1
|
Yamaguchi H, Guagliardo NA, Bell LA, Yamaguchi M, Matsuoka D, Xu F, Smith JP, Diagne M, Almeida LF, Medrano S, Barrett PQ, Nieh EH, Gomez RA, Sequeira-Lopez MLS. Inhibition of Renin Release, a Crucial Event in Homeostasis, is Mediated by Coordinated Calcium Oscillations within Juxtaglomerular Cell Clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.629519. [PMID: 39763801 PMCID: PMC11703171 DOI: 10.1101/2024.12.23.629519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
BACKGROUND Juxtaglomerular (JG) cells are sensors that control blood pressure (BP) and fluid-electrolyte homeostasis. They are arranged as clusters at the tip of each afferent arteriole. In response to a decrease in BP or extracellular fluid volume, JG cells secrete renin, initiating an enzymatic cascade that culminates in the production of angiotensin II (AngII), a potent vasoconstrictor that restores BP and fluid-electrolyte homeostasis. In turn, AngII exerts negative feedback on renin release concomitantly with increased intracellular Ca2+, preventing excessive circulating renin and hypertension. However, within their native structural organization, the intricacies of intracellular Ca2+ signaling dynamics and their sources remain uncharacterized. METHODS We generated mice expressing the JG cell-specific genetically encoded Ca2+ indicator (GCaMP6f) to investigate Ca2+ dynamics within JG cell clusters ex vivo and in vivo. For ex vivo Ca2+ imaging, acutely prepared kidney slices were perfused continuously with a buffer containing variable Ca2+ and AngII concentrations ± Ca2+ channel inhibitors. For in vivo Ca2+ image capture, native mouse kidneys were imaged in situ using multi-photon microscopy with and without AngII administration. ELISA measurements of renin concentrations determined acute renin secretion ex vivo and in vivo, respectively. RESULTS Ex vivo Ca2+ imaging revealed that JG cells exhibit robust and coordinated intracellular oscillatory signals with cell-cell propagation following AngII stimulation. AngII dose-dependently induced stereotypical burst patterns characterized by consecutive Ca2+ spikes, which inversely correlated with renin secretion. Pharmacological channel inhibition identified key sources of these oscillations: endoplasmic reticulum Ca2+ storage and release, extracellular Ca2+ uptake via ORAI channels, and intercellular communication through gap junctions. Blocking ORAI channels and gap junctions reduced AngII inhibitory effect on renin secretion. In vivo Ca2+ imaging demonstrated robust intracellular and intercellular Ca2+ oscillations within JG cell clusters under physiological conditions, exhibiting spike patterns consistent with those measured in ex vivo preparations. Administration of AngII enhanced the Ca2+ oscillatory signals and suppressed acute renin secretion in vivo. CONCLUSION AngII elicits coordinated intracellular and intercellular Ca2+ oscillations within JG cell clusters, ex vivo and in vivo. The effect is driven by endoplasmic reticulum-derived Ca2+ release, ORAI channels, and gap junctions, leading to suppressed renin secretion.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nick A. Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Laura A. Bell
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Manako Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Daisuke Matsuoka
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Fang Xu
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jason P. Smith
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mohamed Diagne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lucas F. Almeida
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Paula Q. Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Edward H. Nieh
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
2
|
Stölting G, Hellmig N, Dinh HA, Butz F, Secener AK, Volkert M, Scholl UI. Expression and function of Connexin 43 and Connexin 37 in the murine zona glomerulosa. Physiol Rep 2025; 13:e70215. [PMID: 39877942 PMCID: PMC11775451 DOI: 10.14814/phy2.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation. It has previously been shown that calcium oscillations are synchronized through mechanical linkage between adjacent ZG cells. In many other cell types, similar synchronization is rather dependent on gap junctions (GJ). The recent discovery of mutations in CADM1 was linked to impaired GJ function in the ZG. Based on published transcriptomics data, we re-examined the presence and functional impact of GJ in the ZG. We found evidence for the expression of murine connexin 43 and 37 using microarray data, in-situ hybridization and immunohistology. Connexin 43 was also present in human samples. Calcium oscillations in ZG rosettes showed some degree of synchronization as reported previously. Unspecific GJ inhibition only had a small impact on this synchronicity. However, no signs of connections between cytosols could be observed as indicated by the lack of fluorescence recovery after photobleaching. We conclude that, while connexin proteins are expressed in the ZG, functional GJ in the physiological ZG are rare and of little consequence for calcium signaling.
Collapse
Affiliation(s)
- Gabriel Stölting
- Berlin Institute of Health at CharitéUniversitätsmedizin Berlin, Center of Functional GenomicsBerlinGermany
| | - Nicole Hellmig
- Berlin Institute of Health at CharitéUniversitätsmedizin Berlin, Center of Functional GenomicsBerlinGermany
| | - Hoang An Dinh
- Berlin Institute of Health at CharitéUniversitätsmedizin Berlin, Center of Functional GenomicsBerlinGermany
- Institute of Translational PhysiologyCharité—Universitätsmedizin BerlinBerlinGermany
| | - Frederike Butz
- Berlin Institute of Health at CharitéUniversitätsmedizin Berlin, Center of Functional GenomicsBerlinGermany
- Department of Surgery, Campus Charité Mitte, Campus Virchow‐KlinikumCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
| | - Ali Kerim Secener
- Berlin Institute of Health at CharitéUniversitätsmedizin Berlin, Center of Functional GenomicsBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
| | - Marina Volkert
- Berlin Institute of Health at CharitéUniversitätsmedizin Berlin, Center of Functional GenomicsBerlinGermany
| | - Ute I. Scholl
- Berlin Institute of Health at CharitéUniversitätsmedizin Berlin, Center of Functional GenomicsBerlinGermany
- Department of Nephrology and Medical Intensive CareCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
| |
Collapse
|
3
|
Kremer JL, Santiago VF, Bongiovani Rodrigues F, Auricino TB, Freitas DHDO, Palmisano G, Lotfi CFP. Extracellular Matrix Protein Signatures of the Outer and Inner Zones of the Rat Adrenal Cortex. J Proteome Res 2024; 23:3418-3432. [PMID: 39018382 DOI: 10.1021/acs.jproteome.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This study analyzes the extracellular matrix (ECM) signatures of the outer (OF = capsule + subcapsular + zona glomerulosa cells) and inner fractions (IF = zona fasciculata cells) of the rat adrenal cortex, which comprise two distinct microenvironment niches. Proteomic profiles of decellularized OF and IF samples, male and female rats, identified 252 proteins, with 32 classified as ECM-component and ECM-related. Among these, 25 proteins were differentially regulated: 17 more abundant in OF, including Col1a1, Col1a2, Col6a1, Col6a2, Col6a3, Col12a1, Col14a1, Lama5, Lamb2, Lamc1, Eln, Emilin, Fbln5, Fbn1, Fbn2, Nid1, and Ltbp4, and eight more abundant in IF, including Col4a1, Col4a2, Lama2, Lama4, Lamb1, Fn1, Hspg2, and Ecm1. Eln, Tnc, and Nid2 were abundant in the female OF, while Lama2, Lama5, Lamb2, and Lamc1 were more abundant in the male IF. The complex protein signature of the OF suggests areas of tissue stress, stiffness, and regulatory proteins for growth factor signaling. The higher concentrations of Col4a1 and Col4a2 and their role in steroidogenesis should be further investigated in IF. These findings could significantly enhance our understanding of adrenal cortex functionality and its implications for human health and disease. Key findings were validated, and data are available in ProteomeXchange (PXD046828).
Collapse
Affiliation(s)
- Jean Lucas Kremer
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Veronica Feijoli Santiago
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Butantã, São Paulo, SP 05508-000, Brazil
| | - Fernanda Bongiovani Rodrigues
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Thais Barabba Auricino
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Danilo Henriques de Oliveira Freitas
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Giuseppe Palmisano
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Butantã, São Paulo, SP 05508-000, Brazil
| | - Claudimara Ferini Pacicco Lotfi
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
4
|
Ajjour H, Pallafacchina G, Lenzini L, Caroccia B, Rossi GP. Intracellular Calcium Dynamics in Primary Human Adrenocortical Cells Deciphered with a Novel Pipeline. High Blood Press Cardiovasc Prev 2024; 31:299-308. [PMID: 38763953 PMCID: PMC11602809 DOI: 10.1007/s40292-024-00641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
INTRODUCTION The fluctuations of the intracellular Ca2+ concentration ([Ca2+]i) are key physiological signals for cell function under normal conditions and can undergo profound alterations in disease states, as high blood pressure due to endocrine disorders like primary aldosteronism (PA). However, when assessing such fluctuations several parameters in the Ca2+ signal dynamics need to be considered, which renders their assessment challenging. AIM Aim to develop an observer-independent custom-made pipeline to analyze Ca2+ dynamics in terms of frequency and peak parameters, as amplitude, full width at half maximum (FWHM) and area under the curve (AUC). METHODS We applied a custom-made methodology to aldosterone-producing adenoma (APA) and APA adjacent cells (AAC) and found this pipeline to be suitable for monitoring and processing a wide-range of [Ca2+]i events in these cell types delivering reproducible results. CONCLUSION The designed pipeline can provide a useful tool for [Ca2+]i signal analysis that allows comparisons of Ca2+ dynamics not only in PA, but in other cell phenotypes that are relevant for the regulation of blood pressure.
Collapse
Affiliation(s)
- Hala Ajjour
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University Hospital, University of Padua, Padua, 35126, Italy
| | - Giorgia Pallafacchina
- Neuroscience Institute, Italian National Research Council (CNR) and Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Livia Lenzini
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University Hospital, University of Padua, Padua, 35126, Italy
| | - Brasilina Caroccia
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University Hospital, University of Padua, Padua, 35126, Italy
| | - Gian Paolo Rossi
- Specialized Center of Excellence for Hypertension of the European Society of Hypertension and Emergency Medicine Unit, Department of Medicine-DIMED, University Hospital, University of Padua, Padua, 35126, Italy.
| |
Collapse
|
5
|
Dinh HA, Volkert M, Secener AK, Scholl UI, Stölting G. T- and L-Type Calcium Channels Maintain Calcium Oscillations in the Murine Zona Glomerulosa. Hypertension 2024; 81:811-822. [PMID: 38507511 PMCID: PMC10956685 DOI: 10.1161/hypertensionaha.123.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The zona glomerulosa of the adrenal gland is responsible for the synthesis and release of the mineralocorticoid aldosterone. This steroid hormone regulates salt reabsorption in the kidney and blood pressure. The most important stimuli of aldosterone synthesis are the serum concentrations of angiotensin II and potassium. In response to these stimuli, voltage and intracellular calcium levels in the zona glomerulosa oscillate, providing the signal for aldosterone synthesis. It was proposed that the voltage-gated T-type calcium channel CaV3.2 is necessary for the generation of these oscillations. However, Cacna1h knock-out mice have normal plasma aldosterone levels, suggesting additional calcium entry pathways. METHODS We used a combination of calcium imaging, patch clamp, and RNA sequencing to investigate calcium influx pathways in the murine zona glomerulosa. RESULTS Cacna1h-/- glomerulosa cells still showed calcium oscillations with similar concentrations as wild-type mice. No calcium channels or transporters were upregulated to compensate for the loss of CaV3.2. The calcium oscillations observed were instead dependent on L-type voltage-gated calcium channels. Furthermore, we found that L-type channels can also partially compensate for an acute inhibition of CaV3.2 in wild-type mice. Only inhibition of both T- and L-type calcium channels abolished the increase of intracellular calcium caused by angiotensin II in wild-type. CONCLUSIONS Our study demonstrates that T-type calcium channels are not strictly required to maintain glomerulosa calcium oscillations and aldosterone production. Pharmacological inhibition of T-type channels alone will likely not significantly impact aldosterone production in the long term.
Collapse
Affiliation(s)
- Hoang An Dinh
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
- Charité – Universitätsmedizin Berlin, Department of Translational Physiology, Germany (H.A.D.)
| | - Marina Volkert
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
| | - Ali Kerim Secener
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (A.K.S.)
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany (A.K.S.)
| | - Ute I. Scholl
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany (U.I.S.)
| | - Gabriel Stölting
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
| |
Collapse
|
6
|
Zhu Y, Zhang X, Hu C. Structure of rosettes in the zona glomerulosa of human adrenal cortex. J Anat 2023; 243:684-689. [PMID: 37294692 PMCID: PMC10485581 DOI: 10.1111/joa.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/11/2023] Open
Abstract
Recent studies in mouse models have demonstrated that the multi-cellular rosette structure of the adrenal zona glomerulosa (ZG) is crucial for aldosterone production by ZG cells. However, the rosette structure of human ZG has remained unclear. The human adrenal cortex undergoes remodeling during aging, and one surprising change is the occurrence of aldosterone-producing cell clusters (APCCs). It is intriguing to know whether APCCs form a rosette structure like normal ZG cells. In this study, we investigated the rosette structure of ZG in human adrenal with and without APCCs, as well as the structure of APCCs. We found that glomeruli in human adrenal are enclosed by a laminin subunit β1 (lamb1)-rich basement membrane. In slices without APCCs, each glomerulus contains an average of 11 ± 1 cells. In slices with APCCs, each glomerulus in normal ZG contains around 10 ± 1 cells, while each glomerulus in APCCs has significantly more cells (average of 22 ± 1). Similar to what was observed in mice, cells in normal ZG or in APCCs of human adrenal formed rosettes through β-catenin- and F-actin-rich adherens junctions. The cells in APCCs form larger rosettes through enhanced adherens junctions. This study provides, for the first time, a detailed characterization of the rosette structure of human adrenal ZG and shows that APCCs are not an unstructured cluster of ZG cells. This suggests that the multi-cellular rosette structure may also be necessary for aldosterone production in APCCs.
Collapse
Affiliation(s)
- Yumin Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xuefeng Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institute (Shanghai), Shanghai, China
| | - Changlong Hu
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institute (Shanghai), Shanghai, China
| |
Collapse
|
7
|
Berber M, Leng S, Wengi A, Winter DV, Odermatt A, Beuschlein F, Loffing J, Breault DT, Penton D. Calcineurin regulates aldosterone production via dephosphorylation of NFATC4. JCI Insight 2023; 8:e157027. [PMID: 37310791 PMCID: PMC10443813 DOI: 10.1172/jci.insight.157027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The mineralocorticoid aldosterone, secreted by the adrenal zona glomerulosa (ZG), is critical for life, maintaining ion homeostasis and blood pressure. Therapeutic inhibition of protein phosphatase 3 (calcineurin, Cn) results in inappropriately low plasma aldosterone levels despite concomitant hyperkalemia and hyperreninemia. We tested the hypothesis that Cn participates in the signal transduction pathway regulating aldosterone synthesis. Inhibition of Cn with tacrolimus abolished the potassium-stimulated (K+-stimulated) expression of aldosterone synthase, encoded by CYP11B2, in the NCI-H295R human adrenocortical cell line as well as ex vivo in mouse and human adrenal tissue. ZG-specific deletion of the regulatory Cn subunit CnB1 diminished Cyp11b2 expression in vivo and disrupted K+-mediated aldosterone synthesis. Phosphoproteomics analysis identified nuclear factor of activated T cells, cytoplasmic 4 (NFATC4), as a target for Cn-mediated dephosphorylation. Deletion of NFATC4 impaired K+-dependent stimulation of CYP11B2 expression and aldosterone production while expression of a constitutively active form of NFATC4 increased expression of CYP11B2 in NCI-H295R cells. Chromatin immunoprecipitation revealed NFATC4 directly regulated CYP11B2 expression. Thus, Cn controls aldosterone production via the Cn/NFATC4 pathway. Inhibition of Cn/NFATC4 signaling may explain low plasma aldosterone levels and hyperkalemia in patients treated with tacrolimus, and the Cn/NFATC4 pathway may provide novel molecular targets to treat primary aldosteronism.
Collapse
Affiliation(s)
- Mesut Berber
- Institute of Anatomy, University of Zurich, Switzerland
- Swiss National Centre for Competence in Research “Kidney Control of Homeostasis” (NCCR Kidney.CH), Zurich, Switzerland
| | - Sining Leng
- Department of Pediatrics, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Denise V. Winter
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Felix Beuschlein
- Swiss National Centre for Competence in Research “Kidney Control of Homeostasis” (NCCR Kidney.CH), Zurich, Switzerland
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Switzerland
- Swiss National Centre for Competence in Research “Kidney Control of Homeostasis” (NCCR Kidney.CH), Zurich, Switzerland
| | - David T. Breault
- Department of Pediatrics, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - David Penton
- Institute of Anatomy, University of Zurich, Switzerland
- Swiss National Centre for Competence in Research “Kidney Control of Homeostasis” (NCCR Kidney.CH), Zurich, Switzerland
| |
Collapse
|
8
|
Dinh HA, Stölting G, Scholl UI. Ca V3.2 (CACNA1H) in Primary Aldosteronism. Handb Exp Pharmacol 2023. [PMID: 37311830 DOI: 10.1007/164_2023_660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aldosterone is a steroid hormone produced in the zona glomerulosa (ZG) of the adrenal cortex. The most prominent function of aldosterone is the control of electrolyte homeostasis and blood pressure via the kidneys. The primary factors regulating aldosterone synthesis are the serum concentrations of angiotensin II and potassium. The T-type voltage-gated calcium channel CaV3.2 (encoded by CACNA1H) is an important component of electrical as well as intracellular calcium oscillations, which govern aldosterone production in the ZG. Excessive aldosterone production that is (partially) uncoupled from physiological stimuli leads to primary aldosteronism, the most common cause of secondary hypertension. Germline gain-of-function mutations in CACNA1H were identified in familial hyperaldosteronism, whereas somatic mutations are a rare cause of aldosterone-producing adenomas. In this review, we summarize these findings, put them in perspective, and highlight missing knowledge.
Collapse
Affiliation(s)
- Hoang An Dinh
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Gabriel Stölting
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Ute I Scholl
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Wu X, Azizan EAB, Goodchild E, Garg S, Hagiyama M, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Kuan JL, Tiang Z, David A, Murakami M, Mein CA, Wozniak E, Zhao W, Marker A, Buss F, Saleeb RS, Salsbury J, Tezuka Y, Satoh F, Oki K, Udager AM, Cohen DL, Wachtel H, King PJ, Drake WM, Gurnell M, Ceral J, Ryska A, Mustangin M, Wong YP, Tan GC, Solar M, Reincke M, Rainey WE, Foo RS, Takaoka Y, Murray SA, Zennaro MC, Beuschlein F, Ito A, Brown MJ. Somatic mutations of CADM1 in aldosterone-producing adenomas and gap junction-dependent regulation of aldosterone production. Nat Genet 2023; 55:1009-1021. [PMID: 37291193 PMCID: PMC10260400 DOI: 10.1038/s41588-023-01403-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/20/2023] [Indexed: 06/10/2023]
Abstract
Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.
Collapse
Affiliation(s)
- Xilin Wu
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Elena A B Azizan
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Emily Goodchild
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Sumedha Garg
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- Clinical Pharmacology Unit, University of Cambridge, Cambridge, UK
| | - Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Claudia P Cabrera
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | | | - Jyn Ling Kuan
- Cardiovascular Disease Translational Research Programme, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Cardiovascular Disease Translational Research Programme, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Alessia David
- Centre for Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | - Masanori Murakami
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Charles A Mein
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Eva Wozniak
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Wanfeng Zhao
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Alison Marker
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Rebecca S Saleeb
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jackie Salsbury
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Yuta Tezuka
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Debbie L Cohen
- Renal Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Wachtel
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J King
- Department of Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - William M Drake
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Mark Gurnell
- Metabolic Research Laboratories, Welcome Trust-MRC Institute of Metabolic Science, and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Jiri Ceral
- 1st Department of Internal Medicine-Cardioangiology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ales Ryska
- Department of Pathology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Muaatamarulain Mustangin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Miroslav Solar
- 1st Department of Internal Medicine-Cardioangiology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - William E Rainey
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Roger S Foo
- Cardiovascular Disease Translational Research Programme, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Yutaka Takaoka
- Department of Computational Drug Design and Mathematical Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyoma, Japan
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, Inserm, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Morris J Brown
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Takeda Y, Demura M, Kometani M, Karashima S, Yoneda T, Takeda Y. Molecular and Epigenetic Control of Aldosterone Synthase, CYP11B2 and 11-Hydroxylase, CYP11B1. Int J Mol Sci 2023; 24:ijms24065782. [PMID: 36982850 PMCID: PMC10054571 DOI: 10.3390/ijms24065782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Aldosterone and cortisol serve important roles in the pathogenesis of cardiovascular diseases and metabolic disorders. Epigenetics is a mechanism to control enzyme expression by genes without changing the gene sequence. Steroid hormone synthase gene expression is regulated by transcription factors specific to each gene, and methylation has been reported to be involved in steroid hormone production and disease. Angiotensin II or potassium regulates the aldosterone synthase gene, CYP11B2. The adrenocorticotropic hormone controls the 11b-hydroxylase, CYP11B1. DNA methylation negatively controls the CYP11B2 and CYP11B1 expression and dynamically changes the expression responsive to continuous stimulation of the promoter gene. Hypomethylation status of the CYP11B2 promoter region is seen in aldosterone-producing adenomas. Methylation of recognition sites of transcription factors, including cyclic AMP responsive element binding protein 1 or nerve growth factor-induced clone B, diminish their DNA-binding activity. A methyl-CpG-binding protein 2 cooperates directly with the methylated CpG dinucleotides of CYP11B2. A low-salt diet, treatment with angiotensin II, and potassium increase the CYP11B2 mRNA levels and induce DNA hypomethylation in the adrenal gland. A close association between a low DNA methylation ratio and an increased CYP11B1 expression is seen in Cushing's adenoma and aldosterone-producing adenoma with autonomous cortisol secretion. Epigenetic control of CYP11B2 or CYP11B1 plays an important role in autonomic aldosterone or cortisol synthesis.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mitsuhiro Kometani
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takashi Yoneda
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshiyu Takeda
- Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa 920-8641, Japan
- Endocrine and Diabetes Center, Asanogawa General Hospital, Kanazawa 920-0811, Japan
| |
Collapse
|
11
|
Graves LE, Torpy DJ, Coates PT, Alexander IE, Bornstein SR, Clarke B. Future directions for adrenal insufficiency: cellular transplantation and genetic therapies. J Clin Endocrinol Metab 2023; 108:1273-1289. [PMID: 36611246 DOI: 10.1210/clinem/dgac751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Primary adrenal insufficiency occurs in 1 in 5-7000 adults. Leading aetiologies are autoimmune adrenalitis in adults and congenital adrenal hyperplasia (CAH) in children. Oral replacement of cortisol is lifesaving, but poor quality of life, repeated adrenal crises and dosing uncertainty related to lack of a validated biomarker for glucocorticoid sufficiency, persists. Adrenocortical cell therapy and gene therapy may obviate many of the shortcomings of adrenal hormone replacement. Physiological cortisol secretion regulated by pituitary adrenocorticotropin, could be achieved through allogeneic adrenocortical cell transplantation, production of adrenal-like steroidogenic cells from either stem cells or lineage conversion of differentiated cells, or for CAH, gene therapy to replace or repair a defective gene. The adrenal cortex is a high turnover organ and thus failure to incorporate progenitor cells within a transplant will ultimately result in graft exhaustion. Identification of adrenocortical progenitor cells is equally important in gene therapy where new genetic material must be specifically integrated into the genome of progenitors to ensure a durable effect. Delivery of gene editing machinery and a donor template, allowing targeted correction of the 21-hydroxylase gene, has the potential to achieve this. This review describes advances in adrenal cell transplants and gene therapy that may allow physiological cortisol production for children and adults with primary adrenal insufficiency.
Collapse
Affiliation(s)
- Lara E Graves
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - P Toby Coates
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Stefan R Bornstein
- University Clinic Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Brigette Clarke
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Lenzini L, Caroccia B, Seccia TM, Rossi GP. Peptidergic G Protein-Coupled Receptor Regulation of Adrenal Function: Bench to Bedside and Back. Endocr Rev 2022; 43:1038-1050. [PMID: 35436330 DOI: 10.1210/endrev/bnac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/19/2022]
Abstract
An altered secretion of adrenocortical and adrenomedullary hormones plays a role in the clinical syndromes of primary aldosteronism (PA), Cushing, and pheochromocytoma. Moreover, an altered production of adrenocortical hormones and/or an abnormal release of factors by the adrenal medulla are involved in several other diseases, including high blood pressure, congestive heart failure, liver cirrhosis, nephrotic syndrome, primary reninism, renovascular hypertension, Addison disease, Bartter, Gitelman, and virilization syndromes. Understanding the regulation of adrenal function and the interactions between adrenal cortex and medulla is, therefore, the prerequisite for mechanistic understanding of these disorders. Accumulating evidence indicates that the modulation of adrenal hormone biosynthesis is a process far more complex than originally thought, as it involves several factors, each cooperating with the other. Moreover, the tight vascular and neural interconnections between the adrenal cortex and medulla underlie physiologically relevant autocrine/paracrine interactions involving several peptides. Besides playing a pathophysiological role in common adrenal diseases, these complex mechanisms could intervene also in rare diseases, such as pheochromocytoma concomitant with adrenal Cushing or with PA, and PA co-occurring with Cushing, through mechanisms that remain to be fully understood at the molecular levels. Heterodimerization of G protein-coupled receptors (GPCRs) induced by peptide signaling is a further emerging new modulatory mechanism capable of finely tuning adrenal hormones synthesis and release. In this review we will examine current knowledge on the role of peptides that act via GPCRs in the regulation of adrenal hormone secretion with a particular focus on autocrine-paracrine signals.
Collapse
Affiliation(s)
- Livia Lenzini
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Brasilina Caroccia
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Teresa Maria Seccia
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| | - Gian Paolo Rossi
- Emergency Medicine Unit, Center for blood pressure disorders -Regione Veneto and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University of Padua, 35126 Padua, Italy
| |
Collapse
|
13
|
Gancayco CA, Gerding MR, Breault DT, Beenhakker MP, Barrett PQ, Guagliardo NA. Intrinsic Adrenal TWIK-Related Acid-Sensitive TASK Channel Dysfunction Produces Spontaneous Calcium Oscillations Sufficient to Drive AngII (Angiotensin II)-Unresponsive Hyperaldosteronism. Hypertension 2022; 79:2552-2564. [PMID: 36129175 PMCID: PMC10167771 DOI: 10.1161/hypertensionaha.122.19557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Ion channel mutations in calcium regulating genes strongly associate with AngII (angiotensin II)-independent aldosterone production. Here, we used an established mouse model of in vivo aldosterone autonomy,
Cyp11b2
-driven deletion of TWIK-related acid-sensitive potassium channels (TASK-1 and TASK-3, termed zona glomerulosa [zG]-TASK-loss-of-function), and selective pharmacological TASK channel inhibition to determine whether channel dysfunction in native, electrically excitable zG cell rosette-assemblies: (1) produces spontaneous calcium oscillatory activity and (2) is sufficient to drive substantial aldosterone autonomy.
Methods:
We imaged calcium activity in adrenal slices expressing a zG-specific calcium reporter (GCaMP3), an in vitro experimental approach that preserves the native rosette assembly and removes potentially confounding extra-adrenal contributions. In parallel experiments, we measured acute aldosterone production from adrenal slice cultures.
Results:
Absent from untreated WT slices, we find that either adrenal-specific genetic deletion or acute pharmacological TASK channel inhibition produces spontaneous oscillatory bursting behavior and steroidogenic activity (2.4-fold) that are robust, sustained, and equivalent to activities evoked by 3 nM AngII in WT slices. Moreover, spontaneous activity in zG-TASK-loss-of-function slices and inhibitor-evoked activity in WT slices are unresponsive to AngII regulation over a wide range of concentrations (50 pM to 3 µM).
Conclusions:
We provide proof of principle that spontaneous activity of zG cells within classic rosette assemblies evoked solely by a change in an intrinsic, dominant resting-state conductance can be a significant source of AngII-independent aldosterone production from native tissue.
Collapse
Affiliation(s)
| | - Molly R. Gerding
- Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, MA (D.T.B.)
- Harvard Stem Cell Institute, Cambridge, MA (D.T.B.)
| | - Mark P. Beenhakker
- Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville
| | - Paula Q. Barrett
- Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville
| | - Nick A. Guagliardo
- Department of Pharmacology (M.R.G., M.P.B., P.Q.B., N.A.G.), University of Virginia, Charlottesville
| |
Collapse
|
14
|
Abou Nader N, Boyer A. Adrenal Cortex Development and Maintenance: Knowledge Acquired From Mouse Models. Endocrinology 2021; 162:6362524. [PMID: 34473283 DOI: 10.1210/endocr/bqab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal cortex is an endocrine organ organized into concentric zones that are specialized to produce specific steroid hormones essential for life. The development and maintenance of the adrenal cortex are complex, as a fetal adrenal is first formed from a common primordium with the gonads, followed by its separation in a distinct primordium, the invasion of the adrenal primordium by neural crest-derived cells to form the medulla, and finally its encapsulation. The fetal cortex is then replaced by a definitive cortex, which will establish zonation and be maintained throughout life by regeneration relying on the proliferation, centripetal migration, and differentiation of several stem/progenitor cell populations whose activities are sex-specific. Here, we highlight the advances made, using transgenic mouse models, to delineate the molecular mechanisms regulating these processes.
Collapse
Affiliation(s)
- Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
15
|
Leng S, Carlone DL, Guagliardo NA, Barrett PQ, Breault DT. Rosette morphology in zona glomerulosa formation and function. Mol Cell Endocrinol 2021; 530:111287. [PMID: 33891993 PMCID: PMC8159910 DOI: 10.1016/j.mce.2021.111287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022]
Abstract
How morphology informs function is a fundamental biological question. Here, we review the morphological features of the adrenal zona glomerulosa (zG), highlighting recent cellular and molecular discoveries that govern its formation. The zG consists of glomeruli enwrapped in a Laminin-β1-enriched basement membrane (BM). Within each glomerulus, zG cells are organized as rosettes, a multicellular structure widely used throughout development to mediate epithelial remodeling, but not often found in healthy adult tissues. Rosettes arise by constriction at a common cellular contact point mediated/facilitated by adherens junctions (AJs). In mice, small, dispersed AJs first appear postnatally and enrich along the entire cell-cell contact around 10 days after birth. Subsequently, these AJ-rich contacts contract, allowing rosettes to form. Concurrently, flat sheet-like domains in the nascent zG, undergo invagination and folding, gradually giving rise to the compact round glomeruli that comprise the adult zG. How these structures impact adrenal function is discussed.
Collapse
Affiliation(s)
- Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Tatsi C, Maria AG, Malloy C, Lin L, London E, Settas N, Flippo C, Keil M, Hannah-Shmouni F, Hoffman DA, Stratakis CA. Cushing Syndrome in a Pediatric Patient With a KCNJ5 Variant and Successful Treatment With Low-dose Ketoconazole. J Clin Endocrinol Metab 2021; 106:1606-1616. [PMID: 33630995 PMCID: PMC8118581 DOI: 10.1210/clinem/dgab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Pathogenic variants in KCNJ5, encoding the GIRK4 (Kir3.4) potassium channel, have been implicated in the pathogenesis of familial hyperaldosteronism type-III (FH-III) and sporadic primary aldosteronism (PA). In addition to aldosterone, glucocorticoids are often found elevated in PA in association with KCNJ5 pathogenic variants, albeit at subclinical levels. However, to date no GIRK4 defects have been linked to Cushing syndrome (CS). PATIENT We present the case of a 10-year-old child who presented with CS at an early age due to bilateral adrenocortical hyperplasia (BAH). The patient was placed on low-dose ketoconazole (KZL), which controlled hypercortisolemia and CS-related signs. Discontinuation of KZL for even 6 weeks led to recurrent CS. RESULTS Screening for known genes causing cortisol-producing BAHs (PRKAR1A, PRKACA, PRKACB, PDE11A, PDE8B, ARMC5) failed to identify any gene defects. Whole-exome sequencing showed a novel KCNJ5 pathogenic variant (c.506T>C, p.L169S) inherited from her father. In vitro studies showed that the p.L169S variant affects conductance of the Kir3.4 channel without affecting its expression or membrane localization. Although there were no effects on steroidogenesis in vitro, there were modest changes in protein kinase A activity. In silico analysis of the mutant channel proposed mechanisms for the altered conductance. CONCLUSION We present a pediatric patient with CS due to BAH and a germline defect in KCNJ5. Molecular investigations of this KCNJ5 variant failed to show a definite cause of her CS. However, this KCNJ5 variant differed in its function from KCNJ5 defects leading to PA. We speculate that GIRK4 (Kir3.4) may play a role in early human adrenocortical development and zonation and participate in the pathogenesis of pediatric BAH.
Collapse
Affiliation(s)
- Christina Tatsi
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
- Internal medicine and Pediatric Endocrinology Inter-institute Training Programs, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
- Correspondence: Christina Tatsi MD, MHSc, PhD, 10 Center Drive, Building 10, NIH-Clinical Research Center, Room 1-3330, MSC1103, Bethesda, MD 20892,USA.
| | - Andrea G Maria
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Cole Malloy
- Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Lin Lin
- Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Edra London
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Nick Settas
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Chelsi Flippo
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
- Internal medicine and Pediatric Endocrinology Inter-institute Training Programs, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Meg Keil
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
- Internal medicine and Pediatric Endocrinology Inter-institute Training Programs, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
- Internal medicine and Pediatric Endocrinology Inter-institute Training Programs, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Dax A Hoffman
- Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
- Internal medicine and Pediatric Endocrinology Inter-institute Training Programs, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892,USA
| |
Collapse
|
17
|
Pignatti E, Flück CE. Adrenal cortex development and related disorders leading to adrenal insufficiency. Mol Cell Endocrinol 2021; 527:111206. [PMID: 33607267 DOI: 10.1016/j.mce.2021.111206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The adult human adrenal cortex produces steroid hormones that are crucial for life, supporting immune response, glucose homeostasis, salt balance and sexual maturation. It consists of three histologically distinct and functionally specialized zones. The fetal adrenal forms from mesodermal material and produces predominantly adrenal C19 steroids from its fetal zone, which involutes after birth. Transition to the adult cortex occurs immediately after birth for the formation of the zona glomerulosa and fasciculata for aldosterone and cortisol production and continues through infancy until the zona reticularis for adrenal androgen production is formed with adrenarche. The development of this indispensable organ is complex and not fully understood. This article gives an overview of recent knowledge gained of adrenal biology from two perspectives: one, from basic science studying adrenal development, zonation and homeostasis; and two, from adrenal disorders identified in persons manifesting with various isolated or syndromic forms of primary adrenal insufficiency.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern and Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern and Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
18
|
DNA Methylation of the Angiotensinogen Gene, AGT, and the Aldosterone Synthase Gene, CYP11B2 in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22094587. [PMID: 33925539 PMCID: PMC8123855 DOI: 10.3390/ijms22094587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Angiotensinogen (AGT) and aldosterone play key roles in the regulation of blood pressure and are implicated in the pathogenesis of cardiovascular diseases. DNA methylation typically acts to repress gene transcription. The aldosterone synthase gene CYP11B2 is regulated by angiotensin II and potassium. DNA methylation negatively regulates AGT and CYP11B2 expression and dynamically changes in response to continuous promoter stimulation of each gene. High salt intake and excess circulating aldosterone cause DNA demethylation around the CCAAT-enhancer-binding-protein (CEBP) sites of the ATG promoter region, thereby converting the phenotype of AGT expression from an inactive to an active state in visceral adipose tissue and heart. A close association exists between low DNA methylation at CEBP-binding sites and increased AGT expression in salt-sensitive hypertensive rats. Salt-dependent hypertension may be partially affected by increased cardiac AGT expression. CpG dinucleotides in the CYP11B2 promoter are hypomethylated in aldosterone-producing adenomas. Methylation of recognition sequences of transcription factors, including CREB1, NGFIB (NR4A1), and NURR1 (NR4A2) diminish their DNA-binding activity. The methylated CpG-binding protein MECP2 interacts directly with the methylated CYP11B2 promoter. Low salt intake and angiotensin II infusion lead to upregulation of CYP11B2 expression and DNA hypomethylation in the adrenal gland. Treatment with the angiotensin II type 1 receptor antagonist decreases CYP11B2 expression and leads to DNA hypermethylation. A close association between low DNA methylation and increased CYP11B2 expression are seen in the hearts of patients with hypertrophic cardiomyopathy. These results indicate that epigenetic regulation of both AGT and CYP11B2 contribute to the pathogenesis of cardiovascular diseases.
Collapse
|
19
|
Little DW, Dumontet T, LaPensee CR, Hammer GD. β-catenin in adrenal zonation and disease. Mol Cell Endocrinol 2021; 522:111120. [PMID: 33338548 PMCID: PMC8006471 DOI: 10.1016/j.mce.2020.111120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
The Wnt signaling pathway is a critical mediator of the development and maintenance of several tissues. The adrenal cortex is highly dependent upon Wnt/β-catenin signaling for proper zonation and endocrine function. Adrenocortical cells emerge in the peripheral capsule and subcapsular cortex of the gland as progenitor cells that centripetally differentiate into steroid hormone-producing cells of three functionally distinct concentric zones that respond robustly to various endocrine stimuli. Wnt/β-catenin signaling mediates adrenocortical progenitor cell fate and tissue renewal to maintain the gland throughout life. Aberrant Wnt/β-catenin signaling contributes to various adrenal disorders of steroid production and growth that range from hypofunction and hypoplasia to hyperfunction, hyperplasia, benign adrenocortical adenomas, and malignant adrenocortical carcinomas. Great strides have been made in defining the molecular underpinnings of adrenocortical homeostasis and disease, including the interplay between the capsule and cortex, critical components involved in maintaining the adrenocortical Wnt/β-catenin signaling gradient, and new targets in adrenal cancer. This review seeks to examine these and other recent advancements in understanding adrenocortical Wnt/β-catenin signaling and how this knowledge can inform therapeutic options for adrenal disease.
Collapse
Affiliation(s)
| | - Typhanie Dumontet
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Christopher R LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Gary D Hammer
- Doctoral Program in Cancer Biology, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Barrett PQ, Guagliardo NA, Bayliss DA. Ion Channel Function and Electrical Excitability in the Zona Glomerulosa: A Network Perspective on Aldosterone Regulation. Annu Rev Physiol 2020; 83:451-475. [PMID: 33176563 DOI: 10.1146/annurev-physiol-030220-113038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aldosterone excess is a pathogenic factor in many hypertensive disorders. The discovery of numerous somatic and germline mutations in ion channels in primary hyperaldosteronism underscores the importance of plasma membrane conductances in determining the activation state of zona glomerulosa (zG) cells. Electrophysiological recordings describe an electrically quiescent behavior for dispersed zG cells. Yet, emerging data indicate that in native rosette structures in situ, zG cells are electrically excitable, generating slow periodic voltage spikes and coordinated bursts of Ca2+ oscillations. We revisit data to understand how a multitude of conductances may underlie voltage/Ca2+ oscillations, recognizing that zG layer self-renewal and cell heterogeneity may complicate this task. We review recent data to understand rosette architecture and apply maxims derived from computational network modeling to understand rosette function. The challenge going forward is to uncover how the rosette orchestrates the behavior of a functional network of conditional oscillators to control zG layer performance and aldosterone secretion.
Collapse
Affiliation(s)
- Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA; , ,
| |
Collapse
|
21
|
Gürtler F, Jordan K, Tegtmeier I, Herold J, Stindl J, Warth R, Bandulik S. Cellular Pathophysiology of Mutant Voltage-Dependent Ca2+ Channel CACNA1H in Primary Aldosteronism. Endocrinology 2020; 161:5891807. [PMID: 32785697 DOI: 10.1210/endocr/bqaa135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
The physiological stimulation of aldosterone production in adrenocortical glomerulosa cells by angiotensin II and high plasma K+ depends on the depolarization of the cell membrane potential and the subsequent Ca2+ influx via voltage-activated Ca2+ channels. Germline mutations of the low-voltage activated T-type Ca2+ channel CACNA1H (Cav3.2) have been found in patients with primary aldosteronism. Here, we investigated the electrophysiology and Ca2+ signaling of adrenal NCI-H295R cells overexpressing CACNA1H wildtype and mutant M1549V in order to understand how mutant CACNA1H alters adrenal cell function. Whole-cell patch-clamp measurements revealed a strong activation of mutant CACNA1H at the resting membrane potential of adrenal cells. Both the expression of wildtype and mutant CACNA1H led to a depolarized membrane potential. In addition, cells expressing mutant CACNA1H developed pronounced action potential-like membrane voltage oscillations. Ca2+ measurements showed an increased basal Ca2+ activity, an altered K+ sensitivity, and abnormal oscillating Ca2+ changes in cells with mutant CACNA1H. In addition, removal of extracellular Na+ reduced CACNA1H current, voltage oscillations, and Ca2+ levels in mutant cells, suggesting a role of the partial Na+ conductance of CACNA1H in cellular pathology. In conclusion, the pathogenesis of stimulus-independent aldosterone production in patients with CACNA1H mutations involves several factors: i) a loss of normal control of the membrane potential, ii) an increased Ca2+ influx at basal conditions, and iii) alterations in sensitivity to extracellular K+ and Na+. Finally, our findings underline the importance of CACNA1H in the control of aldosterone production and support the concept of the glomerulosa cell as an electrical oscillator.
Collapse
Affiliation(s)
- Florian Gürtler
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Katrin Jordan
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Janina Herold
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Julia Stindl
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Sascha Bandulik
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Leng S, Pignatti E, Khetani RS, Shah MS, Xu S, Miao J, Taketo MM, Beuschlein F, Barrett PQ, Carlone DL, Breault DT. β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nat Commun 2020; 11:1680. [PMID: 32245949 PMCID: PMC7125176 DOI: 10.1038/s41467-020-15332-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Rosettes are widely used in epithelial morphogenesis during embryonic development and organogenesis. However, their role in postnatal development and adult tissue maintenance remains largely unknown. Here, we show zona glomerulosa cells in the adult adrenal cortex organize into rosettes through adherens junction-mediated constriction, and that rosette formation underlies the maturation of adrenal glomerular structure postnatally. Using genetic mouse models, we show loss of β-catenin results in disrupted adherens junctions, reduced rosette number, and dysmorphic glomeruli, whereas β-catenin stabilization leads to increased adherens junction abundance, more rosettes, and glomerular expansion. Furthermore, we uncover numerous known regulators of epithelial morphogenesis enriched in β-catenin-stabilized adrenals. Among these genes, we show Fgfr2 is required for adrenal rosette formation by regulating adherens junction abundance and aggregation. Together, our data provide an example of rosette-mediated postnatal tissue morphogenesis and a framework for studying the role of rosettes in adult zona glomerulosa tissue maintenance and function.
Collapse
Affiliation(s)
- Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Radhika S Khetani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Simiao Xu
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo, Kyoto, 606-8506, Japan
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, UniversitätsSpital Zürich, Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paula Q Barrett
- Departments of Pharmacology, University of Virginia, Charlottesville, VA, 22947, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|