1
|
Wang LQ, Wang XY, Ma YH, Zhou HJ. Conventional type 1 dendritic cells in the lymph nodes aggravate neuroinflammation after spinal cord injury by promoting CD8 + T cell expansion. Mol Med 2025; 31:37. [PMID: 39901071 PMCID: PMC11789313 DOI: 10.1186/s10020-024-01059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Adaptive immune response is at the core of the mechanism of secondary spinal cord injury (SCI). This study aims to explore the molecular mechanism by which classical dendritic cells (cDC1s) influence CD8+ T cell expansion in SCI. METHODS Peripheral blood samples from patients with SCI and spinal cord tissues from SCI mice were collected, and the population of cDC1 subset was analyzed by flow cytometry. In vivo, the fms-like tyrosine kinase 3 (Flt3) inhibitor quizartinib was administered to deplete cDC1s, while intraperitoneal injection of recombinant Flt3L and immunosuppressive drug FTY-720 was used to expand cDC1s and prevent T cell egress from lymph nodes (LNs), respectively. In vitro, the conditioned medium (CM) of isolated LN fibroblastic stromal cells (FSCs) and pre-DCs were co-cultured. Subsequently, FSC CM-induced DCs were stimulated and co-cultured with CD8+ T cells for proliferation assay. RESULTS The cDC1 subset was increased in the peripheral blood of SCI patients and in the injured spinal cord of SCI mice. Depletion of cDC1s decreased the proportion of infiltrating CD8+ T cells in the injured spinal cord of SCI mice and reduced the inflammatory response. The Basso Mouse Scale score of SCI mice was increased and the proportion of CD8+ T cells in blood and spinal cord tissue was decreased after FTY-720 injection. Both migratory cDC1s (CD103+) and resident cDC1s (CD8α+) were present in the LNs surrounding the injured spinal cord of SCI mice. Among them, CD103+ cells were derived from the migration of cDC1s in spinal cord tissues, and CD8α+ cDC1s were directionally differentiated from pre-DCs after co-culture with LN-FSCs. Interferon-γ promoted the secretion of Flt3L by LN-FSCs through the activation of JAK/STAT signaling pathway and enhanced the differentiation of pre-DCs into CD8α+ cells. CONCLUSION Migratory cDC1s and resident cDC1s promote the expansion of CD8+ T cells in LNs around the injured spinal cord and mediate the adaptive immune response to aggravate neuroinflammation in SCI.
Collapse
Affiliation(s)
- Li-Qing Wang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiao-Yi Wang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou, 310003, People's Republic of China
| | - Yue-Hui Ma
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou, 310003, People's Republic of China
| | - Heng-Jun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
2
|
Zubkova E, Kalinin A, Beloglazova I, Kurilina E, Menshikov M, Parfyonova Y, Tsokolaeva Z. Artificial Tertiary Lymphoid Structures: Exploring Mesenchymal Stromal Cells as a Platform for Immune Niche Formation. Int J Mol Sci 2024; 25:13286. [PMID: 39769051 PMCID: PMC11676966 DOI: 10.3390/ijms252413286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Constructing artificial tertiary lymphoid structures (TLSs) opens new avenues for advancing cancer immunotherapy and personalized medicine by creating controllable immune niches. Mesenchymal stromal cells (MSCs) offer an ideal stromal source for such constructs, given their potent immunomodulatory abilities and accessibility. In this study, we explored the potential of adipose-derived MSCs to adopt TLS-supportive phenotypes and facilitate lymphocyte organization. Single-cell RNA sequencing revealed a distinct subpopulation of MSCs expressing key fibroblastic reticular cell (FRC)-associated markers, including IL-7, PDPN, and IL-15, though lacking follicular dendritic cell (FDC) markers. TNF-α stimulation, but not LTα2β1, further enhanced FRC marker expression (IL-7, PDPN, and ICAM1). Notably, in 3D spheroid co-culture with lymphocytes, MSCs upregulated additional FRC markers, specifically CCL21. Upon implantation into adipose tissue, MSC-lymphocyte organoids maintained structural integrity and showed extensive T-cell infiltration and partial vascularization after 15 days in vivo, although organized B-cell follicles and FDC markers were still lacking. These findings highlight MSCs' intrinsic ability to adopt an FRC-like phenotype that supports T-cell and HEV organization, suggesting that further optimization, including genetic modification, may be needed to achieve an FDC phenotype and replicate the full architectural and functional complexity of TLSs.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
| | - Alexander Kalinin
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Beloglazova
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
| | - Ella Kurilina
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
| | - Mikhail Menshikov
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
| | - Yelena Parfyonova
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Zoya Tsokolaeva
- National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia
- Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| |
Collapse
|
3
|
Fiore G, Weckwarth W, Paetzold K, Albertí Servera L, Gies M, Rosenhauer J, Antoniolli M, Nassiri S, Schmeing S, Dettling S, Soni B, Majety M, Krug AB, Hoves S, Wolf MJ. Human CD34 +-derived plasmacytoid dendritic cells as surrogates for primary pDCs and potential cancer immunotherapy. Front Immunol 2024; 15:1433119. [PMID: 39575246 PMCID: PMC11578708 DOI: 10.3389/fimmu.2024.1433119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) are capable of triggering broad immune responses, yet, their scarcity in blood coupled to their reduced functionality in cancer, makes their therapeutic use for in situ activation or vaccination challenging. Methods We designed an in vitro differentiation protocol tailored for human pDCs from cord blood (CB) hematopoietic stem cells (HSCs) with StemRegenin 1 (SR-1) and GM-CSF supplementation. Next, we evaluated the identity and function of CB-pDCs compared to human primary pDCs. Furthermore, we tested the potential of CB-pDCs to support anti-tumor immune responses in co-culture with tumor explants from CRC patients. Results Here, we report an in vitro differentiation protocol enabling the generation of 200 pDCs per HSC and highlight the role of GM-CSF and SR-1 in CB-pDC differentiation and function. CB-pDCs exhibited a robust resemblance to primary pDCs phenotypically and functionally. Transcriptomic analysis confirmed strong homology at both, baseline and upon TLR9 or TLR7 stimulation. Further, we could confirm the potential of CB-pDCs to promote inflammation in the tumor microenvironment by eliciting cytokines associated with NK and T cell recruitment and function upon TLR7 stimulation ex vivo in patient tumor explants. Discussion This study highlights CB-pDCs as surrogates for primary pDCs to investigate their biology and for their potential use as cell therapy in cancer.
Collapse
Affiliation(s)
- Giovanna Fiore
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang Weckwarth
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Kerstin Paetzold
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Llucia Albertí Servera
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Manuela Gies
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Jakob Rosenhauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Martina Antoniolli
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Sina Nassiri
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Schmeing
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Steffen Dettling
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Bhavesh Soni
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Zurich, Switzerland
| | - Meher Majety
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Anne B. Krug
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sabine Hoves
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Monika Julia Wolf
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
Zhou H, Wu L. Reprogramming tumor cells to fight cancer. Science 2024; 386:274-275. [PMID: 39418388 DOI: 10.1126/science.ads6228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cancer cells reprogrammed into dendritic cells in vivo promote antitumor immunity.
Collapse
Affiliation(s)
- Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Colaço M, Cruz MT, de Almeida LP, Borges O. Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors. Pharmaceutics 2024; 16:1308. [PMID: 39458637 PMCID: PMC11510408 DOI: 10.3390/pharmaceutics16101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. METHODS This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. RESULTS While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. CONCLUSIONS With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health.
Collapse
Affiliation(s)
- Mariana Colaço
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria T. Cruz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
7
|
Haake M, Haack B, Schäfer T, Harter PN, Mattavelli G, Eiring P, Vashist N, Wedekink F, Genssler S, Fischer B, Dahlhoff J, Mokhtari F, Kuzkina A, Welters MJP, Benz TM, Sorger L, Thiemann V, Almanzar G, Selle M, Thein K, Späth J, Gonzalez MC, Reitinger C, Ipsen-Escobedo A, Wistuba-Hamprecht K, Eichler K, Filipski K, Zeiner PS, Beschorner R, Goedemans R, Gogolla FH, Hackl H, Rooswinkel RW, Thiem A, Roche PR, Joshi H, Pühringer D, Wöckel A, Diessner JE, Rüdiger M, Leo E, Cheng PF, Levesque MP, Goebeler M, Sauer M, Nimmerjahn F, Schuberth-Wagner C, von Felten S, Mittelbronn M, Mehling M, Beilhack A, van der Burg SH, Riedel A, Weide B, Dummer R, Wischhusen J. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat Commun 2023; 14:4253. [PMID: 37474523 PMCID: PMC10359308 DOI: 10.1038/s41467-023-39817-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.
Collapse
Affiliation(s)
- Markus Haake
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Beatrice Haack
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Tina Schäfer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Center for Neuropathology and Prion Research, Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Neha Vashist
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Florian Wedekink
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Birgitt Fischer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Julia Dahlhoff
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Fatemeh Mokhtari
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Anastasia Kuzkina
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Tamara M Benz
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Lena Sorger
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Vincent Thiemann
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Giovanni Almanzar
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Martina Selle
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Klara Thein
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Jacob Späth
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Carmen Reitinger
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Section for Clinical Bioinformatics, Department of Internal Medicine I, University Medical Center Tübingen, Tübingen, Germany
| | - Kristin Eichler
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Katharina Filipski
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Pia S Zeiner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rudi Beschorner
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Renske Goedemans
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Falk Hagen Gogolla
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | | | - Alexander Thiem
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | - Paula Romer Roche
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Hemant Joshi
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Dirk Pühringer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Joachim E Diessner
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Eugen Leo
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Phil F Cheng
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | | | - Stefanie von Felten
- oikostat GmbH, Statistical Analyses and Consulting, Lucerne, Switzerland
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001, Zürich, Switzerland
| | - Michel Mittelbronn
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Matthias Mehling
- Department of Biomedicine and Neurology Department, University Hospital Basel, 4031, Basel, Switzerland
| | - Andreas Beilhack
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | | | - Jörg Wischhusen
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Ahn M, Chen VCW, Rozario P, Ng WL, Kong PS, Sia WR, Kang AEZ, Su Q, Nguyen LH, Zhu F, Chan WOY, Tan CW, Cheong WS, Hey YY, Foo R, Guo F, Lim YT, Li X, Chia WN, Sobota RM, Fu NY, Irving AT, Wang LF. Bat ASC2 suppresses inflammasomes and ameliorates inflammatory diseases. Cell 2023; 186:2144-2159.e22. [PMID: 37172565 DOI: 10.1016/j.cell.2023.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.
Collapse
Affiliation(s)
- Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Program, Singapore 168753, Singapore; SingHealth PGY1 Residency Program, Singapore 169608, Singapore; Department of Internal Medicine, Singapore General Hospital, Singapore 169608, Singapore.
| | - Vivian Chih-Wei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pritisha Rozario
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pui San Kong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Adrian Eng Zheng Kang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Qi Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Lan Huong Nguyen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wharton O Y Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wan Shoo Cheong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ying Ying Hey
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Fusheng Guo
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Xin Li
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore.
| |
Collapse
|
9
|
Cui TX, Brady AE, Zhang YJ, Fulton CT, Goldsmith AM, Popova AP. Early-life hyperoxia-induced Flt3L drives neonatal lung dendritic cell expansion and proinflammatory responses. Front Immunol 2023; 14:1116675. [PMID: 36845082 PMCID: PMC9950736 DOI: 10.3389/fimmu.2023.1116675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Premature infants with chronic lung disease, bronchopulmonary dysplasia (BPD), develop recurrent cough and wheezing following respiratory viral infections. The mechanisms driving the chronic respiratory symptoms are ill-defined. We have shown that hyperoxic exposure of neonatal mice (a model of BPD) increases the activated lung CD103+ dendritic cells (DCs) and these DCs are required for exaggerated proinflammatory responses to rhinovirus (RV) infection. Since CD103+ DC are essential for specific antiviral responses and their development depends on the growth factor Flt3L, we hypothesized that early-life hyperoxia stimulates Flt3L expression leading to expansion and activation of lung CD103+ DCs and this mediates inflammation. We found that hyperoxia numerically increased and induced proinflammatory transcriptional signatures in neonatal lung CD103+ DCs, as well as CD11bhi DCs. Hyperoxia also increased Flt3L expression. Anti-Flt3L antibody blocked CD103+ DC development in normoxic and hyperoxic conditions, and while it did not affect the baseline number of CD11bhi DCs, it neutralized the effect of hyperoxia on these cells. Anti-Flt3L also inhibited hyperoxia-induced proinflammatory responses to RV. In tracheal aspirates from preterm infants mechanically-ventilated for respiratory distress in the first week of life levels of FLT3L, IL-12p40, IL-12p70 and IFN-γ were higher in infants who went on to develop BPD and FLT3L levels positively correlated with proinflammatory cytokines levels. This work highlights the priming effect of early-life hyperoxia on lung DC development and function and the contribution of Flt3L in driving these effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonia P. Popova
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Bourdely P, Savoldelli R, Vetillard M, Anselmi G, Helft J, Guermonprez P. In Vitro Generation of Human Dendritic Cell Subsets from CD34+ Cord Blood Progenitors. Methods Mol Biol 2023; 2618:121-132. [PMID: 36905513 DOI: 10.1007/978-1-0716-2938-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells controlling the activation of T cells and thus regulating adaptive immune response against pathogens or tumors. Modeling human DC differentiation and function is crucial for our understanding of immune response and the development of new therapies. Considering DC rarity in human blood, in vitro systems allowing their faithful generation are needed. This chapter will describe a DC differentiation method based on the co-culture of CD34+ cord blood progenitors together with mesenchymal stromal cells (eMSCs) engineered to deliver growth factors and chemokines.
Collapse
Affiliation(s)
- Pierre Bourdely
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris Cité, Paris, France.
| | - Roberto Savoldelli
- King's College London, Centre for Inflammation Biology and Cancer Immunology, London, UK
- Université de Paris, INSERM U1149, CNRS erl8252, Centre for Inflammation Research, Université de Paris Cité, Paris, France
| | - Mathias Vetillard
- Université de Paris, INSERM U1149, CNRS erl8252, Centre for Inflammation Research, Université de Paris Cité, Paris, France
| | - Giorgio Anselmi
- King's College London, Centre for Inflammation Biology and Cancer Immunology, London, UK
- Oxford University, Radcliffe Department of Medicine, Oxford, UK
| | - Julie Helft
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris Cité, Paris, France
| | - Pierre Guermonprez
- Université de Paris, INSERM U1149, CNRS erl8252, Centre for Inflammation Research, Université de Paris Cité, Paris, France.
| |
Collapse
|
11
|
Alsinet C, Primo MN, Lorenzi V, Bello E, Kelava I, Jones CP, Vilarrasa-Blasi R, Sancho-Serra C, Knights AJ, Park JE, Wyspianska BS, Trynka G, Tough DF, Bassett A, Gaffney DJ, Alvarez-Errico D, Vento-Tormo R. Robust temporal map of human in vitro myelopoiesis using single-cell genomics. Nat Commun 2022; 13:2885. [PMID: 35610203 PMCID: PMC9130280 DOI: 10.1038/s41467-022-30557-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
Myeloid cells are central to homeostasis and immunity. Characterising in vitro myelopoiesis protocols is imperative for their use in research, immunotherapies, and understanding human myelopoiesis. Here, we generate a >470K cells molecular map of human induced pluripotent stem cells (iPSC) differentiation into macrophages. Integration with in vivo single-cell atlases shows in vitro differentiation recapitulates features of yolk sac hematopoiesis, before definitive hematopoietic stem cells (HSC) emerge. The diversity of myeloid cells generated, including mast cells and monocytes, suggests that HSC-independent hematopoiesis can produce multiple myeloid lineages. We uncover poorly described myeloid progenitors and conservation between in vivo and in vitro regulatory programs. Additionally, we develop a protocol to produce iPSC-derived dendritic cells (DC) resembling cDC2. Using CRISPR/Cas9 knock-outs, we validate the effects of key transcription factors in macrophage and DC ontogeny. This roadmap of myeloid differentiation is an important resource for investigating human fetal hematopoiesis and new therapeutic opportunities.
Collapse
Affiliation(s)
- Clara Alsinet
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Maria Nascimento Primo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Erica Bello
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Iva Kelava
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carla P Jones
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Carmen Sancho-Serra
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andrew J Knights
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Beata S Wyspianska
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David F Tough
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Andrew Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Daniel J Gaffney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Damiana Alvarez-Errico
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Barcelona, Catalonia, Spain.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
12
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Zhang S, Chopin M, Nutt SL. Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol 2021; 42:1113-1127. [PMID: 34728143 DOI: 10.1016/j.it.2021.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are key immune sentinels that orchestrate protective immune responses against pathogens or cancers. DCs have evolved into multiple phenotypically, anatomically, and functionally distinct cell types. One of these DC types, Type 1 conventional DCs (cDC1s), are uniquely equipped to promote cytotoxic CD8+ T cell differentiation and, therefore, represent a promising target for harnessing antitumor immunity. Indeed, recent studies have highlighted the importance of cDC1s in tumor immunotherapy using immune checkpoint inhibitors. Here, we review the progress in defining the key developmental and functional attributes of cDC1s and the approaches to optimizing the potency of cDC1s for anticancer immunity.
Collapse
Affiliation(s)
- Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
14
|
Iwabuchi R, Ide K, Terahara K, Wagatsuma R, Iwaki R, Matsunaga H, Tsunetsugu-Yokota Y, Takeyama H, Takahashi Y. Development of an Inflammatory CD14 + Dendritic Cell Subset in Humanized Mice. Front Immunol 2021; 12:643040. [PMID: 33790912 PMCID: PMC8005643 DOI: 10.3389/fimmu.2021.643040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Humanized mouse models are attractive experimental models for analyzing the development and functions of human dendritic cells (DCs) in vivo. Although various types of DC subsets, including DC type 3 (DC3s), have been identified in humans, it remains unclear whether humanized mice can reproduce heterogeneous DC subsets. CD14, classically known as a monocyte/macrophage marker, is reported as an indicator of DC3s. We previously observed that some CD14+ myeloid cells expressed CD1c, a pan marker for bona fide conventional DC2 (cDC2s), in humanized mouse models in which human FLT3L and GM-CSF genes were transiently expressed using in vivo transfection (IVT). Here, we aimed to elucidate the identity of CD14+CD1c+ DC-like cells in humanized mouse models. We found that CD14+CD1c+ cells were phenotypically different from cDC2s; CD14+CD1c+ cells expressed CD163 but not CD5, whereas cDC2s expressed CD5 but not CD163. Furthermore, CD14+CD1c+ cells primed and polarized naïve CD4+ T cells toward IFN-γ+ Th1 cells more profoundly than cDC2s. Transcriptional analysis revealed that CD14+CD1c+ cells expressed several DC3-specific transcripts, such as CD163, S100A8, and S100A9, and were clearly segregated from cDC2s and monocytes. When lipopolysaccharide was administered to the humanized mice, the frequency of CD14+CD1c+ cells producing IL-6 and TNF-α was elevated, indicating a pro-inflammatory signature. Thus, humanized mice are able to sustain development of functional CD14+CD1c+ DCs, which are equivalent to DC3 subset observed in humans, and they could be useful for analyzing the development and function of DC3s in vivo.
Collapse
Affiliation(s)
- Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Rieko Iwaki
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
15
|
Pievani A, Savoldelli R, Poelchen J, Mattioli E, Anselmi G, Girardot A, Utikal J, Bourdely P, Serafini M, Guermonprez P. Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Front Immunol 2021; 12:631279. [PMID: 33790904 PMCID: PMC8006008 DOI: 10.3389/fimmu.2021.631279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Tissue engineering opens multiple opportunities in regenerative medicine, drug testing, and modeling of the hematopoiesis in health and disease. Recapitulating the organization of physiological microenvironments supporting leukocyte development is essential to model faithfully the development of immune cells. Hematopoietic organs are shaped by spatially organized niches defined by multiple cellular contributions. A shared feature of immune niches is the presence of mesenchymal stromal cells endowed with unique roles in organizing niche development, maintenance, and function. Here, we review challenges and opportunities in harnessing stromal cells for the engineering of artificial immune niches and hematopoietic organoids recapitulating leukocyte ontogeny both in vitro and in vivo.
Collapse
Affiliation(s)
- Alice Pievani
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Roberto Savoldelli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Elisa Mattioli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, Radcliffe Department of Medicine, Medical Research Council, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Girardot
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Pierre Bourdely
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Marta Serafini
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Pierre Guermonprez
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| |
Collapse
|
16
|
Minarrieta L, Velasquez LN, Sparwasser T, Berod L. Dendritic cell metabolism: moving beyond in vitro-culture-generated paradigms. Curr Opin Biotechnol 2021; 68:202-212. [PMID: 33517147 DOI: 10.1016/j.copbio.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are key orchestrators of immunity and tolerance. It has become evident that DC function can be influenced by cellular metabolic programs. However, conclusions from early metabolic studies using in vitro GM-CSF DC cultures fail to correlate with bona fide DC populations. Here, we discuss the existing paradigms in the DC metabolism field, focusing on the limitations of the models utilized. Furthermore, we introduce alternative models to generate DCs in vitro that better emulate DCs found in vivo. Finally, we highlight new techniques to evaluate DC metabolism at the single-cell level. The combination of these two strategies could help advance the DC metabolism field towards a more physiological understanding, which is crucial for the development of effective DC-based therapies.
Collapse
Affiliation(s)
- Lucía Minarrieta
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Lis Noelia Velasquez
- Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Institute of Molecular Medicine, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
17
|
Lühr JJ, Alex N, Amon L, Kräter M, Kubánková M, Sezgin E, Lehmann CHK, Heger L, Heidkamp GF, Smith AS, Zaburdaev V, Böckmann RA, Levental I, Dustin ML, Eggeling C, Guck J, Dudziak D. Maturation of Monocyte-Derived DCs Leads to Increased Cellular Stiffness, Higher Membrane Fluidity, and Changed Lipid Composition. Front Immunol 2020; 11:590121. [PMID: 33329576 PMCID: PMC7728921 DOI: 10.3389/fimmu.2020.590121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells of the immune system. Upon sensing pathogenic material in their environment, DCs start to mature, which includes cellular processes, such as antigen uptake, processing and presentation, as well as upregulation of costimulatory molecules and cytokine secretion. During maturation, DCs detach from peripheral tissues, migrate to the nearest lymph node, and find their way into the correct position in the net of the lymph node microenvironment to meet and interact with the respective T cells. We hypothesize that the maturation of DCs is well prepared and optimized leading to processes that alter various cellular characteristics from mechanics and metabolism to membrane properties. Here, we investigated the mechanical properties of monocyte-derived dendritic cells (moDCs) using real-time deformability cytometry to measure cytoskeletal changes and found that mature moDCs were stiffer compared to immature moDCs. These cellular changes likely play an important role in the processes of cell migration and T cell activation. As lipids constitute the building blocks of the plasma membrane, which, during maturation, need to adapt to the environment for migration and DC-T cell interaction, we performed an unbiased high-throughput lipidomics screening to identify the lipidome of moDCs. These analyses revealed that the overall lipid composition was significantly changed during moDC maturation, even implying an increase of storage lipids and differences of the relative abundance of membrane lipids upon maturation. Further, metadata analyses demonstrated that lipid changes were associated with the serum low-density lipoprotein (LDL) and cholesterol levels in the blood of the donors. Finally, using lipid packing imaging we found that the membrane of mature moDCs revealed a higher fluidity compared to immature moDCs. This comprehensive and quantitative characterization of maturation associated changes in moDCs sets the stage for improving their use in clinical application.
Collapse
Affiliation(s)
- Jennifer J. Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Nano-Optics, Max-Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Nils Alex
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Martin Kräter
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Markéta Kubánková
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Raddcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Christian H. K. Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Gordon F. Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, pRED, Munich, Germany
| | - Ana-Sunčana Smith
- PULS Group, Department of Physics, IZNF, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vasily Zaburdaev
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Mathematics in Life Sciences, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ilya Levental
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Raddcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Institute for Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Jena, Germany
| | - Jochen Guck
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Medical Immunology Campus Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
18
|
Wang D, Liu L, Augustino SMA, Duan T, Hall TJ, MacHugh DE, Dou J, Zhang Y, Wang Y, Yu Y. Identification of novel molecular markers of mastitis caused by Staphylococcus aureus using gene expression profiling in two consecutive generations of Chinese Holstein dairy cattle. J Anim Sci Biotechnol 2020; 11:98. [PMID: 32944235 PMCID: PMC7488426 DOI: 10.1186/s40104-020-00494-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mastitis in dairy cows caused by Staphylococcus aureus is a major problem hindering economic growth in dairy farms worldwide. It is difficult to prevent or eliminate due to its asymptomatic nature and long persistence of infection. Although transcriptomic responses of bovine mammary gland cells to pathogens that cause mastitis have been studied, the common responses of peripheral blood leukocytes to S. aureus infection across two consecutive generations of dairy cattle have not been investigated. Methods In the current study, RNA-Seq was used to profile the transcriptomes of peripheral blood leukocytes sampled from S. aureus-infected mothers and their S. aureus-infected daughters, and also healthy non-infected mothers and their healthy daughters. Differential gene expression was evaluated as follows: 1) S. aureus-infected cows versus healthy non-infected cows (S vs. H, which include all the mothers and daughters), 2) S. aureus-infected mothers versus healthy non-infected mothers (SM vs. HM), and 3) S. aureus-infected daughters versus healthy non-infected daughters (SMD vs. HMD). Results Analysis of all identified expressed genes in the four groups (SM, SMD, HM, and HMD) showed that EPOR, IL9, IFNL3, CCL26, IL26 were exclusively expressed in both the HM and HMD groups, and that they were significantly (P < 0.05) enriched for the cytokine-cytokine receptor interaction pathway. A total of 17, 13 and 10 differentially expressed genes (DEGs) (FDR Padj. < 0.1 and |FC| > 1.2) were detected in the three comparisons, respectively. DEGs with P < 0.05 and |FC| > 2 were used for functional enrichment analyses. For the S vs. H comparison, DEGs detected included CCL20, IL13 and MMP3, which are associated with the IL-17 signaling pathway. In the SM vs. HM and SMD vs. HMD comparisons, five (BLA-DQB, C1R, C2, FCGR1A, and KRT10) and six (BLA-DQB, C3AR1, CFI, FCAR, FCGR3A, and LOC10498484) genes, respectively, were involved in the S. aureus infection pathway. Conclusions Our study provides insights into the transcriptomic responses of bovine peripheral blood leukocytes across two generations of cattle naturally infected with S. aureus. The genes highlighted in this study could serve as expression biomarkers for mastitis and may also contain sequence variation that can be used for genetic improvement of dairy cattle for resilience to mastitis.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8 Ireland
| | - Lei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Serafino M A Augustino
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Tao Duan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Thomas J Hall
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8 Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8 Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8 Ireland
| | - Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
19
|
Bourdely P, Anselmi G, Vaivode K, Ramos RN, Missolo-Koussou Y, Hidalgo S, Tosselo J, Nuñez N, Richer W, Vincent-Salomon A, Saxena A, Wood K, Lladser A, Piaggio E, Helft J, Guermonprez P. Transcriptional and Functional Analysis of CD1c + Human Dendritic Cells Identifies a CD163 + Subset Priming CD8 +CD103 + T Cells. Immunity 2020; 53:335-352.e8. [PMID: 32610077 PMCID: PMC7445430 DOI: 10.1016/j.immuni.2020.06.002] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting cells controlling T cell activation. In humans, the diversity, ontogeny, and functional capabilities of DC subsets are not fully understood. Here, we identified circulating CD88-CD1c+CD163+ DCs (called DC3s) as immediate precursors of inflammatory CD88-CD14+CD1c+CD163+FcεRI+ DCs. DC3s develop via a specific pathway activated by GM-CSF, independent of cDC-restricted (CDP) and monocyte-restricted (cMoP) progenitors. Like classical DCs but unlike monocytes, DC3s drove activation of naive T cells. In vitro, DC3s displayed a distinctive ability to prime CD8+ T cells expressing a tissue homing signature and the epithelial homing alpha-E integrin (CD103) through transforming growth factor β (TGF-β) signaling. In vivo, DC3s infiltrated luminal breast cancer primary tumors, and DC3 infiltration correlated positively with CD8+CD103+CD69+ tissue-resident memory T cells. Together, these findings define DC3s as a lineage of inflammatory DCs endowed with a strong potential to regulate tumor immunity.
Collapse
Affiliation(s)
- Pierre Bourdely
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, UK
| | - Giorgio Anselmi
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, UK
| | - Kristine Vaivode
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, UK
| | - Rodrigo Nalio Ramos
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Yoann Missolo-Koussou
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Sofia Hidalgo
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France; Laboratory of Immuno-oncology, Fundación Ciencia & Vida, Santiago, Chile
| | - Jimena Tosselo
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Nicolas Nuñez
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Wilfrid Richer
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Anne Vincent-Salomon
- PSL Research University, Institut Curie, Department of Biopathology, Paris, France
| | - Alka Saxena
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Kristie Wood
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Alvaro Lladser
- Laboratory of Immuno-oncology, Fundación Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eliane Piaggio
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Translational Immunotherapy Team, INSERM U932, Paris, France
| | - Pierre Guermonprez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, UK; Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM1149 Paris, France.
| |
Collapse
|
20
|
A recently described type 2 conventional dendritic cell (cDC2) subset mediates inflammation. Cell Mol Immunol 2020; 17:1215-1217. [PMID: 32732988 DOI: 10.1038/s41423-020-0511-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
|
21
|
Anselmi G, Helft J, Guermonprez P. Development and function of human dendritic cells in humanized mice models. Mol Immunol 2020; 125:151-161. [PMID: 32688117 DOI: 10.1016/j.molimm.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are sentinel cells of the immune system arising from hematopoietic stem cells. DCs play a key role in the regulation of both adaptive and innate lymphocyte responses. As such, experimental models enabling a thorough analysis of human DCs development and function are needed. Humanized mice models (termed collectively as HIS mice, or human immune system mice models) provide unique opportunities to model human hematopoiesis and tackle the function of human immune cell types in vivo. Here, we review experimental approaches enabling to recapitulate the ontogeny of DC subsets in HIS mice and discuss studies addressing the biology of human DC subsets implementing HIS mice models.
Collapse
Affiliation(s)
- Giorgio Anselmi
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Immunity and Cancer department, INSERM U932, Paris, France
| | - Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom; Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM 1149, Hopital Bichat Claude Bernard, France.
| |
Collapse
|
22
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|