1
|
Lapacz KJ, Weiss K, Mueller F, Xue Y, Poepsel S, Weith M, Bange T, Riemer J. DPP8/9 processing of human AK2 unmasks an IAP binding motif. EMBO Rep 2025:10.1038/s44319-025-00455-z. [PMID: 40312560 DOI: 10.1038/s44319-025-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 05/03/2025] Open
Abstract
Adenylate kinase 2 (AK2) is localized in the intermembrane space of mitochondria, where it ensures efficient adenine nucleotide exchange between cytosol and mitochondria. For mitochondrial import, AK2 relies on the MIA40 disulphide relay system. Its cytosolic stability is subject to regulation through N-terminal processing by the dipeptidyl peptidases DPP8 and DPP9, which sensitize AK2 for proteasomal degradation. Here, we find that cytosolic AK2 degradation is mediated by Inhibitors of Apoptosis (IAPs), a class of E3 ligases that interacts with target proteins by binding to IAP-binding motifs (IBM). We have identified an IBM at the very end of AK2's novel N-terminus, which becomes exposed due to processing by DPP8/9. N-terminal acetylation mediated by the N-acetyltransferase NatA prevents this AK2-IAP interaction, therefore stabilizing AK2 in the cytosol. Performing a genome-wide in silico screen, we could identify 129 potential substrates in which an IBM becomes potentially unmasked by DPP8/9 processing. For one of these potential substrates, EIF2A, we demonstrate its targeting to IAPs after IBM exposure by DPP8/9 indicating that DPP8/9-mediated unmasking of IBMs is a general phenomenon.
Collapse
Affiliation(s)
- Kim J Lapacz
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, 50674, Cologne, Germany
| | - Konstantin Weiss
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, 50674, Cologne, Germany
| | - Franziska Mueller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 80336, Munich, Germany
| | - Yuxing Xue
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 80336, Munich, Germany
| | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Matthias Weith
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, 50674, Cologne, Germany
| | - Tanja Bange
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 80336, Munich, Germany.
| | - Jan Riemer
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, 50674, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
2
|
Duran-Romaña R, Houben B, Migens PF, Zhang Y, Rousseau F, Schymkowitz J. Native Fold Delay and its implications for co-translational chaperone binding and protein aggregation. Nat Commun 2025; 16:1673. [PMID: 39955309 PMCID: PMC11830000 DOI: 10.1038/s41467-025-57033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Because of vectorial protein translation, residues that interact in the native protein structure but are distantly separated in the primary sequence are unavailable simultaneously. Instead, there is a temporal delay during which the N-terminal interaction partner is unsatisfied and potentially vulnerable to non-native interactions. We introduce "Native Fold Delay" (NFD), a metric that integrates protein topology with translation kinetics to quantify such delays. We found that many proteins exhibit residues with NFDs in the range of tens of seconds. These residues, predominantly in well-structured, buried regions, often coincide with aggregation-prone regions. NFD correlates with co-translational engagement by the yeast Hsp70 chaperone Ssb, suggesting that native fold-delayed regions have a propensity to misfold. Supporting this, we show that proteins with long NFDs are more frequently co-translationally ubiquitinated and prone to aggregate upon Ssb deletion.
Collapse
Affiliation(s)
- Ramon Duran-Romaña
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paula Fernández Migens
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Sabbarini IM, Reif D, Park K, McQuown AJ, Nelliat AR, Trejtnar C, Dötsch V, Shakhnovich EI, Murray AW, Denic V. A ribosome-associating chaperone mediates GTP-driven vectorial folding of nascent eEF1A. Nat Commun 2025; 16:1277. [PMID: 39900909 PMCID: PMC11790920 DOI: 10.1038/s41467-025-56489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Eukaryotic translation elongation factor 1A (eEF1A) is a highly abundant, multi-domain GTPase. Post-translational steps essential for eEF1A biogenesis are carried out by bespoke chaperones but co-translational mechanisms tailored to eEF1A folding remain unexplored. Here, we use AlphaPulldown to identify Ypl225w (also known as Chp1, Chaperone 1 for eEF1A) as a conserved yeast protein predicted to stabilize the N-terminal, GTP-binding (G) domain of eEF1A against its misfolding propensity, as predicted by computational simulations and validated by microscopy analysis of ypl225wΔ cells. Proteomics and biochemical reconstitution reveal that Ypl225w functions as a co-translational chaperone by forming dual interactions with the eEF1A G domain nascent chain and the UBA domain of ribosome-bound nascent polypeptide-associated complex (NAC). Lastly, we show that Ypl225w primes eEF1A nascent chains for binding to GTP as part of a folding mechanism tightly coupled to chaperone recycling. Our work shows that an ATP-independent chaperone can drive vectorial folding of nascent chains by co-opting G protein nucleotide binding.
Collapse
Affiliation(s)
- Ibrahim M Sabbarini
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Dvir Reif
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alexander J McQuown
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Anjali R Nelliat
- Graduate Program in Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Charlotte Trejtnar
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Scazzari M, Zhang Y, Moddemann A, Rospert S. Stalled disomes marked by Hel2-dependent ubiquitin chains undergo Ubp2/Ubp3-mediated deubiquitination upon translational run-off. Commun Biol 2025; 8:132. [PMID: 39875504 PMCID: PMC11775340 DOI: 10.1038/s42003-025-07569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways. Recent studies have revealed high concentrations of disomes and trisomes in unstressed cells, raising the question of whether and how Hel2 selects long-term stalled disomes and trisomes. This study presents quantitative analysis of in vivo-formed Hel2•ribosome complexes and the dynamics of Hel2-dependent Rps20 ubiquitination and Ubp2/Ubp3-dependent deubiquitination. Our findings show that Hel2 occupancy progressively increases from translating monosomes to disomes and trisomes. We demonstrate that disomes and trisomes with mono- or di-ubiquitinated Rps20 resolve independently of the RQC component Slh1, while those with tri- and tetra-ubiquitinated Rps20 do not. Based on the results, we propose a model in which Hel2 translates the duration of ribosome stalling into polyubiquitin chain length. This mechanism allows for the distinction between transient and long-term stalling, providing the RQC machinery with a means to select fatally stalled ribosomes over transiently stalled ones.
Collapse
Affiliation(s)
- Mario Scazzari
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Moddemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Schaeffer R, Medvedev K, Andreeva A, Chuguransky S, Pinto B, Zhang J, Cong Q, Bateman A, Grishin N. ECOD: integrating classifications of protein domains from experimental and predicted structures. Nucleic Acids Res 2025; 53:D411-D418. [PMID: 39565196 PMCID: PMC11701565 DOI: 10.1093/nar/gkae1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
The evolutionary classification of protein domains (ECOD) classifies protein domains using a combination of sequence and structural data (http://prodata.swmed.edu/ecod). Here we present the culmination of our previous efforts at classifying domains from predicted structures, principally from the AlphaFold Database (AFDB), by integrating these domains with our existing classification of PDB structures. This combined classification includes both domains from our previous, purely experimental, classification of domains as well as domains from our provisional classification of 48 proteomes in AFDB predicted from model organisms and organisms of concern to global health. ECOD classifies over 1.8 M domains from over 1000 000 proteins collectively deposited in the PDB and AFDB. Additionally, we have changed the F-group classification reference used for ECOD, deprecating our original ECODf library and instead relying on direct collaboration with the Pfam sequence family database to inform our classification. Pfam provides similar coverage of ECOD with family classification while being more accurate and less redundant. By eliminating duplication of effort, we can improve both classifications. Finally, we discuss the initial deployment of DrugDomain, a database of domain-ligand interactions, on ECOD and discuss future plans.
Collapse
Affiliation(s)
- R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390-8816 USA
| | - Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390-8816 USA
| | - Antonina Andreeva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sara Rocio Chuguransky
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Beatriz Lazaro Pinto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390-8591, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390- USA
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390-8816 USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390-8591, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390- USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390-8816 USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX, 75390-9038, USA
| |
Collapse
|
6
|
Rajasekaran N, Kaiser CM. Navigating the complexities of multi-domain protein folding. Curr Opin Struct Biol 2024; 86:102790. [PMID: 38432063 DOI: 10.1016/j.sbi.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Proteome complexity has expanded tremendously over evolutionary time, enabling biological diversification. Much of this complexity is achieved by combining a limited set of structural units into long polypeptides. This widely used evolutionary strategy poses challenges for folding of the resulting multi-domain proteins. As a consequence, their folding differs from that of small single-domain proteins, which generally fold quickly and reversibly. Co-translational processes and chaperone interactions are important aspects of multi-domain protein folding. In this review, we discuss some of the recent experimental progress toward understanding these processes.
Collapse
Affiliation(s)
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
7
|
Ziegelhoffer T, Verma AK, Delewski W, Schilke BA, Hill PM, Pitek M, Marszalek J, Craig EA. NAC and Zuotin/Hsp70 chaperone systems coexist at the ribosome tunnel exit in vivo. Nucleic Acids Res 2024; 52:3346-3357. [PMID: 38224454 PMCID: PMC11014269 DOI: 10.1093/nar/gkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
The area surrounding the tunnel exit of the 60S ribosomal subunit is a hub for proteins involved in maturation and folding of emerging nascent polypeptide chains. How different factors vie for positioning at the tunnel exit in the complex cellular environment is not well understood. We used in vivo site-specific cross-linking to approach this question, focusing on two abundant factors-the nascent chain-associated complex (NAC) and the Hsp70 chaperone system that includes the J-domain protein co-chaperone Zuotin. We found that NAC and Zuotin can cross-link to each other at the ribosome, even when translation initiation is inhibited. Positions yielding NAC-Zuotin cross-links indicate that when both are present the central globular domain of NAC is modestly shifted from the mutually exclusive position observed in cryogenic electron microscopy analysis. Cross-linking results also suggest that, even in NAC's presence, Hsp70 can situate in a manner conducive for productive nascent chain interaction-with the peptide binding site at the tunnel exit and the J-domain of Zuotin appropriately positioned to drive stabilization of nascent chain binding. Overall, our results are consistent with the idea that, in vivo, the NAC and Hsp70 systems can productively position on the ribosome simultaneously.
Collapse
Affiliation(s)
- Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Amit K Verma
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Wojciech Delewski
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Brenda A Schilke
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Paige M Hill
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Marcin Pitek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-307, Poland
| | - Jaroslaw Marszalek
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-307, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53726, USA
| |
Collapse
|
8
|
Chan C, Groisman EA. Chaperone Hsp70 helps Salmonella survive infection-relevant stress by reducing protein synthesis. PLoS Biol 2024; 22:e3002560. [PMID: 38574172 PMCID: PMC10994381 DOI: 10.1371/journal.pbio.3002560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
In all domains of life, Hsp70 chaperones preserve protein homeostasis by promoting protein folding and degradation and preventing protein aggregation. We now report that the Hsp70 from the bacterial pathogen Salmonella enterica serovar Typhimurium-termed DnaK-independently reduces protein synthesis in vitro and in S. Typhimurium facing cytoplasmic Mg2+ starvation, a condition encountered during infection. This reduction reflects a 3-fold increase in ribosome association with DnaK and a 30-fold decrease in ribosome association with trigger factor, the chaperone normally associated with translating ribosomes. Surprisingly, this reduction does not involve J-domain cochaperones, unlike previously known functions of DnaK. Removing the 74 C-terminal amino acids of the 638-residue long DnaK impeded DnaK association with ribosomes and reduction of protein synthesis, rendering S. Typhimurium defective in protein homeostasis during cytoplasmic Mg2+ starvation. DnaK-dependent reduction in protein synthesis is critical for survival against Mg2+ starvation because inhibiting protein synthesis in a dnaK-independent manner overcame the 10,000-fold loss in viability resulting from DnaK truncation. Our results indicate that DnaK protects bacteria from infection-relevant stresses by coordinating protein synthesis with protein folding capacity.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci 2024; 49:105-118. [PMID: 37919225 DOI: 10.1016/j.tibs.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
10
|
Wang Q, Mao Y. Principles, challenges, and advances in ribosome profiling: from bulk to low-input and single-cell analysis. ADVANCED BIOTECHNOLOGY 2023; 1:6. [PMID: 39883220 PMCID: PMC11727582 DOI: 10.1007/s44307-023-00006-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/31/2025]
Abstract
Ribosome profiling has revolutionized our understanding of gene expression regulation by providing a snapshot of global translation in vivo. This powerful technique enables the investigation of the dynamics of translation initiation, elongation, and termination, and has provided insights into the regulation of protein synthesis under various conditions. Despite its widespread adoption, challenges persist in obtaining high-quality ribosome profiling data. In this review, we discuss the fundamental principles of ribosome profiling and related methodologies, including selective ribosome profiling and translation complex profiling. We also delve into quality control to assess the reliability of ribosome profiling datasets, and the efforts to improve data quality by modifying the standard procedures. Additionally, we highlight recent advancements in ribosome profiling that enable the transition from bulk to low-input and single-cell applications. Single-cell ribosome profiling has emerged as a crucial tool for exploring translation heterogeneity within specific cell populations. However, the challenges of capturing mRNAs efficiently and the sparse nature of footprint reads in single-cell ribosome profiling present ongoing obstacles. The need to refine ribosome profiling techniques remains, especially when used at the single-cell level.
Collapse
Affiliation(s)
- Qiuyi Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanhui Mao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Gamerdinger M, Jia M, Schloemer R, Rabl L, Jaskolowski M, Khakzar KM, Ulusoy Z, Wallisch A, Jomaa A, Hunaeus G, Scaiola A, Diederichs K, Ban N, Deuerling E. NAC controls cotranslational N-terminal methionine excision in eukaryotes. Science 2023; 380:1238-1243. [PMID: 37347872 DOI: 10.1126/science.adg3297] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023]
Abstract
N-terminal methionine excision from newly synthesized proteins, catalyzed cotranslationally by methionine aminopeptidases (METAPs), is an essential and universally conserved process that plays a key role in cell homeostasis and protein biogenesis. However, how METAPs interact with ribosomes and how their cleavage specificity is ensured is unknown. We discovered that in eukaryotes the nascent polypeptide-associated complex (NAC) controls ribosome binding of METAP1. NAC recruits METAP1 using a long, flexible tail and provides a platform for the formation of an active methionine excision complex at the ribosomal tunnel exit. This mode of interaction ensures the efficient excision of methionine from cytosolic proteins, whereas proteins targeted to the endoplasmic reticulum are spared. Our results suggest a broader mechanism for how access of protein biogenesis factors to translating ribosomes is controlled.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Min Jia
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Renate Schloemer
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Laurenz Rabl
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Katrin M Khakzar
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Zeynel Ulusoy
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Annalena Wallisch
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gundula Hunaeus
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Kay Diederichs
- Department of Biology, Molecular Bioinformatics, University of Konstanz, 78457 Konstanz, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
12
|
Kišonaitė M, Wild K, Lapouge K, Gesé GV, Kellner N, Hurt E, Sinning I. Structural inventory of cotranslational protein folding by the eukaryotic RAC complex. Nat Struct Mol Biol 2023; 30:670-677. [PMID: 37081320 DOI: 10.1038/s41594-023-00973-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
The challenge of nascent chain folding at the ribosome is met by the conserved ribosome-associated complex (RAC), which forms a chaperone triad with the Hsp70 protein Ssb in fungi, and consists of the non-canonical Hsp70 Ssz1 and the J domain protein Zuotin (Zuo1). Here we determine cryo-EM structures of Chaetomium thermophilum RAC bound to 80S ribosomes. RAC adopts two distinct conformations accommodating continuous ribosomal rotation by a flexible lever arm. It is held together by a tight interaction between the Ssz1 substrate-binding domain and the Zuo1 N terminus, and additional contacts between the Ssz1 nucleotide-binding domain and Zuo1 J- and Zuo1 homology domains, which form a rigid unit. The Zuo1 HPD motif conserved in J-proteins is masked in a non-canonical interaction by the Ssz1 nucleotide-binding domain, and allows the positioning of Ssb for activation by Zuo1. Overall, we provide the basis for understanding how RAC cooperates with Ssb in a dynamic nascent chain interaction and protein folding.
Collapse
Affiliation(s)
- Miglė Kišonaitė
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Nikola Kellner
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
13
|
Wickner RB, Edskes HK, Son M, Wu S. Anti-Prion Systems Block Prion Transmission, Attenuate Prion Generation, Cure Most Prions as They Arise and Limit Prion-Induced Pathology in Saccharomyces cerevisiae. BIOLOGY 2022; 11:biology11091266. [PMID: 36138748 PMCID: PMC9495834 DOI: 10.3390/biology11091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Virus and bacterial infections are opposed by their hosts at many levels. Similarly, we find that infectious proteins (prions) are severely restricted by an array of host systems, acting independently to prevent infection, generation, propagation and the ill effects of yeast prions. These ‘anti-prion systems’ work in normal cells without the overproduction or deficiency of any components. DNA repair systems reverse the effects of DNA damage, with only a rare lesion propagated as a mutation. Similarly, the combined effects of several anti-prion systems cure and block the generation of all but 1 in about 5000 prions arising. We expect that application of our approach to mammalian cells will detect analogous or even homologous systems that will be useful in devising therapy for human amyloidoses, most of which are prions. Abstract All variants of the yeast prions [PSI+] and [URE3] are detrimental to their hosts, as shown by the dramatic slowing of growth (or even lethality) of a majority, by the rare occurrence in wild isolates of even the mildest variants and by the absence of reproducible benefits of these prions. To deal with the prion problem, the host has evolved an array of anti-prion systems, acting in normal cells (without overproduction or deficiency of any component) to block prion transmission from other cells, to lower the rates of spontaneous prion generation, to cure most prions as they arise and to limit the damage caused by those variants that manage to elude these (necessarily) imperfect defenses. Here we review the properties of prion protein sequence polymorphisms Btn2, Cur1, Hsp104, Upf1,2,3, ribosome-associated chaperones, inositol polyphosphates, Sis1 and Lug1, which are responsible for these anti-prion effects. We recently showed that the combined action of ribosome-associated chaperones, nonsense-mediated decay factors and the Hsp104 disaggregase lower the frequency of [PSI+] appearance as much as 5000-fold. Moreover, while Btn2 and Cur1 are anti-prion factors against [URE3] and an unrelated artificial prion, they promote [PSI+] prion generation and propagation.
Collapse
|
14
|
Morales-Polanco F, Lee JH, Barbosa NM, Frydman J. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes. Annu Rev Biomed Data Sci 2022; 5:67-94. [PMID: 35472290 PMCID: PMC11040709 DOI: 10.1146/annurev-biodatasci-121721-095858] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of protein complexes is crucial to most biological functions. The cellular mechanisms governing protein complex biogenesis are not yet well understood, but some principles of cotranslational and posttranslational assembly are beginning to emerge. In bacteria, this process is favored by operons encoding subunits of protein complexes. Eukaryotic cells do not have polycistronic mRNAs, raising the question of how they orchestrate the encounter of unassembled subunits. Here we review the constraints and mechanisms governing eukaryotic co- and posttranslational protein folding and assembly, including the influence of elongation rate on nascent chain targeting, folding, and chaperone interactions. Recent evidence shows that mRNAs encoding subunits of oligomeric assemblies can undergo localized translation and form cytoplasmic condensates that might facilitate the assembly of protein complexes. Understanding the interplay between localized mRNA translation and cotranslational proteostasis will be critical to defining protein complex assembly in vivo.
Collapse
Affiliation(s)
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Natália M Barbosa
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA;
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
15
|
Antiprion systems in yeast cooperate to cure or prevent the generation of nearly all [ PSI+] and [URE3] prions. Proc Natl Acad Sci U S A 2022; 119:e2205500119. [PMID: 35787049 PMCID: PMC9282430 DOI: 10.1073/pnas.2205500119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
[PSI+] and [URE3] are prions of Saccharomyces cerevisiae based on amyloids of Sup35p and Ure2p, respectively. In normal cells, antiprion systems block prion formation, cure many prions that arise, prevent infection by prions, and prevent toxicity of those prions that escape the other systems. The upf1Δ, ssz1Δ, and hsp104T160M single mutants each develop [PSI+] at 10- to 15-fold, but the triple mutant spontaneously generates [PSI+] at up to ∼5,000-fold the wild-type rate. Most such [PSI+] variants are cured by restoration of any one of the three defective antiprion systems, defining a previously unknown type of [PSI+] variant and proving that these three antiprion systems act independently. Generation of [PSI+] variants stable in wild-type cells is also increased in upf1Δ ssz1Δ hsp104T160M strains 25- to 500-fold. Btn2 and Cur1 each cure 90% of [URE3] prions generated in their absence, but we find that btn2Δ or cur1Δ diminishes the frequency of [PSI+] generation in an otherwise wild-type strain. Most [PSI+] isolates in a wild-type strain are destabilized on transfer to a btn2Δ or cur1Δ host. Single upf1Δ or hsp104T160M mutants show the effects of btn2Δ or cur1Δ but not upf1Δ ssz1Δ hsp104T160M or ssz1Δ hsp104T160M strains. The disparate action of Btn2 on [URE3] and [PSI+] may be a result of [PSI+]'s generally higher seed number and lower amyloid structural stability compared with [URE3]. Thus, prion generation is not a rare event, but the escape of a nascent prion from the surveillance by the antiprion systems is indeed rare.
Collapse
|
16
|
Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding. Nat Commun 2022; 13:3410. [PMID: 35701497 PMCID: PMC9197937 DOI: 10.1038/s41467-022-31127-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosome associated complex (RAC), an obligate heterodimer of HSP40 and HSP70 (Zuo1 and Ssz1 in yeast), is conserved in eukaryotes and functions as co-chaperone for another HSP70 (Ssb1/2 in yeast) to facilitate co-translational folding of nascent polypeptides. Many mechanistic details, such as the coordination of one HSP40 with two HSP70s and the dynamic interplay between RAC-Ssb and growing nascent chains, remain unclear. Here, we report three sets of structures of RAC-containing ribosomal complexes isolated from Saccharomyces cerevisiae. Structural analyses indicate that RAC on the nascent-chain-free ribosome is in an autoinhibited conformation, and in the presence of a nascent chain at the peptide tunnel exit (PTE), RAC undergoes large-scale structural remodeling to make Zuo1 J-Domain more accessible to Ssb. Our data also suggest a role of Zuo1 in orienting Ssb-SBD proximal to the PTE for easy capture of the substrate. Altogether, in accordance with previous data, our work suggests a sequence of structural remodeling events for RAC-Ssb during co-translational folding, triggered by the binding and passage of growing nascent chain from one to another. Ribosome associated complex (RAC)- HSP70 (Ssb in yeast) is a eukaryotic chaperone system involved in co-translational folding. Here, authors report structures of RAC-containing ribosomal complexes, which suggest a working model for the dynamic actions of RAC-Ssb during the process.
Collapse
|
17
|
Lee K, Ziegelhoffer T, Delewski W, Berger SE, Sabat G, Craig EA. Pathway of Hsp70 interactions at the ribosome. Nat Commun 2021; 12:5666. [PMID: 34580293 PMCID: PMC8476630 DOI: 10.1038/s41467-021-25930-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, an Hsp70 molecular chaperone triad assists folding of nascent chains emerging from the ribosome tunnel. In fungi, the triad consists of canonical Hsp70 Ssb, atypical Hsp70 Ssz1 and J-domain protein cochaperone Zuo1. Zuo1 binds the ribosome at the tunnel exit. Zuo1 also binds Ssz1, tethering it to the ribosome, while its J-domain stimulates Ssb’s ATPase activity to drive efficient nascent chain interaction. But the function of Ssz1 and how Ssb engages at the ribosome are not well understood. Employing in vivo site-specific crosslinking, we found that Ssb(ATP) heterodimerizes with Ssz1. Ssb, in a manner consistent with the ADP conformation, also crosslinks to ribosomal proteins across the tunnel exit from Zuo1. These two modes of Hsp70 Ssb interaction at the ribosome suggest a functionally efficient interaction pathway: first, Ssb(ATP) with Ssz1, allowing optimal J-domain and nascent chain engagement; then, after ATP hydrolysis, Ssb(ADP) directly with the ribosome. Here, the authors use in vivo site-specific crosslinking to provide molecular-level insight into how the fungal Hsp70 chaperone system — the Ssb:Ssz1:Zuo1 triad — assists the folding process for the nascent peptide chain emerging from the ribosome tunnel.
Collapse
Affiliation(s)
- Kanghyun Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Wojciech Delewski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Scott E Berger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Chemistry, Lafayette College, Easton, PA, 18042, USA.,Biophysics Program, Stanford University, Stanford, CA, 94305, USA
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
18
|
A role for the ribosome-associated complex in activation of the IRE1 branch of UPR. Cell Rep 2021; 35:109217. [PMID: 34107246 DOI: 10.1016/j.celrep.2021.109217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous ribosome-associated complex (RAC) is a chaperone that spans ribosomes, making contacts near both the polypeptide exit tunnel and the decoding center, a position prime for sensing and coordinating translation and folding. Loss of RAC is known to result in growth defects and sensitization to translational and osmotic stresses. However, the physiological substrates of RAC and the mechanism(s) by which RAC is involved in responding to specific stresses in higher eukaryotes remain obscure. The data presented here uncover an essential function of mammalian RAC in the unfolded protein response (UPR). Knockdown of RAC sensitizes mammalian cells to endoplasmic reticulum (ER) stress and selectively interferes with IRE1 branch activation. Higher-order oligomerization of the inositol-requiring enzyme 1α (IRE1α) kinase/endoribonuclease depends upon RAC. These results reveal a surveillance function for RAC in the UPR, as follows: modulating IRE1α clustering as required for endonuclease activation and splicing of the substrate Xbp1 mRNA.
Collapse
|
19
|
Zhang Y, De Laurentiis E, Bohnsack KE, Wahlig M, Ranjan N, Gruseck S, Hackert P, Wölfle T, Rodnina MV, Schwappach B, Rospert S. Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast. Nat Commun 2021; 12:782. [PMID: 33542241 PMCID: PMC7862611 DOI: 10.1038/s41467-021-20981-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/05/2021] [Indexed: 02/03/2023] Open
Abstract
The guided entry of tail-anchored proteins (GET) pathway assists in the posttranslational delivery of tail-anchored proteins, containing a single C-terminal transmembrane domain, to the ER. Here we uncover how the yeast GET pathway component Get4/5 facilitates capture of tail-anchored proteins by Sgt2, which interacts with tail-anchors and hands them over to the targeting component Get3. Get4/5 binds directly and with high affinity to ribosomes, positions Sgt2 close to the ribosomal tunnel exit, and facilitates the capture of tail-anchored proteins by Sgt2. The contact sites of Get4/5 on the ribosome overlap with those of SRP, the factor mediating cotranslational ER-targeting. Exposure of internal transmembrane domains at the tunnel exit induces high-affinity ribosome binding of SRP, which in turn prevents ribosome binding of Get4/5. In this way, the position of a transmembrane domain within nascent ER-targeted proteins mediates partitioning into either the GET or SRP pathway directly at the ribosomal tunnel exit. The guided entry of tail-anchored proteins (GET) pathway assists in the delivery of such proteins to the ER. Here, the authors reveal that the pathway components Get4/5 probe a region near the ribosomal exit tunnel. Upon emergence of a client protein, Get4/5 recruits Sgt2 and initiates the targeting phase of the pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Evelina De Laurentiis
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Mascha Wahlig
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Namit Ranjan
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Simon Gruseck
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Tina Wölfle
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Marina V Rodnina
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Göttingen, Germany.,Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Göttingen, Germany.
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Rodríguez-Galán O, García-Gómez JJ, Rosado IV, Wei W, Méndez-Godoy A, Pillet B, Alekseenko A, Steinmetz L, Pelechano V, Kressler D, de la Cruz J. A functional connection between translation elongation and protein folding at the ribosome exit tunnel in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:206-220. [PMID: 33330942 PMCID: PMC7797049 DOI: 10.1093/nar/gkaa1200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.
Collapse
Affiliation(s)
- Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Juan J García-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alfonso Méndez-Godoy
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
21
|
Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants. Proc Natl Acad Sci U S A 2020; 117:26298-26306. [PMID: 33020283 DOI: 10.1073/pnas.2016954117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The yeast prion [PSI+] is a self-propagating amyloid of the translation termination factor, Sup35p. For known pathogenic prions, such as [PSI+], a single protein can form an array of different amyloid structures (prion variants) each stably inherited and with differing biological properties. The ribosome-associated chaperones, Ssb1/2p (Hsp70s), and RAC (Zuo1p (Hsp40) and Ssz1p (Hsp70)), enhance de novo protein folding by protecting nascent polypeptide chains from misfolding and maintain translational fidelity by involvement in translation termination. Ssb1/2p and RAC chaperones were previously found to inhibit [PSI+] prion generation. We find that most [PSI+] variants arising in the absence of each chaperone were cured by restoring normal levels of that protein. [PSI+] variants hypersensitive to Ssb1/2p have distinguishable biological properties from those hypersensitive to Zuo1p or Ssz1p. The elevated [PSI+] generation frequency in each deletion strain is not due to an altered [PIN+], another prion that primes [PSI+] generation. [PSI+] prion generation/propagation may be inhibited by Ssb1/2/RAC chaperones by ensuring proper folding of nascent Sup35p, thus preventing its joining amyloid fibers. Alternatively, the effect of RAC/Ssb mutations on translation termination and the absence of an effect on the [URE3] prion suggest an effect on the mature Sup35p such that it does not readily join amyloid filaments. Ssz1p is degraded in zuo1Δ [psi-] cells, but not if the cells carry any of several [PSI+] variants. Our results imply that prions arise more frequently than had been thought but the cell has evolved exquisite antiprion systems that rapidly eliminate most variants.
Collapse
|