast cancer cell migration in a dose-dependent manner. Conclusion Aaptamine inhibits vimentin protein expression and demonstrates anti-migration activity in the sub-cytotoxic dose.
Collapse
Affiliation(s)
- Astrid Feinisa Khairani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
4
|
Lin YH, Chen CW, Chen MY, Xu L, Tian X, Cheung SH, Wu YL, Siriwon N, Wu SH, Mou KY. The Bacterial Outer Membrane Vesicle-Cloaked Immunostimulatory Nanoplatform Reinvigorates T Cell Function and Reprograms Tumor Immunity. ACS NANO 2025. [PMID: 40392526 DOI: 10.1021/acsnano.5c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Bacterial outer membrane vesicles (OMVs) represent powerful immunoadjuvant nanocarriers with the capacity to reprogram the tumor microenvironment (TME) and activate immune responses. Here, we investigate a nanotherapeutic platform integrating immunostimulatory cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODNs, hereafter termed CpG) into mesoporous silica nanoparticles cloaked with OMVs (CpG@MSN-PEG/PEI@OMVs) for cancer immunotherapy. Systemic administration of these nanohybrids facilitates precise tumor targeting, induces antitumor cytokines such as IFNγ, and suppresses immunosuppressive cytokine TGF-β, reshaping the TME. Additionally, CpG@MSN-PEG/PEI@OMVs promote M1 macrophage polarization, dendritic cell maturation, and the generation of durable tumor-specific immune memory, resulting in pronounced tumor regression with minimal systemic toxicity. The platform demonstrates efficacy against metastatic and solid tumor models including 4T1 breast and MC38 colorectal cancers. Transcriptomic analyses reveal that CpG@MSN-PEG/PEI@OMVs enhance mitochondrial oxidative phosphorylation in T cells within tumor-draining lymph nodes, mitigating T cell exhaustion and restoring metabolic fitness. These results support the potential of CpG@MSN-PEG/PEI@OMVs as a modular nanoplatform to modulate innate and adaptive immunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Yu-Han Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Wei Chen
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Mei-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Li Xu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Siu-Hung Cheung
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Ling Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Natnaree Siriwon
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Kurt Yun Mou
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
5
|
Huang B, Huang S, Yan Z, Li J, Zhang Y. A global bibliometric and visualized analysis of the status and trends of lung metastasis in breast cancer research from 2000 to 2024. Discov Oncol 2025; 16:700. [PMID: 40341427 PMCID: PMC12061813 DOI: 10.1007/s12672-025-02496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Breast cancer remains a significant global health challenge, with lung metastasis presenting critical barriers to effective treatment and patient survival. This study conducts the first comprehensive bibliometric and visualized analysis of lung metastasis research in breast cancer from 2000 to 2024, illustrating evolving research trends and collaboration patterns in this critical area. Utilizing data from the Web of Science Core Collection, we employed bibliometric tools such as VOSviewer and CiteSpace to assess publication trends, international collaborations, influential institutions, authors, and keyword dynamics. Our findings reveal a steady increase in annual publications, peaking in 2021, with a significant concentration of research emerging from the USA and China, alongside key insights into molecular mechanisms such as epithelial-mesenchymal transition and immunotherapy. Notably, genes like ERBB2 and ESR1 were identified as pivotal in the metastatic process, highlighting potential therapeutic targets. This study not only illuminates the current landscape of breast cancer lung metastasis research but also underscores the necessity for interdisciplinary collaboration to enhance understanding and treatment strategies for this lethal condition.
Collapse
Affiliation(s)
- Baoyi Huang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Shengchao Huang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zeming Yan
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Jialun Li
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China.
| |
Collapse
|
6
|
Zheng Q, Zhou T, Yao D. The roles of immune cells and non-immune cells in Pre-Metastatic Niche of Breast Cancer. Crit Rev Oncol Hematol 2025; 211:104744. [PMID: 40274245 DOI: 10.1016/j.critrevonc.2025.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025] Open
Abstract
Distant metastasis is a pivotal and important event in patients with breast cancer, and inhibition of metastasis has always been the focus of clinical research. Recent advances have established that the metastasis of breast cancer is exacerbated not only by cancer cells and the tumor microenvironment but also by the pre-metastatic niche (PMN). Primary tumor secretory factors, immune cells including bone marrow-derived cells mobilized by tumors and non-immune cells within the local matrix microenvironment of the host are three key factors for PMN formation. This article reviews the roles of bone marrow-derived cells, lymphocytes, fibroblasts, endothelial cells, epithelial cells and cancer stem cells in the establishment of PMN before metastasis to further understand the metastasis mechanism of breast cancer and to explore clues for the inhibition of distant metastasis. Different cells play distinct but important roles in the establishment of the PMN and the induction of breast cancer metastasis. The interaction between different cells and tumor cells determines whether CTCs can be attached, survive and proliferate to promote distant metastasis.
Collapse
Affiliation(s)
- Qiao Zheng
- Department of Oncology, Hospital of Chengdu Uiversity of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Tiecheng Zhou
- Department of Oncology, Sichuan Integrative Medicine Hospital, 610042 Chengdu, China,.
| | - Dejiao Yao
- Department of Oncology, Hospital of Chengdu Uiversity of Traditional Chinese Medicine, 610075 Chengdu, China
| |
Collapse
|
7
|
Ramos C, Walterskirchen N, Knöbl V, Zotter C, Müller C, Gerakopoulos V, Rauch A, Falk L, Sachet M, D'Angelo E, Agostini M, Pils D, Aust S, Grusch M, Herzog R, Kratochwill K, Le Blanc S, Lenos KJ, Vermeulen L, Riss S, Bachleitner-Hofmann T, Strobel O, Dolznig H, Bergmann M, Brostjan C, Unger LW, Oehler R. Colorectal cancer peritoneal metastasis is promoted by tissue-specific fibroblasts that can arise in response to various local disorders. Cancer Lett 2025:217686. [PMID: 40228602 DOI: 10.1016/j.canlet.2025.217686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/05/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
Peritoneal membrane injury induces the activation of local fibroblasts and tissue remodelling, which ultimately can progress to fibrosis. Metastasis of colorectal cancer (CRC) to the abdominal cavity results in such peritoneal damage. Patients with colorectal cancer peritoneal metastasis (CPM) have a particularly poor prognosis, and CPM tumours are characterised by a high infiltration of fibroblasts. Here, we characterised the molecular and functional features of these fibroblasts, and investigated their interaction with other cells in the peritoneal microenvironment. Primary fibroblasts were isolated from 89 patients with different malignant and benign disorders of the peritoneum. We performed comprehensive analyses of single-cell and transcriptome profiling, secretome characterization, and functional enzymatic activity. We were able to identify a peritoneum-specific fibroblast population that increases in response to different types of damage-inducing peritoneal pathologies, including metastasis. These fibroblasts are characterised by the IGFBP2-dependent expression of CD38, which mediates extracellular non-canonical adenosinergic activity and contributes to the suppression of macrophages and T cells. Importantly, peritoneal fibroblasts promoted the growth and invasiveness of tumour cells in a xenograft mouse model of peritoneal metastasis, highlighting their pro-tumorigenic role. Their specific gene signature was associated with poor prognosis in a dataset of 51 patients suffering from colorectal peritoneal metastasis. This study revealed that the CPM is infiltrated by a peritoneal fibroblast subtype, which is absent in healthy tissue, but also observed in benign peritoneal diseases. Given the limited therapeutic options for these patients, these pro-tumorigenic peritoneal fibroblasts could represent an attractive target for inhibiting the peritoneal spread of tumour cells.
Collapse
Affiliation(s)
- Cristiano Ramos
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Natalie Walterskirchen
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Viktoria Knöbl
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Chiara Zotter
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Catharina Müller
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Vasileios Gerakopoulos
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Anna Rauch
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Lena Falk
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Monika Sachet
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Edoardo D'Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128, Padua, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128, Padua, Italy
| | - Dietmar Pils
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Stefanie Aust
- Department of Obstetrics and Gynaecology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Rebecca Herzog
- Division of Paediatric Nephrology and Gastroenterology, Department of Paediatrics and Adolescent Medicine, Comprehensive Center for Paediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Klaus Kratochwill
- Division of Paediatric Nephrology and Gastroenterology, Department of Paediatrics and Adolescent Medicine, Comprehensive Center for Paediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Solange Le Blanc
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Kristiaan J Lenos
- Laboratory of Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC and University of Amsterdam, 1081 BT, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Laboratory of Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC and University of Amsterdam, 1081 BT, Amsterdam, the Netherlands
| | - Stefan Riss
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Bachleitner-Hofmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Oliver Strobel
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Lukas W Unger
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria; Department of Colorectal Surgery, Oxford University Hospitals, Old Rd, Headington, Oxford, OX3 7LE, United Kingdom
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Jia H, Chen X, Zhang L, Chen M. Cancer associated fibroblasts in cancer development and therapy. J Hematol Oncol 2025; 18:36. [PMID: 40156055 PMCID: PMC11954198 DOI: 10.1186/s13045-025-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multifaceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic and functional transformation upon interacting with tumor cells and their presence can adversely influence treatment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provision of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immunosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowledge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effective targeted therapies for cancer.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingmin Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| | - Meihua Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Gürer U, Fan D, Xu Z, Nawaz Q, Baartman J, Boccaccini AR, Lieleg O. Mucin Coatings Establish Multifunctional Properties on Commercial Sutures. ACS APPLIED BIO MATERIALS 2025; 8:2263-2274. [PMID: 40016087 PMCID: PMC11921033 DOI: 10.1021/acsabm.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
During the wound healing process, complications such as bacterial attachment or inflammation may occur, potentially leading to surgical site infections. To reduce this risk, many commercial sutures contain biocides such as triclosan; however, this chemical has been linked to toxicity and contributes to the occurrence of bacterial resistance. In response to the need for more biocompatible alternatives, we here present an approach inspired by the innate human defense system: utilizing mucin glycoproteins derived from porcine mucus to create more cytocompatible suture coatings with antibiofouling properties. By attaching manually purified mucin to commercially available sutures through a simple and rapid coating process, we obtain sutures with cell-repellent and antibacterial properties toward Gram-positive bacteria. Importantly, our approach preserves the very good mechanical and tribological properties of the sutures while offering options for further modifications: the mucin matrix can either be condensed for controlled localized drug release or covalently functionalized with inorganic nanoparticles for hard tissue applications, which allows for tailoring a commercial suture for specific biomedical use cases.
Collapse
Affiliation(s)
- Ufuk Gürer
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
- Center for
Protein Assemblies (CPA), Munich Institute of Biomedical Engineering
(MIBE), Technical University of Munich, Ernst-Otto-Fischer Straße 8, Garching 85748, Germany
| | - Di Fan
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
- Center for
Protein Assemblies (CPA), Munich Institute of Biomedical Engineering
(MIBE), Technical University of Munich, Ernst-Otto-Fischer Straße 8, Garching 85748, Germany
| | - Zhiyan Xu
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Qaisar Nawaz
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Jorrit Baartman
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
- Center for
Protein Assemblies (CPA), Munich Institute of Biomedical Engineering
(MIBE), Technical University of Munich, Ernst-Otto-Fischer Straße 8, Garching 85748, Germany
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Oliver Lieleg
- Department
of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
- Center for
Protein Assemblies (CPA), Munich Institute of Biomedical Engineering
(MIBE), Technical University of Munich, Ernst-Otto-Fischer Straße 8, Garching 85748, Germany
| |
Collapse
|
10
|
Reinecke JB, Jimenez Garcia L, Gross AC, Cam M, Cannon MV, Gust MJ, Sheridan JP, Gryder BE, Dries R, Roberts RD. Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells. Clin Cancer Res 2025; 31:414-429. [PMID: 39540841 PMCID: PMC11739783 DOI: 10.1158/1078-0432.ccr-24-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN Using single-cell RNA sequencing, we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multiparameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics were used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and nontumor cells within the metastatic microenvironment. RESULTS Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. Single-cell RNA sequencing demonstrated that the surrounding lung stroma adopts a chronic, nonresolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, the metastasis-associated lung demonstrated marked fibrosis, likely because of the accumulation of pathogenic, profibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a prometastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the antifibrotic tyrosine kinase inhibitor (TKI) nintedanib. Our data shed light on the non-cell-autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.
Collapse
Affiliation(s)
- James B. Reinecke
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, Ohio
| | - Leyre Jimenez Garcia
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio
| | - Amy C. Gross
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Maren Cam
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Matthew V. Cannon
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Matthew J. Gust
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Jeffrey P. Sheridan
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ruben Dries
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, Ohio
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
11
|
Zhang L, Pan J, Wang M, Yang J, Zhu S, Li L, Hu X, Wang Z, Pang L, Li P, Jia F, Ren G, Zhang Y, Xu D, Qiu F, Huang J. Chronic Stress-Induced and Tumor Derived SP1 + Exosomes Polarizing IL-1β + Neutrophils to Increase Lung Metastasis of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2310266. [PMID: 39630109 PMCID: PMC11789585 DOI: 10.1002/advs.202310266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/07/2024] [Indexed: 01/30/2025]
Abstract
Chronic stress can significantly promote breast cancer progression. When exposed to chronic stress, exosomes released from neural and neuroendocrine cells in the central nervous system are enhanced and modified. However, whether tumor-derived exosomes (TDEs) are influenced by chronic stress and participate in chronic stress-mediated distant metastasis remains unclear. Here, it is shown that chronic stress remarkably facilitates the secretion of TDEs and modifies the contents of exosomes by activating the adrenergic β receptor in 4T1 tumor-bearing mice. Exosomes injection and blockade experiments indicate that exosomes play a crucial role in chronic stress-mediated lung metastasis of breast cancer. Chronic stress-induced TDEs are internalized by pulmonary neutrophils and strengthen neutrophil recruitment via the CXCL2 autocrine. In addition, the level of SP1 in TDEs increases, which favors the secretion of IL-1β by neutrophils through the activation of the TLR4-NFκβ pathway, ultimately aggravating lung metastasis of breast cancer. Collectively, this study provides a novel mechanism by which neutrophils within a pre-metastatic niche acquire their inflamed phenotype and establishes an important link among neuroendocrine changes, exosomes, immunity, and metastasis.
Collapse
|
12
|
Alonso Domínguez J, Martínez Barros I, Viéitez I, Peleteiro M, Calderón‐Cruz B, González‐Nóvoa J, Pérez González A, Leiro Fernández V, López López A, Poveda López E. SARS-CoV-2 Viral Load and Cytokine Dynamics Profile as Early Signatures of Long COVID Condition in Hospitalized Individuals. Influenza Other Respir Viruses 2025; 19:e70068. [PMID: 39800769 PMCID: PMC11725401 DOI: 10.1111/irv.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The global pandemic caused by SARS-CoV-2 has resulted in millions of people experiencing long COVID condition, a range of persistent symptoms following the acute phase, with an estimated prevalence of 27%-64%. MATERIALS AND METHODS To understand its pathophysiology, we conducted a longitudinal study on viral load and cytokine dynamics in individuals with confirmed SARS-CoV-2 infection. We used reverse transcriptase droplet digital PCR to quantify viral RNA from nasopharyngeal swabs and employed multiplex technology to measure plasma cytokine levels in a cohort of people with SARS-CoV-2 infection. Our study included individuals with long COVID condition and those without, all of whom had at least three nasopharyngeal and plasma samples collected within 55 days after diagnosis of SARS-CoV-2 infection. RESULTS Individuals affected with long COVID symptoms had delayed viral clearance and lower viral loads at diagnosis compared to those without symptoms. Additionally, cytokine analysis revealed variations in IL-18, MIG, and IP-10 levels, with delayed normalization in individuals affected by long COVID syndrome. Correlation analysis indicated associations between viral load and IP-10 and interrelations among cytokines IL-1β, IL-18, MIG, and IP-10. CONCLUSION Our study provides insights into the association between nasopharyngeal viral load, cytokine dynamics, and the development of long COVID syndrome, providing an early signature of this condition.
Collapse
Affiliation(s)
- Jacobo Alonso Domínguez
- Virology and PathogenesisGalicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | - Inés Martínez Barros
- Virology and PathogenesisGalicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | - Irene Viéitez
- Genomics UnitGalicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | | | - Beatriz Calderón‐Cruz
- Statistics and Methodology UnitGalicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | - José A. González‐Nóvoa
- AI PlatformGalicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Tecnología ElectrónicaUniversidade de VigoVigoSpain
| | - Alexandre Pérez González
- Virology and PathogenesisGalicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Internal Medicine DepartmentComplexo Hospitalario Universitario de Vigo (CHUVI), SergasVigoSpain
| | - Virginia Leiro Fernández
- Pneumology DepartmentComplexo Hospitalario Universitario de Vigo (CHUVI), SergasVigoSpain
- NeumoVigo I+i Research GroupGalicia Sur Health Research Institute (IIS Galicia sur), SERGAS‐UVIGO; CIBERES, ISCIIIVigoSpain
| | - Aida López López
- Virology and PathogenesisGalicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | - Eva Poveda López
- Virology and PathogenesisGalicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| |
Collapse
|
13
|
Nicolas E, Kosmider B, Cukierman E, Borghaei H, Golemis EA, Borriello L. Cancer treatments as paradoxical catalysts of tumor awakening in the lung. Cancer Metastasis Rev 2024; 43:1165-1183. [PMID: 38963567 PMCID: PMC11554904 DOI: 10.1007/s10555-024-10196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Hossein Borghaei
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Lucia Borriello
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA.
| |
Collapse
|
14
|
Liu Y, Chen S, Wan X, Wang R, Luo H, Chang C, Dai P, Gan Y, Guo Y, Hou Y, Sun Y, Teng Y, Cui X, Liu M. Tryptophan 2,3-dioxygenase-positive matrix fibroblasts fuel breast cancer lung metastasis via kynurenine-mediated ferroptosis resistance of metastatic cells and T cell dysfunction. Cancer Commun (Lond) 2024; 44:1261-1286. [PMID: 39221971 PMCID: PMC11570772 DOI: 10.1002/cac2.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Tumor metastasis is a major threat to cancer patient survival. The organ-specific niche plays a pivotal role in tumor organotropic metastasis. Fibroblasts serve as a vital component of the metastatic microenvironment, but how heterogeneous metastasis-associated fibroblasts (MAFs) promote organotropic metastasis is poorly characterized. Here, we aimed to decipher the heterogeneity of MAFs and elucidate the distinct roles of these fibroblasts in pulmonary metastasis formation in breast cancer. METHODS Mouse models of breast cancer pulmonary metastasis were established using an in vivo selection method of repeated injections of metastatic cells purified from the mouse lung. Single-cell RNA-sequencing (scRNA-seq) was employed to investigate the heterogeneity of MAFs. Transgenic mice were used to examine the contribution of tryptophan 2,3-dioxygenase-positive matrix fibroblasts (TDO2+ MFs) in lung metastasis. RESULTS We uncovered 3 subtypes of MAFs in the lung metastatic microenvironment, and their transcriptome profiles changed dynamically as lung metastasis evolved. As the predominant subtype, MFs were exclusively marked by platelet-derived growth factor receptor alpha (PDGFRA) and mainly located on the edge of the metastasis, and T cells were enriched around MFs. Notably, high MF signatures were significantly associated with poor survival in breast cancer patients. Lung metastases were markedly diminished, and the suppression of T cells was dramatically attenuated in MF-depleted experimental metastatic mouse models. We found that TDO2+ MFs controlled pulmonary metastasis by producing kynurenine (KYN), which upregulated ferritin heavy chain 1 (FTH1) level in disseminated tumor cells (DTCs), enabling DTCs to resist ferroptosis. Moreover, TDO2+ MF-secreted chemokines C-C motif chemokine ligand 8 (CCL8) and C-C motif chemokine ligand 11 (CCL11) recruited T cells. TDO2+ MF-derived KYN induced T cell dysfunction. Conditional knockout of Tdo2 in MFs diminished lung metastasis and enhanced immune activation. CONCLUSIONS Our study reveals crucial roles of TDO2+ MFs in promoting lung metastasis and DTCs' immune evasion in the metastatic niche. It suggests that targeting the metabolism of lung-specific stromal cells may be an effective treatment strategy for breast cancer patients with lung metastasis.
Collapse
Affiliation(s)
- Yongcan Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| | - Shanchun Chen
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| | - Rui Wang
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| | - Haojun Luo
- Department of Thyroid and Breast SurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingP. R. China
| | - Chao Chang
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| | - Peijin Dai
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| | - Yubi Gan
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| | - Yuetong Guo
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine ScienceChongqing Medical UniversityChongqingP. R. China
| | - Yan Sun
- Department of Cell Biology and Medical GeneticsBasic Medical SchoolChongqing Medical UniversityChongqingP. R. China
| | - Yong Teng
- Department of Hematology and Medical OncologyWinship Cancer InstituteEmory University School of MedicineAtlantaGeorgiaUSA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Xiaojiang Cui
- Department of SurgeryDepartment of Obstetrics and GynecologySamuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Manran Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
15
|
郗 雪, 邓 婷, 杜 伯. [Colorectal fibroblasts promote malignant phenotype of colorectal cancer cells by activating the ERK signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1866-1873. [PMID: 39523086 PMCID: PMC11526459 DOI: 10.12122/j.issn.1673-4254.2024.10.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the effect of human colorectal fibroblast (CCD-18Co)-conditioned medium (CCD18-Co-CM) on biological behaviors of colorectal cancer (CRC) cells and explore the possible molecular mechanisms. METHODS Real-time cellular analysis (RTCA), clone formation assay and wound healing assay were used to analyze the changes in proliferation, clone formation, and migration abilities of CRC cell lines HCT116 and Caco-2 treated with CCD18-Co-CM. Western blotting was used to detect the changes in ATK, ERK and STAT3 signaling pathways in the CRC cells activated by CCD18-Co-CM. The effect of CCD18-Co-CM on spheroidization ability of the cells was assessed with sphere-formation assay, and the changes in expressions of CRC stemness markers were detected using RT-PCR. RESULTS CCD-18Co-CM significantly promoted proliferation, colony formation, and migration of HCT116 and Caco-2 cells, enhanced sphere-forming ability and expressions of CRC stemness markers, and increased ERK phosphorylation in the cells. Treatment with SCH772984 effectively inhibited CCD-18Co-CM-induced ERK signaling pathway activation, suppressed the malignant phenotype, and lowered the sphere-forming ability and expression of stemness markers of the two CRC cells. CONCLUSION Colorectal fibroblasts promote malignant phenotype of CRC cells by activating the ERK signaling pathway.
Collapse
|
16
|
Yan L, Chen Y, He J. Leveraging MRI radiomics signature for predicting the diagnosis of CXCL9 in breast cancer. Heliyon 2024; 10:e38640. [PMID: 39430466 PMCID: PMC11490775 DOI: 10.1016/j.heliyon.2024.e38640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Objective A non-invasive predictive model was developed using radiomic features to forecast CXCL9 expression level in breast cancer patients. Methods CXCL9 expression data and MRI images of breast cancer patients were obtained from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) databases, respectively. Local tissue samples from 20 breast cancer patients were collected to measure CXCL9 expression levels. Radiomic features were extracted from MRI images using 3DSlicer, and the minimum Redundancy Maximum Relevance and Recursive Feature Elimination (mRMR_RFE) method was employed to select the most pertinent radiomic features associated with CXCL9 expression levels. Support vector machine (SVM) and Logistic Regression (LR) models were utilized to construct the predictive model, and the area under the receiver operating characteristic curve (AUC) was calculated for performance evaluation. Results CXCL9 was found to be upregulated in breast cancer patients and linked to breast cancer prognosis. Nine radiomic features were ultimately selected using the mRMR_RFE method, and SVM and LR models were trained and validated. The SVM model achieved AUC values of 0.748 and 0.711 in the training and validation sets, respectively. The LR model obtained AUC values of 0.771 and 0.724 in the training and validation sets, respectively. Conclusion The utilization of MRI radiomic features for predicting CXCL9 expression level provides a novel non-invasive approach for breast cancer Prognostic research.
Collapse
Affiliation(s)
- Liping Yan
- Department of Breast Surgery, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, China
- Department of Surgery, the First Affiliated Hospital of Guangxi Medical University, China
| | - Yuexia Chen
- Department of Pathology, The Third Hospital of Nanchang, Nanchang, China
| | - Jianxin He
- Department of Ultrasound Medicine, The First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
17
|
Wang F, Guo B, Jia Z, Jing Z, Wang Q, Li M, Lu B, Liang W, Hu W, Fu X. The Role of CXCR3 in Nervous System-Related Diseases. Mediators Inflamm 2024; 2024:8347647. [PMID: 39429695 PMCID: PMC11488998 DOI: 10.1155/2024/8347647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Inflammatory chemokines are a group of G-protein receptor ligands characterized by conserved cysteine residues, which can be divided into four main subfamilies: CC, CXC, XC, and CX3C. The C-X-C chemokine receptor (CXCR) 3 and its ligands, C-X-C chemokine ligands (CXCLs), are widely expressed in both the peripheral nervous system (PNS) and central nervous system (CNS). This comprehensive literature review aims to examine the functions and pathways of CXCR3 and its ligands in nervous system-related diseases. In summary, while the related pathways and the expression levels of CXCR3 and its ligands are varied among different cells in PNS and CNS, the MPAK pathway is the core via which CXCR3 exerts physiological functions. It is not only the core pathway of CXCR3 after activation but also participates in the expression of CXCR3 ligands in the nervous system. In addition, despite CXCR3 being a common inflammatory chemokine receptor, there is no consensus on its precise roles in various diseases. This uncertainty may be attributable to distinct inflammatory characteristics, that inflammation simultaneously possesses the dual properties of damage induction and repair facilitation.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bing Guo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ziyang Jia
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qingyi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bingqi Lu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Bhat V, Piaseczny M, Goodale D, Patel U, Sadri A, Allan AL. Lung-derived soluble factors support stemness/plasticity and metastatic behaviour of breast cancer cells via the FGF2-DACH1 axis. Clin Exp Metastasis 2024; 41:717-731. [PMID: 38581619 PMCID: PMC11499378 DOI: 10.1007/s10585-024-10284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Patients with triple-negative breast cancer (TNBC) have an increased propensity to develop lung metastasis. Our previous studies demonstrated that stem-like ALDHhiCD44+ breast cancer cells interact with lung-derived soluble factors, resulting in enhanced migration and lung metastasis particularly in TNBC models. We have also observed that the presence of a primary TNBC tumor can 'prime' the lung microenvironment in preparation for metastasis. In this study, we hypothesized that soluble lung-derived factors secreted in the presence of a primary TNBC tumor can influence stemness/plasticity of breast cancer cells. Using an ex vivo pulmonary metastasis assay (PuMA), we observed that the lung microenvironment supports colonization and growth of ALDHhiCD44+ TNBC cells, potentially via interactions with lung-derived FGF2. Exposure of TNBC cells to lung-conditioned media (LCM) generated from mice bearing TNBC primary tumors (tbLCM) significantly enhanced the proportion of ALDHhiCD44+ cells compared to control or LCM from tumor-naïve mice (tnLCM). Further analysis using a human cancer stem cell qPCR array revealed that, relative to tnLCM or control, exposure of TNBC cells to tbLCM leads to downregulation of the transcription factor and putative tumor suppressor Dachshund homolog 1 (DACH1), a downstream regulator of FGF2. In addition, inhibition of DACH1 using siRNA or treatment with recombinant FGF2 enhanced the ALDHhiCD44+ phenotype. Taken together, our findings suggest that the FGF2-DACH1 signaling axis supports stemness/plasticity of TNBC cells in the lung microenvironment and lays the foundation for future evaluation of FGF2 as a potential novel therapeutic target for treatment or prevention of breast cancer metastasis to the lung.
Collapse
Affiliation(s)
- Vasudeva Bhat
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada.
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| | - Matthew Piaseczny
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Urvi Patel
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Ashkan Sadri
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5W9, Canada
| |
Collapse
|
19
|
Chen Q, Wang D, Chen Z, Lin L, Shao Q, Zhang H, Li P, Lv H. Predicting biomarkers in laryngeal squamous cell carcinoma based on the cytokine-cytokine receptor interaction pathway. Heliyon 2024; 10:e37738. [PMID: 39309795 PMCID: PMC11416252 DOI: 10.1016/j.heliyon.2024.e37738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Objective To analyze and validate differential genes in the cytokine-cytokine receptor interaction CCRI pathway in laryngeal squamous cell carcinoma (LSCC) using bioinformatics and Mendelian randomization (MR) to find potential biomarkers for LSCC. Methods Five sets of LSCC-related gene chips were downloaded from the GEO database, and four sets of combined datasets were randomly selected as the test set and one set as the validation set to screen for differential genes in the CCRI pathway; two-way Mendelian randomization was performed to analyze the causal relationship between cytokine receptor as the exposure factor and LSCC as the outcome variable; and the causal relationship was analyzed by DGIdb, Miranda, miRDB, miRWalk, TargetScan, spongeScan, and TISIDB databases to analyze the relationship between differential genes and drugs, immune cell infiltration, and mRNA-miNA-lncRNA interactions. Results A total of 7 differentially expressed genes CD27, CXCL2, CXCL9, INHBA, IL6, CXCL11, and TNFRSF17 were screened for enrichment in the CCRI signaling pathway; MR analysis showed that the CCRI receptor was a risk factor for LSCC (IVW: OR = 1.629, 95 % CI:1.060-2.504, P = 0.026); Seven differential genes were correlated with drugs, immune cells and mRNA-miNA-lncRNA, respectively; the CCRI differential gene expression analysis in the validation set was consistent with the test set results. Conclusion This study provided CCRI differential gene expression by bioinformatics, and MR analysis demonstrated that cytokine receptors are risk factors for LSCC, providing new ideas for the pathogenesis and therapeutic targets of LSCC.
Collapse
Affiliation(s)
- Qingyong Chen
- The Second School of Clinical Medicine of Binzhou Medical University, Yan Tai, China
| | - Dongqing Wang
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Zhipeng Chen
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Liqiang Lin
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Qiang Shao
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Han Zhang
- No.One Clinical Medicine School of Binzhou Medical University, Bing Zhou, China
| | - Peng Li
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| | - Huaiqing Lv
- Department of Otorhinolaryngology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
20
|
Reinecke JB, Jimenez Garcia L, Gross AC, Cam M, Cannon MV, Gust MJ, Sheridan JP, Gryder BE, Dries R, Roberts RD. Aberrant activation of wound healing programs within the metastatic niche facilitates lung colonization by osteosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575008. [PMID: 38260361 PMCID: PMC10802507 DOI: 10.1101/2024.01.10.575008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
PURPOSE Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics was used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and non-tumor cells within the metastatic microenvironment. RESULTS Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a pro-metastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the anti-fibrotic TKI nintedanib. Our data shed light on the non-cell autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.
Collapse
|
21
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
22
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Shirakihara T, Orimo A. Activin A from primary breast tumors generates a pre-metastatic niche by inducing pulmonary fibrosis. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:24. [PMID: 39184930 PMCID: PMC11341999 DOI: 10.21037/tbcr-24-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/26/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Takuya Shirakihara
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Orimo
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
24
|
Liu J, Chai XX, Qiu XR, Sun WJ, Tian YL, Guo WH, Yin DC, Zhang CY. Type X collagen knockdown inactivate ITGB1/PI3K/AKT to suppress chronic unpredictable mild stress-stimulated triple-negative breast cancer progression. Int J Biol Macromol 2024; 273:133074. [PMID: 38866293 DOI: 10.1016/j.ijbiomac.2024.133074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Xiao-Rong Qiu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Yi-Le Tian
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China.
| |
Collapse
|
25
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Xin Y, Hu B, Li K, Hu G, Zhang C, Chen X, Tang K, Du P, Tan Y. Circulating tumor cells with metastasis-initiating competence survive fluid shear stress during hematogenous dissemination through CXCR4-PI3K/AKT signaling. Cancer Lett 2024; 590:216870. [PMID: 38614386 DOI: 10.1016/j.canlet.2024.216870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
To seed lethal secondary lesions, circulating tumor cells (CTCs) must survive all rate-limiting factors during hematogenous dissemination, including fluid shear stress (FSS) that poses a grand challenge to their survival. We thus hypothesized that CTCs with the ability to survive FSS in vasculature might hold metastasis-initiating competence. This study reported that FSS of physiologic magnitude selected a small subpopulation of suspended tumor cells in vitro with the traits of metastasis-initiating cells, including stemness, migration/invasion potential, cellular plasticity, and biophysical properties. These shear-selected cells generated local and metastatic tumors at the primary and distal sites efficiently, implicating their metastasis competence. Mechanistically, FSS activated the mechanosensitive protein CXCR4 and the downstream PI3K/AKT signaling, which were essential in shear-mediated selection of metastasis-competent CTCs. In summary, these findings conclude that CTCs with metastasis-initiating competence survive FSS during hematogenous dissemination through CXCR4-PI3K/AKT signaling, which may provide new therapeutic targets for the early prevention of tumor metastasis.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bing Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Pengyu Du
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
| |
Collapse
|
27
|
Jakab M, Lee KH, Uvarovskii A, Ovchinnikova S, Kulkarni SR, Jakab S, Rostalski T, Spegg C, Anders S, Augustin HG. Lung endothelium exploits susceptible tumor cell states to instruct metastatic latency. NATURE CANCER 2024; 5:716-730. [PMID: 38308117 PMCID: PMC11136671 DOI: 10.1038/s43018-023-00716-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
In metastasis, cancer cells travel around the circulation to colonize distant sites. Due to the rarity of these events, the immediate fates of metastasizing tumor cells (mTCs) are poorly understood while the role of the endothelium as a dissemination interface remains elusive. Using a newly developed combinatorial mTC enrichment approach, we provide a transcriptional blueprint of the early colonization process. Following their arrest at the metastatic site, mTCs were found to either proliferate intravascularly or extravasate, thereby establishing metastatic latency. Endothelial-derived angiocrine Wnt factors drive this bifurcation, instructing mTCs to follow the extravasation-latency route. Surprisingly, mTC responsiveness towards niche-derived Wnt was established at the epigenetic level, which predetermined tumor cell behavior. Whereas hypomethylation enabled high Wnt activity leading to metastatic latency, methylated mTCs exhibited low activity and proliferated intravascularly. Collectively the data identify the predetermined methylation status of disseminated tumor cells as a key regulator of mTC behavior in the metastatic niche.
Collapse
Affiliation(s)
- Moritz Jakab
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| | - Ki Hong Lee
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexey Uvarovskii
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
- Evotec SE, Göttingen, Germany
| | - Svetlana Ovchinnikova
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
- Bioquant Center, Heidelberg University, Heidelberg, Germany
| | - Shubhada R Kulkarni
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Sevinç Jakab
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Rostalski
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Carleen Spegg
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
- Bioquant Center, Heidelberg University, Heidelberg, Germany
| | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.
| |
Collapse
|
28
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
29
|
Wang Y, Narasimamurthy R, Qu M, Shi N, Guo H, Xue Y, Barker N. Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis. NATURE CANCER 2024; 5:546-556. [PMID: 38654103 DOI: 10.1038/s43018-024-00759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
The circadian clock regulates daily rhythms of numerous physiological activities through tightly coordinated modulation of gene expression and biochemical functions. Circadian disruption is associated with enhanced tumor formation and metastasis via dysregulation of key biological processes and modulation of cancer stem cells (CSCs) and their specialized microenvironment. Here, we review how the circadian clock influences CSCs and their local tumor niches in the context of different stages of tumor metastasis. Identifying circadian therapeutic targets could facilitate the development of new treatments that leverage circadian modulation to ablate tumor-resident CSCs, inhibit tumor metastasis and enhance response to current therapies.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Meng Qu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Nuolin Shi
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Nick Barker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
30
|
Xu Y, Deng C, Chen H, Song Y, Xu H, Song G, Wang X, Luo T, Chen W, Ma J, Zeng A, Huang S, Chen Z, Fu J, Gong M, Tai Y, Huang A, Feng H, Hu J, Zhu X, Tang Q, Lu J, Wang J. Osteosarcoma Cells Secrete CXCL14 That Activates Integrin α11β1 on Fibroblasts to Form a Lung Metastatic Niche. Cancer Res 2024; 84:994-1012. [PMID: 38295227 DOI: 10.1158/0008-5472.can-23-1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Cooperation between primary malignant cells and stromal cells can mediate the establishment of lung metastatic niches. Here, we characterized the landscape of cell populations in the tumor microenvironment in treatment-naïve osteosarcoma using single-cell RNA sequencing and identified a stem cell-like cluster with tumor cell-initiating properties and prometastatic traits. CXCL14 was specifically enriched in the stem cell-like cluster and was also significantly upregulated in lung metastases compared with primary tumors. CXCL14 induced stromal reprogramming and evoked a malignant phenotype in fibroblasts to form a supportive lung metastatic niche. Binding of CXCL14 to heterodimeric integrin α11β1 on fibroblasts activated actomyosin contractility and matrix remodeling properties. CXCL14-stimulated fibroblasts produced TGFβ and increased osteosarcoma invasion and migration. mAbs targeting the CXCL14-integrin α11β1 axis inhibited fibroblast TGFβ production, enhanced CD8+ T cell-mediated antitumor immunity, and suppressed osteosarcoma lung metastasis. Taken together, these findings identify cross-talk between osteosarcoma cells and fibroblasts that promotes metastasis and demonstrate that targeting the CXCL14-integrin α11β1 axis is a potential strategy to inhibit osteosarcoma lung metastasis. SIGNIFICANCE Cooperation between stem-like osteosarcoma cells and fibroblasts mediated by a CXCL14-integrin α11β1 axis creates a tumor-supportive lung metastatic niche and represents a therapeutic target to suppress osteosarcoma metastasis.
Collapse
Affiliation(s)
- Yanyang Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Chuangzhong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Hongmin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - YiJiang Song
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Huaiyuan Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Guohui Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xinliang Wang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Tianqi Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Weiqing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jiahui Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Anyu Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Shujing Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhihao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jianchang Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ming Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yi Tai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Anfei Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huixiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jinxin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiaojun Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qinglian Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jinchang Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
31
|
Monteran L, Zait Y, Erez N. It's all about the base: stromal cells are central orchestrators of metastasis. Trends Cancer 2024; 10:208-229. [PMID: 38072691 DOI: 10.1016/j.trecan.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024]
Abstract
The tumor microenvironment (TME) is an integral part of tumors and plays a central role in all stages of carcinogenesis and progression. Each organ has a unique and heterogeneous microenvironment, which affects the ability of disseminated cells to grow in the new and sometimes hostile metastatic niche. Resident stromal cells, such as fibroblasts, osteoblasts, and astrocytes, are essential culprits in the modulation of metastatic progression: they transition from being sentinels of tissue integrity to being dysfunctional perpetrators that support metastatic outgrowth. Therefore, better understanding of the complexity of their reciprocal interactions with cancer cells and with other components of the TME is essential to enable the design of novel therapeutic approaches to prevent metastatic relapse.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
32
|
Xie H, Sun Q, Chu X, Zhu S, Xie F. Review of pre-metastatic niches in lung metastasis: From cells to molecules, from mechanism to clinics. Biochim Biophys Acta Rev Cancer 2024; 1879:189081. [PMID: 38280471 DOI: 10.1016/j.bbcan.2024.189081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Distant metastasis is responsible for high mortality in most cancer cases and the lung is one of the most common target organs, severely affecting the quality of daily life and overall survival of cancer patients. With relevant research breakthroughs accumulating, scientists have developed a deeper understanding of lung metastasis (LM) from the rudimentary "seed and soil" theory to a more vivid concept of the pre-metastatic niche (PMN). Thus, the mechanisms of PMN formation become considerably complicated, involving various types of cells, chemokines, cytokines, and proteins, providing potential biomarkers for improved LM diagnosis and treatment techniques. Here we summarized the latest findings (in 3 years) of lung PMN and systematically collated it from basic research to clinical application, which clearly exhibited the influences of the primary tumor, stromal, and bone marrow-derived cells (BMDCs) and associated molecules in the formation of lung PMN.
Collapse
Affiliation(s)
- Hongting Xie
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Quan Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuelei Chu
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Feiyu Xie
- Integrated Traditional Chinese and Western Medicine Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Perkins DW, Steiner I, Haider S, Robertson D, Buus R, O'Leary L, Isacke CM. Therapy-induced normal tissue damage promotes breast cancer metastasis. iScience 2024; 27:108503. [PMID: 38161426 PMCID: PMC10755366 DOI: 10.1016/j.isci.2023.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Disseminated tumor cells frequently exhibit a period of dormancy, rendering them chemotherapy insensitive; conversely, the systemic delivery of chemotherapies can result in normal tissue damage. Using multiple mouse and human breast cancer models, we demonstrate that prior chemotherapy administration enhances metastatic colonization and outgrowth. In vitro, chemotherapy-treated fibroblasts display a pro-tumorigenic senescence-associated secretory phenotype (SASP) and are effectively eliminated by targeting the anti-apoptotic protein BCL-xL. In vivo, chemotherapy treatment induces SASP expression in normal tissues; however, the accumulation of senescent cells is limited, and BCL-xL inhibitors are unable to reduce chemotherapy-enhanced metastasis. This likely reflects that chemotherapy-exposed stromal cells do not enter a BCL-xL-dependent phenotype or switch their dependency to other anti-apoptotic BCL-2 family members. This study highlights the role of the metastatic microenvironment in controlling outgrowth of disseminated tumor cells and the need to identify additional approaches to limit the pro-tumorigenic effects of therapy-induced normal tissue damage.
Collapse
Affiliation(s)
- Douglas W. Perkins
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, UK
| | - Ivana Steiner
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, UK
| | - David Robertson
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, UK
| | - Richard Buus
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, UK
| | - Lynda O'Leary
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, UK
| | - Clare M. Isacke
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, UK
| |
Collapse
|
34
|
Bessaad M, Habel A, Hadj Ahmed M, Xu W, Stayoussef M, Bouaziz H, Hachiche M, Mezlini A, Larbi A, Yaacoubi-Loueslati B. Assessing serum cytokine profiles in inflammatory breast cancer patients using Luminex® technology. Cytokine 2023; 172:156409. [PMID: 37918053 DOI: 10.1016/j.cyto.2023.156409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Inflammatory breast cancer (IBC), accounts for the majority of deaths associated with breast tumors. Because this form is aggressive from its appearance and has a strong metastatic potential. The majority of patients are not diagnosed until late stages, highlighting the need for the development of novel diagnostic biomarkers. Immune mediators may affect IBC progression and metastasis installation. AIM OF THE STUDY Analysis of serum proteins to identify a panel of prognostic biomarkers for IBC. PATIENTS AND METHODS Serum levels of 65 analytes were determined in IBC and Non-IBC patients with the ProcartaPlex Human Immune Monitoring 65-Plex Panel. RESULTS Fifteen analytes: 5 cytokines (IL-8, IL-16, IL-21, IL-22 and MIF), 7 chemokines (Eotaxin, eotaxin-3, Fractalkine, IP-10, MIP-1α, MIP-1β and SDF-1α), One growth factors (FGF-2) and 2 soluble receptors (TNFRII and Tweak); were significantly differentially expressed between the two groups. ROC curves showed that twelve of them (IL-8, IL-16, IL-21, IL-22, MIF, MIP-1α, MIP-1β, SDF-1α, TNFRII, FGF-2, Eotaxin-3, and Fractalkine) had AUC values greater than 0.70 and thus had potential clinical utility. Moreover, seven cytokines: IL-8, IL-16, MIF, Eotaxin-3, MIP-1α, MIP-1β, and CD-30 are positively associated with patients who developed distant metastasis. Ten analytes: Eotaxin-3, Fractalkine, IL-16, IL-1α, IL-22, IL-8, MIF, MIP-1α, MIP-1β, and TNFRII are positively associated with patients who had Lymph-Nodes invasion. CONCLUSION This study has uncovered a set of 8 analytes (Eotaxin-3, Fractalkine, IL-16, IL-8, IL-22, MIF, MIP-1α, MIP-1β) that can be used as biomarkers of IBC, and can be utilized for early detection of IBC, preventing metastasis and lymph-Nodes invasion.
Collapse
Affiliation(s)
- Maryem Bessaad
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Azza Habel
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Mariem Hadj Ahmed
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Mouna Stayoussef
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia
| | - Hanen Bouaziz
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Monia Hachiche
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Amel Mezlini
- Salah Azaiez Oncology Institute, Avenue 9 April, 1006, Bab Saadoun, Tunis, Tunisia
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Besma Yaacoubi-Loueslati
- University of Tunis El Manar (UTM), Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Tunisia.
| |
Collapse
|
35
|
Almeida SFF, Santos L, Sampaio-Ribeiro G, Ferreira HRS, Lima N, Caetano R, Abreu M, Zuzarte M, Ribeiro AS, Paiva A, Martins-Marques T, Teixeira P, Almeida R, Casanova JM, Girão H, Abrunhosa AJ, Gomes CM. Unveiling the role of osteosarcoma-derived secretome in premetastatic lung remodelling. J Exp Clin Cancer Res 2023; 42:328. [PMID: 38031171 PMCID: PMC10688015 DOI: 10.1186/s13046-023-02886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Lung metastasis is the most adverse clinical factor and remains the leading cause of osteosarcoma-related death. Deciphering the mechanisms driving metastatic spread is crucial for finding open therapeutic windows for successful organ-specific interventions that may halt or prevent lung metastasis. METHODS We employed a mouse premetastatic lung-based multi-omics integrative approach combined with clinical features to uncover the specific changes that precede lung metastasis formation and identify novel molecular targets and biomarker of clinical utility that enable the design of novel therapeutic strategies. RESULTS We found that osteosarcoma-bearing mice or those preconditioned with the osteosarcoma cell secretome harbour profound lung structural alterations with airway damage, inflammation, neutrophil infiltration, and extracellular matrix remodelling with increased deposition of fibronectin and collagens by resident stromal activated fibroblasts, favouring the adhesion of disseminated tumour cells. Systemic-induced microenvironmental changes, supported by transcriptomic and histological data, promoted and accelerated lung metastasis formation. Comparative proteome profiling of the cell secretome and mouse plasma identified a large number of proteins involved in extracellular-matrix organization, cell-matrix adhesion, neutrophil degranulation, and cytokine-mediated signalling, consistent with the observed lung microenvironmental changes. Moreover, we identified EFEMP1, an extracellular matrix glycoprotein exclusively secreted by metastatic cells, in the plasma of mice bearing a primary tumour and in biopsy specimens from osteosarcoma patients with poorer overall survival. Depletion of EFEMP1 from the secretome prevents the formation of lung metastasis. CONCLUSIONS Integration of our data uncovers neutrophil infiltration and the functional contribution of stromal-activated fibroblasts in ECM remodelling for tumour cell attachment as early pro-metastatic events, which may hold therapeutic potential in preventing or slowing the metastatic spread. Moreover, we identified EFEMP1, a secreted glycoprotein, as a metastatic driver and a potential candidate prognostic biomarker for lung metastasis in osteosarcoma patients. Osteosarcoma-derived secreted factors systemically reprogrammed the lung microenvironment and fostered a growth-permissive niche for incoming disseminated cells to survive and outgrow into overt metastasis. Daily administration of osteosarcoma cell secretome mimics the systemic release of tumour-secreted factors of a growing tumour in mice during PMN formation; Transcriptomic and histological analysis of premetastatic lungs revealed inflammatory-induced stromal fibroblast activation, neutrophil infiltration, and ECM remodelling as early onset pro-metastatic events; Proteome profiling identified EFEMP1, an extracellular secreted glycoprotein, as a potential predictive biomarker for lung metastasis and poor prognosis in osteosarcoma patients. Osteosarcoma patients with EFEMP1 expressing biopsies have a poorer overall survival.
Collapse
Affiliation(s)
- Sara F F Almeida
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Liliana Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Gabriela Sampaio-Ribeiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Hugo R S Ferreira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Nuno Lima
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Rui Caetano
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Mónica Zuzarte
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
| | - Artur Paiva
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Tânia Martins-Marques
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Paulo Teixeira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - Rui Almeida
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - José Manuel Casanova
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Tumor Unit of the Locomotor Apparatus (UTAL), Orthopedics Service, Coimbra Hospital and University Center (CHUC), University Clinic of Orthopedics, Coimbra, 3000-075, Portugal
| | - Henrique Girão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal.
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal.
| |
Collapse
|
36
|
Zhang W, Wang J, Liu C, Li Y, Sun C, Wu J, Wu Q. Crosstalk and plasticity driving between cancer-associated fibroblasts and tumor microenvironment: significance of breast cancer metastasis. J Transl Med 2023; 21:827. [PMID: 37978384 PMCID: PMC10657029 DOI: 10.1186/s12967-023-04714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell population in breast tumors. A functionally diverse population of CAFs increases the dynamic complexity of the tumor microenvironment (TME). The intertwined network of the TME facilitates the interaction between activated CAFs and breast cancer cells, which can lead to the proliferation and invasion of breast cells. Considering the special transmission function of CAFs, the aim of this review is to summarize and highlight the crosstalk between CAFs and breast cancer cells in the TME as well as the relationship between CAFs and extracellular matrix (ECM), soluble cytokines, and other stromal cells in the metastatic state. The crosstalk between cancer-associated fibroblasts and tumor microenvironment also provides a plastic therapeutic target for breast cancer metastasis. In the course of the study, the inhibitory effects of different natural compounds on targeting CAFs and the advantages of different drug combinations were summarized. CAFs are also widely used in the diagnosis and treatment of breast cancer. The cumulative research on this phenomenon supports the establishment of a targeted immune microenvironment as a possible breakthrough in the prevention of invasive metastasis of breast cancer.
Collapse
Affiliation(s)
- Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
| | - Changgang Sun
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
37
|
Kunitatsu K, Yamamoto Y, Nasu S, Taniji A, Kawashima S, Yamagishi N, Ito T, Inoue S, Kanai Y. Novel Peritoneal Sclerosis Rat Model Developed by Administration of Bleomycin and Lansoprazole. Int J Mol Sci 2023; 24:16108. [PMID: 38003303 PMCID: PMC10671295 DOI: 10.3390/ijms242216108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In our preliminary experiment, peritoneal sclerosis likely induced by peritoneal dialysis was unexpectedly observed in the livers of rats given bleomycin and lansoprazole. We examined whether this peritoneal thickening around the liver was time-dependently induced by administration of both drugs. Male Wistar rats were injected with bleomycin and/or lansoprazole for 2 or 4 weeks. The 3YB-1 cell line derived from rat fibroblasts was treated by bleomycin and/or lansoprazole for 24 h. The administration of both drugs together, but not individually, thickened the peritoneal tissue around the liver. There was accumulation of collagen fibers, macrophages, and eosinophils under mesothelial cells. Expressions of Col1a1, Mcp1 and Mcp3 genes were increased in the peritoneal tissue around the liver and in 3YB-1 cells by the administration of both drugs together, and Opn genes had increased expressions in this tissue and 3YB-1 cells. Mesothelial cells indicated immunoreactivity against both cytokeratin, a mesothelial cell marker, and αSMA, a fibroblast marker, around the livers of rats given both drugs. Administration of both drugs induced the migration of macrophages and eosinophils and induced fibrosis associated with the possible activation of fibroblasts and the possible promotion of the mesothelial-mesenchymal transition. This might become a novel model of peritoneal sclerosis for peritoneal dialysis.
Collapse
Affiliation(s)
- Kosei Kunitatsu
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yuta Yamamoto
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shota Nasu
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Akira Taniji
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shuji Kawashima
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Takao Ito
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
38
|
Nolan E, Kang Y, Malanchi I. Mechanisms of Organ-Specific Metastasis of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041326. [PMID: 36987584 PMCID: PMC10626265 DOI: 10.1101/cshperspect.a041326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
39
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
40
|
Cai R, Tressler CM, Cheng M, Sonkar K, Tan Z, Paidi SK, Ayyappan V, Barman I, Glunde K. Primary breast tumor induced extracellular matrix remodeling in premetastatic lungs. Sci Rep 2023; 13:18566. [PMID: 37903851 PMCID: PMC10616170 DOI: 10.1038/s41598-023-45832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
The premetastatic niche hypothesis proposes an active priming of the metastatic site by factors secreted from the primary tumor prior to the arrival of the first cancer cells. We investigated several extracellular matrix (ECM) structural proteins, ECM degrading enzymes, and ECM processing proteins involved in the ECM remodeling of the premetastatic niche. Our in vitro model consisted of lung fibroblasts, which were exposed to factors secreted by nonmalignant breast epithelial cells, nonmetastatic breast cancer cells, or metastatic breast cancer cells. We assessed ECM remodeling in vivo in premetastatic lungs of female mice growing orthotopic primary breast tumor xenografts, as compared to lungs of control mice without tumors. Premetastatic lungs contained significantly upregulated Collagen (Col) Col4A5, matrix metalloproteinases (MMPs) MMP9 and MMP14, and decreased levels of MMP13 and lysyl oxidase (LOX) as compared to control lungs. These in vivo findings were consistent with several of our in vitro cell culture findings, which showed elevated Col14A1, Col4A5, glypican-1 (GPC1) and decreased Col5A1 and Col15A1 for ECM structural proteins, increased MMP2, MMP3, and MMP14 for ECM degrading enzymes, and decreased LOX, LOXL2, and prolyl 4-hydroxylase alpha-1 (P4HA1) for ECM processing proteins in lung fibroblasts conditioned with metastatic breast cancer cell media as compared to control. Taken together, our data show that premetastatic priming of lungs by primary breast tumors resulted in significant ECM remodeling which could facilitate metastasis by increasing interstitial fibrillar collagens and ECM stiffness (Col14A1), disruptions of basement membranes (Col4A5), and formation of leaky blood vessels (MMP2, MMP3, MMP9, and MMP14) to promote metastasis.
Collapse
Affiliation(s)
- Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Caitlin M Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Zheqiong Tan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Santosh Kumar Paidi
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
| | - Ishan Barman
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Traylor Building, Room 203, Baltimore, MD, 21205, USA.
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
41
|
Liu H, Zhang G, Gao R. Cellular and molecular characteristics of the premetastatic niches. Animal Model Exp Med 2023; 6:399-408. [PMID: 37902101 PMCID: PMC10614130 DOI: 10.1002/ame2.12356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
The premetastatic niches (PMN) formed by primary tumor-derived molecules regulate distant organs and tissues to further favor tumor colonization. Targeted PMN therapy may prevent tumor metastasis in the early stages, which is becoming increasingly important. At present, there is a lack of in-depth understanding of the cellular and molecular characteristics of the PMN. Here, we summarize current research advances on the cellular and molecular characteristics of the PMN. We emphasize that PMN intervention is a potential therapeutic strategy for early prevention of tumor metastasis, which provides a promising basis for future research and clinical application.
Collapse
Affiliation(s)
- Hongfei Liu
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Guoxin Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| |
Collapse
|
42
|
Inoue S, Inahashi Y, Itakura M, Inoue G, Muneshige K, Hirose T, Iwatsuki M, Takaso M, Miyagi M, Uchida K. Medermycin Inhibits TNFα-Promoted Inflammatory Reaction in Human Synovial Fibroblasts. Int J Mol Sci 2023; 24:13871. [PMID: 37762174 PMCID: PMC10531480 DOI: 10.3390/ijms241813871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Synovial inflammation plays a crucial role in the destruction of joints and the experience of pain in osteoarthritis (OA). Emerging evidence suggests that certain antibiotic agents and their derivatives possess anti-inflammatory properties. Medermycin (MED) has been identified as a potent antibiotic, specifically active against Gram-positive bacteria. In this study, we aimed to investigate the impact of MED on TNFα-induced inflammatory reactions in a synovial cell line, SW-982, as well as primary human synovial fibroblasts (HSF) using RNA sequencing, rtRT-PCR, ELISA, and western blotting. Through the analysis of differentially expressed genes (DEGs), we identified a total of 1478 significantly upregulated genes in SW-982 cells stimulated with TNFα compared to the vehicle control. Among these upregulated genes, MED treatment led to a reduction in 1167 genes, including those encoding proinflammatory cytokines such as IL1B, IL6, and IL8. Pathway analysis revealed the enrichment of DEGs in the TNF and NFκB signaling pathway, further supporting the involvement of MED in modulating inflammatory responses. Subsequent experiments demonstrated that MED inhibited the expression of IL6 and IL8 at both the mRNA and protein levels in both SW982 cells and HSF. Additionally, MED treatment resulted in a reduction in p65 phosphorylation in both cell types, indicating its inhibitory effect on NFκB activation. Interestingly, MED also inhibited Akt phosphorylation in SW982 cells, but not in HSF. Overall, our findings suggest that MED suppresses TNFα-mediated inflammatory cytokine production and p65 phosphorylation. These results highlight the potential therapeutic value of MED in managing inflammatory conditions in OA. Further investigations utilizing articular chondrocytes and animal models of OA may provide valuable insights into the therapeutic potential of MED for this disease.
Collapse
Affiliation(s)
- Sho Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan; (Y.I.); (T.H.); (M.I.)
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan;
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Kyoko Muneshige
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan; (Y.I.); (T.H.); (M.I.)
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan; (Y.I.); (T.H.); (M.I.)
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku Shirokane, Tokyo 108-8641, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Japan; (S.I.); (G.I.); (K.M.); (M.T.); (M.M.)
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki 253-0083, Japan
| |
Collapse
|
43
|
Chakraborty S, Mukherjee S, Basak U, Pati S, Dutta A, Dutta S, Dhar S, Sarkar T, Guin A, Sa G, Das T. Immune evasion by cancer stem cells ensures tumor initiation and failure of immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:384-405. [DOI: 10.37349/ei.2023.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 01/04/2025]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells that drive the formation and progression of tumors. However, during tumor initiation, how CSCs communicate with neighbouring immune cells to overcome the powerful immune surveillance barrier in order to form, spread, and maintain the tumor, remains poorly understood. It is, therefore, absolutely necessary to understand how a small number of tumor-initiating cells (TICs) survive immune attack during (a) the “elimination phase” of “tumor immune-editing”, (b) the establishment of regional or distant tumor after metastasis, and (c) recurrence after therapy. Mounting evidence suggests that CSCs suppress the immune system through a variety of distinct mechanisms that ensure the survival of not only CSCs but also non-stem cancer cells (NSCCs), which eventually form the tumor mass. In this review article, the mechanisms via which CSCs change the immune landscape of the tissue of origin, which contains macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes, in favour of tumorigenesis were discussed. The failure of cancer immunotherapy might also be explained by such interaction between CSCs and immune cells. This review will shed light on the critical role of CSCs in tumor immune evasion and emphasize the importance of CSC-targeted immunotherapy as a cutting-edge technique for battling cancer by restricting communication between immune cells and CSCs.
Collapse
Affiliation(s)
- Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhanki Dhar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Aharna Guin
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| |
Collapse
|
44
|
Dong G, Chen P, Xu Y, Liu T, Yin R. Cancer-associated fibroblasts: Key criminals of tumor pre-metastatic niche. Cancer Lett 2023; 566:216234. [PMID: 37236390 DOI: 10.1016/j.canlet.2023.216234] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant and important components of the tumour mesenchyme, and have been extensively studied for their role in primary tumours. CAFs provide biomechanical support for tumour cells and play key roles in immunosuppression and tumour metastasis. CAFs can promote epithelial-mesenchymal transition (EMT) of the primary tumour by secreting extracellular vesicles (EVs), increasing adhesion to tumour cells, remodelling the extracellular matrix (ECM) of the primary tumour, and changing its mechanical stiffness, which provides a pathway for tumour metastasis. Moreover, CAFs can form cell clusters with circulating tumour cells (CTCs) to help them resist blood shear forces and achieve colonisation of distant host organs. Recent studies have revealed their roles in pre-metastatic niche (PMN) formation and prevention. In this review, we discuss the role of CAFs in PMN formation and therapeutic interventions targeting PMN and CAFs to prevent metastasis.
Collapse
Affiliation(s)
- Guozhang Dong
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; The Fourth Clinical College of Nanjing Medical University, 21009, Nanjing, China
| | - Peng Chen
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; The Fourth Clinical College of Nanjing Medical University, 21009, Nanjing, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China.
| | - Tongyan Liu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; Department of Scientific Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; Department of Scientific Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China; Jiangsu Biobank of Clinical Resources, Nanjing, 210009, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211116, Nanjing, China
| |
Collapse
|
45
|
Liu A, Li Y, Lu S, Cai C, Zou F, Meng X. Stanniocalcin 1 promotes lung metastasis of breast cancer by enhancing EGFR-ERK-S100A4 signaling. Cell Death Dis 2023; 14:395. [PMID: 37400459 DOI: 10.1038/s41419-023-05911-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Lung metastasis is the leading cause of breast cancer-related death. The tumor microenvironment contributes to the metastatic colonization of tumor cells in the lungs. Tumor secretory factors are important mediators for the adaptation of cancer cells to foreign microenvironments. Here, we report that tumor-secreted stanniocalcin 1 (STC1) promotes the pulmonary metastasis of breast cancer by enhancing the invasiveness of tumor cells and promoting angiogenesis and lung fibroblast activation in the metastatic microenvironment. The results show that STC1 modifies the metastatic microenvironment through its autocrine action on breast cancer cells. Specifically, STC1 upregulates the expression of S100 calcium-binding protein A4 (S100A4) by facilitating the phosphorylation of EGFR and ERK signaling in breast cancer cells. S100A4 mediates the effect of STC1 on angiogenesis and lung fibroblasts. Importantly, S100A4 knockdown diminishes STC1-induced lung metastasis of breast cancer. Moreover, activated JNK signaling upregulates STC1 expression in breast cancer cells with lung-tropism. Overall, our findings reveal that STC1 plays important role in breast cancer lung metastasis.
Collapse
Affiliation(s)
- Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sitong Lu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chunqing Cai
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
46
|
Iurchenko NP, Nesina IP, Glushchenko NМ, Buchynska LG. ROLE OF STROMAL MICROENVIRONMENT IN THE FORMATION OF INVASIVE, ANGIOGENIC, AND METASTATIC POTENTIAL OF ENDOMETRIOID CARCINOMA OF ENDOMETRIUM. Exp Oncol 2023; 45:51-61. [PMID: 37417282 DOI: 10.15407/exp-oncology.2023.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
The aim of the study was to determine the association of indicators of the progression of endometrioid carcinoma of the endometrium (ECE) with the type of stromal microenvironment, the counts of CXCL12+ fibroblasts and CD163+ macrophages, and the expression of the chemokine CXCL12 and its receptor CXCR4 in tumor cells. MATERIALS AND METHODS Histological preparations of ECE samples (n = 51) were analyzed. Expression of CXCL2 and CXCR4 antigens in tumor cells, the content of CXCL12+ fibroblasts and CD163+ macrophages, and the density of microvessels were determined by the immunohistochemical method. RESULTS Groups of ECE with desmoplastic and inflammatory stromal reactions were delineated. The majority (80.0%) of tumors with desmoplasia were of low differentiation grade, deeply invading the myometrium; 65.0% of patients with these tumors were at stage III of the disease. In ECE cases of stages I-II, 77.4% of ECE showed an inflammatory type of stroma. The high angiogenic and invasive potential of EC of stages I-II was associated with an inflammatory stromal type, high counts of CD163+ macrophages and CXCL12+ fibroblasts in the tumor microenvironment, high expression of the chemokine receptor CXCR4, and reduced expression of its ligand CXCL12 in tumor cells. In the majority of EC of stage III, the increase in angiogenic, invasive, and metastatic potential was accompanied by the presence of desmoplastic stroma, increased expression of CXCR4 in tumor cells, and a high count of CXCL12+ fibroblasts. CONCLUSIONS The obtained results showed that the morphological architecture of the stromal ECE component is related to the molecular features of its constituents and tumor cells. Their interaction modulates the phenotypic characteristics of ECE associated with the degree of malignancy.
Collapse
Affiliation(s)
- N P Iurchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| | - I P Nesina
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| | - N М Glushchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| | - L G Buchynska
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv 03022, Ukraine
| |
Collapse
|
47
|
van Veen S, Kourti A, Ausloos E, Van Asselberghs J, Van den Haute C, Baekelandt V, Eggermont J, Vangheluwe P. ATP13A4 Upregulation Drives the Elevated Polyamine Transport System in the Breast Cancer Cell Line MCF7. Biomolecules 2023; 13:918. [PMID: 37371498 DOI: 10.3390/biom13060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Polyamine homeostasis is disturbed in several human diseases, including cancer, which is hallmarked by increased intracellular polyamine levels and an upregulated polyamine transport system (PTS). Thus far, the polyamine transporters contributing to the elevated levels of polyamines in cancer cells have not yet been described, despite the fact that polyamine transport inhibitors are considered for cancer therapy. Here, we tested whether the upregulation of candidate polyamine transporters of the P5B transport ATPase family is responsible for the increased PTS in the well-studied breast cancer cell line MCF7 compared to the non-tumorigenic epithelial breast cell line MCF10A. We found that MCF7 cells presented elevated expression of a previously uncharacterized P5B-ATPase, ATP13A4, which was responsible for the elevated polyamine uptake activity. Furthermore, MCF7 cells were more sensitive to polyamine cytotoxicity, as demonstrated by cell viability, cell death and clonogenic assays. Importantly, the overexpression of ATP13A4 WT in MCF10A cells induced a MCF7 polyamine phenotype, with significantly higher uptake of BODIPY-labeled polyamines and increased sensitivity to polyamine toxicity. In conclusion, we established ATP13A4 as a new polyamine transporter in the human PTS and showed that ATP13A4 may play a major role in the increased polyamine uptake of breast cancer cells. ATP13A4 therefore emerges as a candidate therapeutic target for anticancer drugs that block the PTS.
Collapse
Affiliation(s)
- Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Antria Kourti
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elke Ausloos
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Joris Van Asselberghs
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Zhao M, Huang H, He F, Fu X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1188277. [PMID: 37275909 PMCID: PMC10233045 DOI: 10.3389/fimmu.2023.1188277] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and shows high global incidence and mortality rates. The liver is an immune-tolerated organ with a specific immune microenvironment that causes traditional therapeutic approaches to HCC, such as chemotherapy, radiotherapy, and molecular targeted therapy, to have limited efficacy. The dramatic advances in immuno-oncology in the past few decades have modified the paradigm of cancer therapy, ushering in the era of immunotherapy. Currently, despite the rapid integration of cancer immunotherapy into clinical practice, some patients still show no response to treatment. Therefore, a rational approach is to target the tumor microenvironment when developing the next generation of immunotherapy. This review aims to provide insights into the hepatic immune microenvironment in HCC and summarize the mechanisms of action and clinical usage of immunotherapeutic options for HCC, including immune checkpoint blockade, adoptive therapy, cytokine therapy, vaccine therapy, and oncolytic virus-based therapy.
Collapse
Affiliation(s)
| | | | - Feng He
- *Correspondence: Feng He, ; Xiangsheng Fu,
| | | |
Collapse
|
49
|
Chen C, Lim D, Cai Z, Zhang F, Liu G, Dong C, Feng Z. HDAC inhibitor HPTA initiates anti-tumor response by CXCL9/10-recruited CXCR3 +CD4 +T cells against PAHs carcinogenicity. Food Chem Toxicol 2023; 176:113783. [PMID: 37059382 DOI: 10.1016/j.fct.2023.113783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure in food is closely associated with the occurrence and development of breast cancer, which may attribute to altered immunotoxicity and immune regulation. Currently, cancer immunotherapy aims to promote tumor-specific T cell responses, especially CD4+T helper cells (Th) for anti-tumor immunity. The histone deacetylase inhibitors (HDACis) are found to exert an anti-tumor effect by reshaping the tumor immune microenvironment, but the immune regulatory mechanism of HDACis in PAHs-induced breast tumor remains elusive. Here, using established breast cancer models induced by 7,12-dimethylbenz[a]anthracene (DMBA), a potent carcinogenic agent of PAH, the novel HDACi, 2-hexyl-4-pentylene acid (HPTA) exhibited anti-tumor effect by activating T lymphocytes immune function. HPTA recruited CXCR3+CD4+T cells into chemokines CXCL9/10-enriched tumor sites, the increased secretion of CXCL9/10 was regulated by the NF-κB-mediated pathway. Furthermore, HPTA promoted Th1 differentiation and assisted cytotoxic CD8+T cells in the elimination of breast cancer cells. These findings support the proposition of HPTA as a potential therapeutic in the treatment of PAHs-induced carcinogenicity.
Collapse
Affiliation(s)
- Chen Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
50
|
Drapela S, Gomes AP. The aging lung reawakens dormant tumor cells. NATURE CANCER 2023; 4:442-443. [PMID: 37106111 DOI: 10.1038/s43018-023-00537-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|