1
|
Schaumburg M, Imtiaz A, Zhou R, Bernard M, Wolbers T, Segen V. Immersive virtual reality for older adults: Challenges and solutions in basic research and clinical applications. Ageing Res Rev 2025; 109:102771. [PMID: 40373984 DOI: 10.1016/j.arr.2025.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Immersive virtual reality (IVR) offers significant potential for aging research, providing a controlled yet ecologically valid platform for studying cognitive, emotional, and motor processes, as well as supporting interventions and diagnostic assessments in older adults. However, its usability can be hindered by age-related sensory, motor, and cognitive changes, which may contribute to anxiety, disorientation, and reduced task engagement. In this narrative review, we examine the challenges older adults face with IVR and explore strategies to optimize its design for this population. These challenges include negative attitudes, sensory and motor limitations, and cognitive decline, all of which influence interaction with virtual environments. Based on these insights, we discuss design considerations such as self-paced interactions, simplified control mechanisms, task-relevant visual and auditory adjustments, and structured training protocols to enhance engagement. Additionally, we highlight strategies to minimize cognitive load and physical discomfort, supporting the development of IVR applications that are both effective and accessible for aging populations.
Collapse
Affiliation(s)
- Malika Schaumburg
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Ashar Imtiaz
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Ruojing Zhou
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Matthieu Bernard
- Sorbonne Université, CNRS, Inserm, Centre de Neuroscience (NeuroSU), CeZaMe, Paris 75005, France; Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine (IBPS), CeZaMe, Paris 75005, France
| | - Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany; Center for Behavioural Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Magdeburg 39120, Germany
| | - Vladislava Segen
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| |
Collapse
|
2
|
Hill PF, Ekstrom AD. A cognitive-motor framework for spatial navigation in aging and early-stage Alzheimer's disease. Cortex 2025; 185:133-150. [PMID: 40043550 DOI: 10.1016/j.cortex.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/19/2024] [Accepted: 02/13/2025] [Indexed: 04/13/2025]
Abstract
Spatial navigation is essential for wellbeing and independence and shows significant declines as part of age-related neurodegenerative disorders, such as Alzheimer's disease. Navigation is also one of the earliest behaviors impacted by this devastating disease. Neurobiological models of aging and spatial navigation have focused primarily on the cognitive factors that account for impaired navigation abilities during the course of healthy aging and early stages of preclinical and prodromal Alzheimer's disease. The contributions of physical factors that are essential to planning and executing movements during successful navigation, such as gait and dynamic balance, are often overlooked despite also being vulnerable to early stages of neurodegenerative disease. We review emerging evidence that spatial navigation and functional mobility each draw on highly overlapping sensory systems, cognitive processes, and brain structures that are susceptible to healthy and pathological aging processes. Based on this evidence, we provide an alternative to models that have focused primarily on spatial navigation as a higher order cognitive function dependent on brain areas such as the hippocampus and entorhinal cortex. Instead, we argue that spatial navigation may offer an ecologically valid cognitive-motor phenotype of age-related cognitive dysfunction. We propose that dual cognitive-motor deficits in spatial navigation may arise from early changes in neuromodulatory and peripheral sensory systems that precede changes in regions such as the entorhinal cortex.
Collapse
Affiliation(s)
- Paul F Hill
- Psychology Department, University of Arizona, USA.
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, USA; McKnight Brain Institute, University of Arizona, USA
| |
Collapse
|
3
|
Segen V, Kabir MR, Streck A, Slavik J, Glanz W, Butryn M, Newman E, Tiganj Z, Wolbers T. Path integration impairments reveal early cognitive changes in Subjective Cognitive Decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638583. [PMID: 40027817 PMCID: PMC11870602 DOI: 10.1101/2025.02.17.638583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Path integration, the ability to track one's position using self-motion cues, is critically dependent on the grid cell network in the entorhinal cortex, a region vulnerable to early Alzheimer's disease pathology. In this study, we examined path integration performance in individuals with subjective cognitive decline (SCD), a group at increased risk for Alzheimer's disease, and healthy controls using an immersive virtual reality task. We developed a Bayesian computational model to decompose path integration errors into distinct components. SCD participants exhibited significantly higher path integration error, primarily driven by increased memory leak, while other modelling-derived error sources, such as velocity gain, sensory and reporting noise, remained comparable across groups. Our findings suggest that path integration deficits, specifically memory leak, may serve as an early marker of neurodegeneration in SCD and highlight the potential of self-motion-based navigation tasks for detecting pre-symptomatic Alzheimer's disease-related cognitive changes. Teaser Virtual reality, computational modelling, and biomarkers uncover path integration deficits, distinguishing pre-symptomatic Alzheimer's from normal aging.
Collapse
|
4
|
Colmant L, Quenon L, Huyghe L, Ivanoiu A, Gérard T, Lhommel R, Coppens P, Salman Y, Malotaux V, Dricot L, Kunz L, Axmacher N, Lefèvre P, Hanseeuw B. Rotation errors in path integration are associated with Alzheimer's disease tau pathology: a cross-sectional study. Alzheimers Res Ther 2025; 17:34. [PMID: 39893494 PMCID: PMC11786419 DOI: 10.1186/s13195-025-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Early Alzheimer's disease diagnosis is crucial for preventive therapy development. Standard neuropsychological evaluation does not identify clinically normal individuals with brain amyloidosis, the first stage of the pathology, defined as preclinical Alzheimer's disease. Spatial navigation assessment, in particular path integration, appears promising to detect preclinical symptoms, as the medial temporal lobe plays a key role in navigation and is the first cortical region affected by tau pathology. METHODS We have conducted a cross-sectional study. We related the path integration performance of 102 individuals without dementia, aged over 50, to amyloid and tau pathologies, measured using positron emission tomography. We included 75 clinically normal individuals (19 with brain amyloidosis, 56 without) and 27 individuals with mild cognitive impairment (18 with brain amyloidosis, 9 without). We fitted linear mixed models to predict the path integration performances according to amyloid status or tau pathology in the medial temporal lobal, adjusting for age, gender, cognitive status, education, and video game experience. We decomposed the error into rotation and distance errors. RESULTS We observed that clinically normal adults with brain amyloidosis (preclinical Alzheimer's disease) had spatial navigation deficits when relying only on self-motion cues. However, they were able to use a landmark to reduce their errors. Individuals with mild cognitive impairment had deficits in path integration that did not improve when a landmark was added in the environment. The amyloid status did not influence performance among individuals with mild cognitive impairment. Among all individuals, rotation, but not distance, errors increased with the level of tau pathology in the medial temporal lobe. CONCLUSION Our results suggest that path integration performance in an environment without external cues allows identifying individuals with preclinical Alzheimer's disease, before overt episodic memory impairment is noticeable. Specifically, we demonstrated that poor angular estimation is an early cognitive marker of tau pathology, whereas distance estimation relates to older ages, not to Alzheimer's disease. TRIAL REGISTRATION Eudra-CT 2018-003473-94.
Collapse
Affiliation(s)
- Lise Colmant
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium.
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium.
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-La-Neuve, 1348, Belgium.
| | - Lisa Quenon
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Lara Huyghe
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
| | - Adrian Ivanoiu
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Thomas Gérard
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Renaud Lhommel
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Pauline Coppens
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
| | - Yasmine Salman
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
| | - Vincent Malotaux
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Laurence Dricot
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, 53127, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, 44780, Germany
| | - Philippe Lefèvre
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-La-Neuve, 1348, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, NEUR, UCLouvain, Avenue Mounier 53/B1.53.05, Brussels, 1200, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
5
|
Goodroe S, Fernandez Velasco P, Gahnstrom CJ, Wiener J, Coutrot A, Hornberger M, Spiers HJ. Predicting real-world navigation performance from a virtual navigation task in older adults. PLoS One 2025; 20:e0317026. [PMID: 39869655 PMCID: PMC11771902 DOI: 10.1371/journal.pone.0317026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025] Open
Abstract
Virtual reality environments presented on tablets and smartphones offer a novel way of measuring navigation skill and predicting real-world navigation problems. The extent to which such virtual tests are effective at predicting navigation in older populations remains unclear. We compared the performance of 20 older participants (54-74 years old) in wayfinding tasks in a real-world environment in London, UK, and in similar tasks designed in a mobile app-based test of navigation (Sea Hero Quest). In a previous study with young participants (18-35 years old), we were able to predict navigation performance in real-world tasks in London and Paris using this mobile app. We find that for the older cohort, virtual navigation performance predicts real-world performance for medium difficulty, but not for the easy or difficult environments. Overall, our study supports the utility of using digital tests of spatial cognition in older age groups, while carefully adapting the task difficulty to the population.
Collapse
Affiliation(s)
- Sarah Goodroe
- Department of Psychology, University of Pennsylvania, Pennsylvania, United States of America
| | - Pablo Fernandez Velasco
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom
- Department of Philosophy, University of York, York, United Kingdom
| | - Christoffer J Gahnstrom
- Department of Psychology, University of Pennsylvania, Pennsylvania, United States of America
| | - Jan Wiener
- Department of Psychology, Ageing and Dementia Research Centre, Bournemouth University, Poole, United Kingdom
| | | | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom
| |
Collapse
|
6
|
Andac S, Stolle FH, Bernard M, Al-Nosairy KO, Wolbers T, Hoffmann MB. Navigation performance in glaucoma: virtual-reality-based assessment of path integration. Sci Rep 2024; 14:21320. [PMID: 39266690 PMCID: PMC11393326 DOI: 10.1038/s41598-024-72040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Navigation is essential for moving between locations in our daily lives. We investigated the relationship between visual impairment in glaucoma and path-integration-based navigation. Fourteen glaucoma and 15 controls underwent ophthalmological examination (including visual acuity (logMAR), visual field sensitivity (MD: mean deviation from matched reference cohort), and peripapillary retinal nerve fiber layer (pRNFL)). Both groups navigated physically in virtual reality (VR) environments during daylight and dawn conditions. Briefly, the participants traversed a path marked by three targets, subsequently pointing back to the path's origin. Outcome measures included (i) travel-time, (ii) pointing-time, and (iii) Euclidian-distance error between indicated and starting position. Robust linear regression was conducted between visual function outcomes of the better eye and VR outcome measures. Glaucoma patients showed increase in travel-time (by 8.2 ± 1.7 s; p = 0.002) and in pointing-time (by 5.3 ± 1.6 s; p = 0.016). Predictors were MD for all outcome measures (p < 0.01) and pRNFL for travel-time (p < 0.01). The results suggest that the effect of glaucoma on the elapsed time depends on disease progression, i.e. people with stronger visual impairment need more time. This uncertainty during everyday navigation tasks may adversely affect their quality of life.
Collapse
Affiliation(s)
- Safa Andac
- Ophthalmic Department, Section for Clinical and Experimental Sensory Physiology, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Francie H Stolle
- Ophthalmic Department, Section for Clinical and Experimental Sensory Physiology, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Matthieu Bernard
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Khaldoon O Al-Nosairy
- Ophthalmic Department, Section for Clinical and Experimental Sensory Physiology, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael B Hoffmann
- Ophthalmic Department, Section for Clinical and Experimental Sensory Physiology, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
7
|
Khosla A, Moscovitch M, Ryan JD. Spatial updating of gaze position in younger and older adults - A path integration-like process in eye movements. Cognition 2024; 250:105835. [PMID: 38875941 DOI: 10.1016/j.cognition.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Path integration (PI) is a navigation process that allows an organism to update its current location in reference to a starting point. PI can involve updating self-position continuously with respect to the starting point (continuous updating) or creating a map representation of the route which is then used to compute the homing vector (configural updating). One of the brain areas involved in PI, the entorhinal cortex, is modulated similarly by whole-body and eye movements, suggesting that if PI updates self-position, an analogous process may be used to update gaze position, and may undergo age-related changes. Here, we created an eyetracking version of a PI task in which younger and older participants followed routes with their eyes as guided by visual onsets; at the end of each route, participants were cued to return to the starting point or another enroute location. When only memory for the starting location was required for successful task performance, younger and older adults were generally not influenced by the number of locations, indicative of continuous updating. However, when participants could be cued to any enroute location, thereby requiring memory for the entire route, processing times increased, accuracy decreased, and overt revisits to enroute locations increased with the number of locations in a route, indicative of configural updating. Older participants showed evidence for similar updating strategies as younger participants, but they were less accurate and made more overt revisits to mid-route locations. These findings suggest that spatial updating mechanisms are generalizable across effector systems.
Collapse
Affiliation(s)
- Anisha Khosla
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Jennifer D Ryan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Madhav MS, Jayakumar RP, Li BY, Lashkari SG, Wright K, Savelli F, Knierim JJ, Cowan NJ. Control and recalibration of path integration in place cells using optic flow. Nat Neurosci 2024; 27:1599-1608. [PMID: 38937582 PMCID: PMC11563580 DOI: 10.1038/s41593-024-01681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Hippocampal place cells are influenced by both self-motion (idiothetic) signals and external sensory landmarks as an animal navigates its environment. To continuously update a position signal on an internal 'cognitive map', the hippocampal system integrates self-motion signals over time, a process that relies on a finely calibrated path integration gain that relates movement in physical space to movement on the cognitive map. It is unclear whether idiothetic cues alone, such as optic flow, exert sufficient influence on the cognitive map to enable recalibration of path integration, or if polarizing position information provided by landmarks is essential for this recalibration. Here, we demonstrate both recalibration of path integration gain and systematic control of place fields by pure optic flow information in freely moving rats. These findings demonstrate that the brain continuously rebalances the influence of conflicting idiothetic cues to fine-tune the neural dynamics of path integration, and that this recalibration process does not require a top-down, unambiguous position signal from landmarks.
Collapse
Affiliation(s)
- Manu S Madhav
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ravikrishnan P Jayakumar
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Brian Y Li
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Shahin G Lashkari
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly Wright
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Francesco Savelli
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - James J Knierim
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| | - Noah J Cowan
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Jagorska C, Riemer M. The influence of travel time on perceived traveled distance varies by spatiotemporal scale. Exp Brain Res 2024; 242:2023-2031. [PMID: 38953973 PMCID: PMC11252197 DOI: 10.1007/s00221-024-06880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The influence of travel time on perceived traveled distance has often been studied, but the results are inconsistent regarding the relationship between the two magnitudes. We argue that this is due to differences in the lengths of investigated travel distances and hypothesize that the influence of travel time differs for rather short compared to rather long traveled distances. We tested this hypothesis in a virtual environment presented on a desktop as well as through a head-mounted display. Our results show that, for longer distances, more travel time leads to longer perceived distance, while we do not find an influence of travel time on shorter distances. The presentation through an HMD vs. desktop only influenced distance judgments in the short distance condition. These results are in line with the idea that the influence of travel time varies by the length of the traveled distance, and provide insights on the question of how distance perception in path integration studies is affected by travel time, thereby resolving inconsistencies reported in previous studies.
Collapse
Affiliation(s)
- Cindy Jagorska
- Biological Psychology and Neuroergonomics, Technical University Berlin, 10623, Berlin, Germany.
| | - Martin Riemer
- Biological Psychology and Neuroergonomics, Technical University Berlin, 10623, Berlin, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Philippstraße 13, 10115, Berlin, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
10
|
Kessler F, Frankenstein J, Rothkopf CA. Human navigation strategies and their errors result from dynamic interactions of spatial uncertainties. Nat Commun 2024; 15:5677. [PMID: 38971789 PMCID: PMC11227593 DOI: 10.1038/s41467-024-49722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/14/2024] [Indexed: 07/08/2024] Open
Abstract
Goal-directed navigation requires continuously integrating uncertain self-motion and landmark cues into an internal sense of location and direction, concurrently planning future paths, and sequentially executing motor actions. Here, we provide a unified account of these processes with a computational model of probabilistic path planning in the framework of optimal feedback control under uncertainty. This model gives rise to diverse human navigational strategies previously believed to be distinct behaviors and predicts quantitatively both the errors and the variability of navigation across numerous experiments. This furthermore explains how sequential egocentric landmark observations form an uncertain allocentric cognitive map, how this internal map is used both in route planning and during execution of movements, and reconciles seemingly contradictory results about cue-integration behavior in navigation. Taken together, the present work provides a parsimonious explanation of how patterns of human goal-directed navigation behavior arise from the continuous and dynamic interactions of spatial uncertainties in perception, cognition, and action.
Collapse
Affiliation(s)
- Fabian Kessler
- Centre for Cognitive Science & Institute of Psychology, Technical University of Darmstadt, Darmstadt, Germany.
| | - Julia Frankenstein
- Centre for Cognitive Science & Institute of Psychology, Technical University of Darmstadt, Darmstadt, Germany
| | - Constantin A Rothkopf
- Centre for Cognitive Science & Institute of Psychology, Technical University of Darmstadt, Darmstadt, Germany
- Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Chen X, Wei Z, Wolbers T. Repetition Suppression Reveals Cue-Specific Spatial Representations for Landmarks and Self-Motion Cues in the Human Retrosplenial Cortex. eNeuro 2024; 11:ENEURO.0294-23.2024. [PMID: 38519127 PMCID: PMC11007318 DOI: 10.1523/eneuro.0294-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024] Open
Abstract
The efficient use of various spatial cues within a setting is crucial for successful navigation. Two fundamental forms of spatial navigation, landmark-based and self-motion-based, engage distinct cognitive mechanisms. The question of whether these modes invoke shared or separate spatial representations in the brain remains unresolved. While nonhuman animal studies have yielded inconsistent results, human investigation is limited. In our previous work (Chen et al., 2019), we introduced a novel spatial navigation paradigm utilizing ultra-high field fMRI to explore neural coding of positional information. We found that different entorhinal subregions in the right hemisphere encode positional information for landmarks and self-motion cues. The present study tested the generalizability of our previous finding with a modified navigation paradigm. Although we did not replicate our previous finding in the entorhinal cortex, we identified adaptation-based allocentric positional codes for both cue types in the retrosplenial cortex (RSC), which were not confounded by the path to the spatial location. Crucially, the multi-voxel patterns of these spatial codes differed between the cue types, suggesting cue-specific positional coding. The parahippocampal cortex exhibited positional coding for self-motion cues, which was not dissociable from path length. Finally, the brain regions involved in successful navigation differed from our previous study, indicating overall distinct neural mechanisms recruited in our two studies. Taken together, the current findings demonstrate cue-specific allocentric positional coding in the human RSC in the same navigation task for the first time and that spatial representations in the brain are contingent on specific experimental conditions.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ziwei Wei
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
12
|
Mohamed Aly L, Masi M, Montanaro M, Ricciardelli P. The effect of negative emotion processing on spatial navigation: an experimental study using virtual reality. Front Psychol 2024; 14:1301981. [PMID: 38274671 PMCID: PMC10808736 DOI: 10.3389/fpsyg.2023.1301981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Finding one's way in unfamiliar environments is an essential ability. When navigating, people are overwhelmed with an enormous amount of information. However, some information might be more relevant than others. Despite the mounting knowledge about the mechanisms underlying orientational skills, and the notable effects of facial emotions on human behavior, little is known about emotions' effects on spatial navigation. Hereby, this study aimed to explore how exposure to others' negative emotional facial expressions affects wayfinding performances. Moreover, gender differences that characterize both processes were considered. Fifty-five participants (31 females) entered twice in three realistic virtual reality environments: the first time, to encode a route to find an object and then to recall the learned path to reach the same object again. In between the two explorations of the virtual environment, participants were asked to undergo a gender categorization task during which they were exposed to sixty faces showing either neutral, fearful, or angry expressions. Results showed a significant interaction between emotions, time, and gender. In particular, the exposition to fearful faces, but not angry and neutral ones, decreased males' wayfinding performances (i.e., travel times and distance travelled), while females' performances were unaffected. Possible explanations for such gender and emotional dissimilarities are discussed.
Collapse
Affiliation(s)
- Linda Mohamed Aly
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- MiBTec, University of Milano-Bicocca, Milan, Italy
| | - Matteo Masi
- Department of Psychology, University of Münster, Münster, Germany
| | | | - Paola Ricciardelli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- MiBTec, University of Milano-Bicocca, Milan, Italy
- NeuroMI, Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
13
|
Najafian Jazi M, Tymorek A, Yen TY, Jose Kavarayil F, Stingl M, Chau SR, Baskurt B, García Vilela C, Allen K. Hippocampal firing fields anchored to a moving object predict homing direction during path-integration-based behavior. Nat Commun 2023; 14:7373. [PMID: 37968268 PMCID: PMC10651862 DOI: 10.1038/s41467-023-42642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
Homing based on path integration (H-PI) is a form of navigation in which an animal uses self-motion cues to keep track of its position and return to a starting point. Despite evidence for a role of the hippocampus in homing behavior, the hippocampal spatial representations associated with H-PI are largely unknown. Here we developed a homing task (AutoPI task) that required a mouse to find a randomly placed lever on an arena before returning to its home base. Recordings from the CA1 area in male mice showed that hippocampal neurons remap between random foraging and AutoPI task, between trials in light and dark conditions, and between search and homing behavior. During the AutoPI task, approximately 25% of the firing fields were anchored to the lever position. The activity of 24% of the cells with a lever-anchored field predicted the homing direction of the animal on each trial. Our results demonstrate that the activity of hippocampal neurons with object-anchored firing fields predicts homing behavior.
Collapse
Affiliation(s)
- Maryam Najafian Jazi
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Adrian Tymorek
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Ting-Yun Yen
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Felix Jose Kavarayil
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Moritz Stingl
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Sherman Richard Chau
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Benay Baskurt
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Celia García Vilela
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Kevin Allen
- Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
14
|
Castegnaro A, Ji Z, Rudzka K, Chan D, Burgess N. Overestimation in angular path integration precedes Alzheimer's dementia. Curr Biol 2023; 33:4650-4661.e7. [PMID: 37827151 PMCID: PMC10957396 DOI: 10.1016/j.cub.2023.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Path integration (PI) is impaired early in Alzheimer's disease (AD) but reflects multiple sub-processes that may be differentially sensitive to AD. To characterize these sub-processes, we developed a novel generative linear-angular model of PI (GLAMPI) to fit the inbound paths of healthy elderly participants performing triangle completion, a popular PI task, in immersive virtual reality with real movement. The model fits seven parameters reflecting the encoding, calculation, and production errors associated with inaccuracies in PI. We compared these parameters across younger and older participants and patients with mild cognitive impairment (MCI), including those with (MCI+) and without (MCI-) cerebrospinal fluid biomarkers of AD neuropathology. MCI patients showed overestimation of the angular turn in the outbound path and more variable inbound distances and directions compared with healthy elderly. MCI+ were best distinguished from MCI- patients by overestimation of outbound turns and more variable inbound directions. Our results suggest that overestimation of turning underlies the PI errors seen in patients with early AD, indicating specific neural pathways and diagnostic behaviors for further research.
Collapse
Affiliation(s)
- Andrea Castegnaro
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Zilong Ji
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District, Beijing 100871, China
| | - Katarzyna Rudzka
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Dennis Chan
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
15
|
Ying J, Reboreda A, Yoshida M, Brandon MP. Grid cell disruption in a mouse model of early Alzheimer's disease reflects reduced integration of self-motion cues. Curr Biol 2023:S0960-9822(23)00547-X. [PMID: 37220744 DOI: 10.1016/j.cub.2023.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer's disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aβ) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.
Collapse
Affiliation(s)
- Johnson Ying
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Antonio Reboreda
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg 39120, Germany
| | - Motoharu Yoshida
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
16
|
West GL, Patai ZE, Coutrot A, Hornberger M, Bohbot VD, Spiers HJ. Landmark-dependent Navigation Strategy Declines across the Human Life-Span: Evidence from Over 37,000 Participants. J Cogn Neurosci 2023; 35:452-467. [PMID: 36603038 DOI: 10.1162/jocn_a_01956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humans show a remarkable capacity to navigate various environments using different navigation strategies, and we know that strategy changes across the life span. However, this observation has been based on studies of small sample sizes. To this end, we used a mobile app-based video game (Sea Hero Quest) to test virtual navigation strategies and memory performance within a distinct radial arm maze level in over 37,000 participants. Players were presented with six pathways (three open and three closed) and were required to navigate to the three open pathways to collect a target. Next, all six pathways were made available and the player was required to visit the pathways that were previously unavailable. Both reference memory and working memory errors were calculated. Crucially, at the end of the level, the player was asked a multiple-choice question about how they found the targets (i.e., a counting-dependent strategy vs. a landmark-dependent strategy). As predicted from previous laboratory studies, we found the use of landmarks declined linearly with age. Those using landmark-based strategies also performed better on reference memory than those using a counting-based strategy. These results extend previous observations in the laboratory showing a decreased use of landmark-dependent strategies with age.
Collapse
Affiliation(s)
| | - Zita Eva Patai
- University College London, United Kingdom.,King's College London, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Zhou R, Belge T, Wolbers T. Reaching the Goal: Superior Navigators in Late Adulthood Provide a Novel Perspective into Successful Cognitive Aging. Top Cogn Sci 2023; 15:15-45. [PMID: 35582831 DOI: 10.1111/tops.12608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Normal aging is typically associated with declines in navigation and spatial memory abilities. However, increased interindividual variability in performance across various navigation/spatial memory tasks is also evident with advancing age. In this review paper, we shed the spotlight on those older individuals who exhibit exceptional, sometimes even youth-like navigational/spatial memory abilities. Importantly, we (1) showcase observations from existing studies that demonstrate superior navigation/spatial memory performance in late adulthood, (2) explore possible cognitive correlates and neurophysiological mechanisms underlying these preserved spatial abilities, and (3) discuss the potential link between the superior navigators in late adulthood and SuperAgers (older adults with superior episodic memory). In the closing section, given the lack of studies that directly focus on this subpopulation, we highlight several important directions that future studies could look into to better understand the cognitive characteristics of older superior navigators and the factors enabling such successful cognitive aging.
Collapse
Affiliation(s)
- Ruojing Zhou
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases
| | - Tuğçe Belge
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases
| | - Thomas Wolbers
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases.,Center for Behavioral Brain Sciences, Magdeburg
| |
Collapse
|
18
|
Coughlan G, Plumb W, Zhukovsky P, Aung MH, Hornberger M. Vestibular contribution to path integration deficits in 'at-genetic-risk' for Alzheimer's disease. PLoS One 2023; 18:e0278239. [PMID: 36595510 PMCID: PMC9810179 DOI: 10.1371/journal.pone.0278239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023] Open
Abstract
Path integration changes may precede a clinical presentation of Alzheimer's disease by several years. Studies to date have focused on how spatial cell changes affect path integration in preclinical AD. However, vestibular input is also critical for intact path integration. Here, we developed the vestibular rotation task that requires individuals to manually point an iPad device in the direction of their starting point following rotational movement, without any visual cues. Vestibular features were derived from the sensor data using feature selection. Machine learning models illustrate that the vestibular features accurately classified Apolipoprotein E ε3ε4 carriers and ε3ε3 carrier controls (mean age 62.7 years), with 65% to 79% accuracy depending on task trial. All machine learning models produced a similar classification accuracy. Our results demonstrate the cross-sectional role of the vestibular system in Alzheimer's disease risk carriers. Future investigations should examine if vestibular functions explain individual phenotypic heterogeneity in path integration among Alzheimer's disease risk carriers.
Collapse
Affiliation(s)
- Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - William Plumb
- Department of Computing, Imperial College London, London, United Kingdom
| | - Peter Zhukovsky
- Centre for Addiction and Mental Health, Kimel Family Translational Imaging Genetics Laboratory, Toronto, Ontario, Canada
| | - Min Hane Aung
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Khodagholy D, Ferrero JJ, Park J, Zhao Z, Gelinas JN. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci 2022; 45:968-983. [PMID: 36404457 PMCID: PMC10437206 DOI: 10.1016/j.tins.2022.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Cognitive functions are increasingly understood to involve coordinated activity patterns between multiple brain regions, and their disruption by neuropsychiatric disorders is similarly complex. Closed-loop neurostimulation can directly modulate neural signals with temporal and spatial precision. How to leverage such an approach to effectively identify and target distributed neural networks implicated in mediating cognition remains unclear. We review current conceptual and technical advances in this area, proposing that devices that enable large-scale acquisition, integrated processing, and multiregion, arbitrary waveform stimulation will be critical for mechanistically driven manipulation of cognitive processes in physiological and pathological brain networks.
Collapse
Affiliation(s)
- Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jaehyo Park
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA..
| |
Collapse
|
20
|
Fu X, Zhang Z, Zhou Y, Chen Q, Yang LZ, Li H. The Split-Half Reliability and Construct Validity of the Virtual Reality-Based Path Integration Task in the Healthy Population. Brain Sci 2022; 12:brainsci12121635. [PMID: 36552095 PMCID: PMC9775933 DOI: 10.3390/brainsci12121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE The virtual reality (VR)-based path integration task shows substantial promise in predicting dementia risk. However, the reliability and validity in healthy populations need further exploration. The present study investigates the relationship between task indicators and brain structures in a healthy population using a VR-based navigation task, particularly the entorhinal cortex (EC) and hippocampus. METHODS Sixty healthy adults were randomly recruited to perform a VR-based path integration task, the digit span task (DST), and an MRI scan. The indicators of the VR-based path integration task were calculated, including the absolute distance error (ADE), degree of angle deviation (DAD), degree of path deviation (DPD), and return time (Time). The reliability of the above indicators was then estimated using the split-half method and Cronbach's alpha. Correlation and regression analyses were then performed to examine the associations between these indicators and age, general cognitive ability (DST), and brain structural measures. RESULTS ADE, DAD, and DPD showed reasonable split-half reliability estimates (0.84, 0.81, and 0.72) and nice Cronbach's alpha estimates (0.90, 0.86, and 0.96). All indicators correlated with age and DST. ADE and DAD were sensitive predictors of hippocampal volume, and return time was a predictor of EC thickness. CONCLUSION Our findings demonstrate that the VR-based path integration task exhibits good reliability and validity in the healthy population. The task indicators are age-sensitive, can capture working memory capacity, and are closely related to the integrity of individual EC and hippocampal structures.
Collapse
Affiliation(s)
- Xiao Fu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenglin Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yanfei Zhou
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Qi Chen
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: may
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
21
|
Riemer M, Achtzehn J, Kuehn E, Wolbers T. Cross-dimensional interference between time and distance during spatial navigation is mediated by speed representations in intraparietal sulcus and area hMT+. Neuroimage 2022; 257:119336. [DOI: 10.1016/j.neuroimage.2022.119336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022] Open
|
22
|
Jiang Z, Dong L, Wu L, Liu Y. Quantifying navigation complexity in transportation networks. PNAS NEXUS 2022; 1:pgac126. [PMID: 36741457 PMCID: PMC9896943 DOI: 10.1093/pnasnexus/pgac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Abstract
The complexity of navigation in cities has increased with the expansion of urban areas, creating challenging transportation problems that drive many studies on the navigability of networks. However, due to the lack of individual mobility data, large-scale empirical analysis of the wayfinder's real-world navigation is rare. Here, using 225 million subway trips from three major cities in China, we quantify navigation difficulty from an information perspective. Our results reveal that (1) people conserve a small number of repeatedly used routes and (2) the navigation information in the subnetworks formed by those routes is much smaller than the theoretical value in the global network, suggesting that the decision cost for actual trips is significantly smaller than the theoretical upper limit found in previous studies. By modeling routing behaviors in growing networks, we show that while the global network becomes difficult to navigate, navigability can be improved in subnetworks. We further present a universal linear relationship between the empirical and theoretical search information, which allows the two metrics to predict each other. Our findings demonstrate how large-scale observations can quantify real-world navigation behaviors and aid in evaluating transportation planning.
Collapse
Affiliation(s)
- Zhuojun Jiang
- Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Lei Dong
- Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Lun Wu
- Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Yu Liu
- Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Stavropoulos A, Lakshminarasimhan KJ, Laurens J, Pitkow X, Angelaki D. Influence of sensory modality and control dynamics on human path integration. eLife 2022; 11:63405. [PMID: 35179488 PMCID: PMC8856658 DOI: 10.7554/elife.63405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/11/2021] [Indexed: 12/02/2022] Open
Abstract
Path integration is a sensorimotor computation that can be used to infer latent dynamical states by integrating self-motion cues. We studied the influence of sensory observation (visual/vestibular) and latent control dynamics (velocity/acceleration) on human path integration using a novel motion-cueing algorithm. Sensory modality and control dynamics were both varied randomly across trials, as participants controlled a joystick to steer to a memorized target location in virtual reality. Visual and vestibular steering cues allowed comparable accuracies only when participants controlled their acceleration, suggesting that vestibular signals, on their own, fail to support accurate path integration in the absence of sustained acceleration. Nevertheless, performance in all conditions reflected a failure to fully adapt to changes in the underlying control dynamics, a result that was well explained by a bias in the dynamics estimation. This work demonstrates how an incorrect internal model of control dynamics affects navigation in volatile environments in spite of continuous sensory feedback.
Collapse
Affiliation(s)
- Akis Stavropoulos
- Center for Neural Science, New York University, New York, United States
| | | | - Jean Laurens
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Xaq Pitkow
- Department of Electrical and Computer Engineering, Rice University, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, United States
| | - Dora Angelaki
- Center for Neural Science, New York University, New York, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Tandon School of Engineering, New York University, New York, United States
| |
Collapse
|
24
|
Houser TM. Spatialization of Time in the Entorhinal-Hippocampal System. Front Behav Neurosci 2022; 15:807197. [PMID: 35069143 PMCID: PMC8770534 DOI: 10.3389/fnbeh.2021.807197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
The functional role of the entorhinal-hippocampal system has been a long withstanding mystery. One key theory that has become most popular is that the entorhinal-hippocampal system represents space to facilitate navigation in one's surroundings. In this Perspective article, I introduce a novel idea that undermines the inherent uniqueness of spatial information in favor of time driving entorhinal-hippocampal activity. Specifically, by spatializing events that occur in succession (i.e., across time), the entorhinal-hippocampal system is critical for all types of cognitive representations. I back up this argument with empirical evidence that hints at a role for the entorhinal-hippocampal system in non-spatial representation, and computational models of the logarithmic compression of time in the brain.
Collapse
Affiliation(s)
- Troy M. Houser
- Department of Psychology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
25
|
Abstract
Perhaps the most recognizable “sensory map” in neuroscience is the somatosensory homunculus. Although the homunculus suggests a direct link between cortical territory and body part, the relationship is actually ambiguous without a decoder that knows this mapping. How the somatosensory system derives a spatial code from an activation in the homunculus is a longstanding mystery we aimed to solve. We propose that touch location is disambiguated using multilateration, a computation used by surveying and global positioning systems to localize objects. We develop a Bayesian formulation of multilateration, which we implement in a neural network to identify its computational signature. We then detect this signature in psychophysical experiments. Our results suggest that multilateration provides the homunculus-to-body mapping necessary for localizing touch. Perhaps the most recognizable sensory map in all of neuroscience is the somatosensory homunculus. Although it seems straightforward, this simple representation belies the complex link between an activation in a somatotopic map and the associated touch location on the body. Any isolated activation is spatially ambiguous without a neural decoder that can read its position within the entire map, but how this is computed by neural networks is unknown. We propose that the somatosensory system implements multilateration, a common computation used by surveying and global positioning systems to localize objects. Specifically, to decode touch location on the body, multilateration estimates the relative distance between the afferent input and the boundaries of a body part (e.g., the joints of a limb). We show that a simple feedforward neural network, which captures several fundamental receptive field properties of cortical somatosensory neurons, can implement a Bayes-optimal multilateral computation. Simulations demonstrated that this decoder produced a pattern of localization variability between two boundaries that was unique to multilateration. Finally, we identify this computational signature of multilateration in actual psychophysical experiments, suggesting that it is a candidate computational mechanism underlying tactile localization.
Collapse
|
26
|
Segen V, Ying J, Morgan E, Brandon M, Wolbers T. Path integration in normal aging and Alzheimer's disease. Trends Cogn Sci 2021; 26:142-158. [PMID: 34872838 DOI: 10.1016/j.tics.2021.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
In this review we discuss converging evidence from human and rodent research demonstrating how path integration (PI) is impaired in healthy aging and Alzheimer's disease (AD), and point to the neural mechanisms that underlie these deficits. Importantly, we highlight that (i) the grid cell network in the entorhinal cortex is crucial for PI in both humans and rodents, (ii) PI deficits are present in healthy aging and are significantly more pronounced in patients with early-stage AD, (iii) compromised entorhinal grid cell computations in healthy older adults and in young adults at risk of AD are linked to PI deficits, and (iv) PI and grid cell deficits may serve as sensitive markers for pathological decline in early AD.
Collapse
Affiliation(s)
- Vladislava Segen
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Johnson Ying
- Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Erik Morgan
- Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Mark Brandon
- Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| |
Collapse
|
27
|
Do TTN, Jung TP, Lin CT. Retrosplenial Segregation Reflects the Navigation Load During Ambulatory Movement. IEEE Trans Neural Syst Rehabil Eng 2021; 29:488-496. [PMID: 33544675 DOI: 10.1109/tnsre.2021.3057384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spatial navigation is a complex cognitive process based on vestibular, proprioceptive, and visualcues that are integrated and processed by an extensive network of brain areas. The retrosplenial complex (RSC) is an integral part of coordination and translation between spatial reference frames. Previous studies have demonstrated that the RSC is active during a spatial navigation tasks. The specifics of RSC activity under various navigation loads, however, are still not characterized. This study investigated the local information processed by the RSC under various navigation load conditions manipulated by the number of turns in the physical navigation setup. The results showed that the local information processed via the RSC, which was reflected by the segregation network, was higher when the number of turns increased, suggesting that RSC activity is associated with the navigation task load. The present findings shed light on how the brain processes spatial information in a physical navigation task.
Collapse
|
28
|
Schöberl F, Pradhan C, Grosch M, Brendel M, Jostes F, Obermaier K, Sowa C, Jahn K, Bartenstein P, Brandt T, Dieterich M, Zwergal A. Bilateral vestibulopathy causes selective deficits in recombining novel routes in real space. Sci Rep 2021; 11:2695. [PMID: 33514827 PMCID: PMC7846808 DOI: 10.1038/s41598-021-82427-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
The differential impact of complete and incomplete bilateral vestibulopathy (BVP) on spatial orientation, visual exploration, and navigation-induced brain network activations is still under debate. In this study, 14 BVP patients (6 complete, 8 incomplete) and 14 age-matched healthy controls performed a navigation task requiring them to retrace familiar routes and recombine novel routes to find five items in real space. [18F]-fluorodeoxyglucose-PET was used to determine navigation-induced brain activations. Participants wore a gaze-controlled, head-fixed camera that recorded their visual exploration behaviour. Patients performed worse, when recombining novel routes (p < 0.001), whereas retracing of familiar routes was normal (p = 0.82). These deficits correlated with the severity of BVP. Patients exhibited higher gait fluctuations, spent less time at crossroads, and used a possible shortcut less often (p < 0.05). The right hippocampus and entorhinal cortex were less active and the bilateral parahippocampal place area more active during navigation in patients. Complete BVP showed reduced activations in the pontine brainstem, anterior thalamus, posterior insular, and retrosplenial cortex compared to incomplete BVP. The navigation-induced brain activation pattern in BVP is compatible with deficits in creating a mental representation of a novel environment. Residual vestibular function allows recruitment of brain areas involved in head direction signalling to support navigation.
Collapse
Affiliation(s)
- Florian Schöberl
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Cauchy Pradhan
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Jostes
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katrin Obermaier
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Chantal Sowa
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.,Neurological Hospital, Schön Klinik Bad Aibling, Bad Aibling, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Neurosciences, University Hospital, LMU Munich, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.,Munich Cluster of Systems Neurology, SyNergy, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany. .,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
29
|
Wayfinding in People with Alzheimer’s Disease: Perspective Taking and Architectural Cognition—A Vision Paper on Future Dementia Care Research Opportunities. SUSTAINABILITY 2021. [DOI: 10.3390/su13031084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on a targeted literature review, this vision paper emphasizes the importance of dementia-sensitive built space. The article specifically focuses on supporting spatial orientation and wayfinding for people living with dementia. First, we discuss types of wayfinding challenges, underlying processes, and consequences of spatial disorientation in the context of dementia of the Alzheimer’s type. Second, we focus on current efforts aimed at planning and evaluating dementia-sensitive built space, i.e., environmental design principles, interventions, evaluation tools, strategies, and planning processes. Third, we use our findings as a starting point for developing an interdisciplinary research vision aimed at encouraging further debates and research about: (1) the perspective of a person with dementia, specifically in the context of wayfinding and spatial orientation, and (2) how this perspective supplements planning and design processes of dementia-sensitive built space. We conclude that more closely considering the perspective of people with dementia supports the development of demographically sustainable future cities and care institutions.
Collapse
|
30
|
Dannenberg H, Lazaro H, Nambiar P, Hoyland A, Hasselmo ME. Effects of visual inputs on neural dynamics for coding of location and running speed in medial entorhinal cortex. eLife 2020; 9:62500. [PMID: 33300873 PMCID: PMC7773338 DOI: 10.7554/elife.62500] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Neuronal representations of spatial location and movement speed in the medial entorhinal cortex during the ‘active’ theta state of the brain are important for memory-guided navigation and rely on visual inputs. However, little is known about how visual inputs change neural dynamics as a function of running speed and time. By manipulating visual inputs in mice, we demonstrate that changes in spatial stability of grid cell firing correlate with changes in a proposed speed signal by local field potential theta frequency. In contrast, visual inputs do not alter the running speed-dependent gain in neuronal firing rates. Moreover, we provide evidence that sensory inputs other than visual inputs can support grid cell firing, though less accurately, in complete darkness. Finally, changes in spatial accuracy of grid cell firing on a 10 s time scale suggest that grid cell firing is a function of velocity signals integrated over past time.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, United States
| | - Hallie Lazaro
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, United States
| | - Pranav Nambiar
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, United States
| | - Alec Hoyland
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, United States
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, United States
| |
Collapse
|