1
|
Frinault BAV, Barnes DKA. Variability in zoobenthic blue carbon storage across a southern polar gradient. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106621. [PMID: 38909538 DOI: 10.1016/j.marenvres.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The seabed of the Antarctic continental shelf hosts most of Antarctica's known species, including taxa considered indicative of vulnerable marine ecosystems (VMEs). Nonetheless, the potential impact of climatic and environmental change, including marine icescape transition, on Antarctic shelf zoobenthos, and their blue carbon-associated function, is still poorly characterised. To help narrow knowledge gaps, four continental shelf study areas, spanning a southern polar gradient, were investigated for zoobenthic (principally epi-faunal) carbon storage (a component of blue carbon), and potential environmental influences, employing a functional group approach. Zoobenthic carbon storage was highest at the two southernmost study areas (with a mean estimate of 41.6 versus 7.2 g C m-2) and, at each study area, increased with morphotaxa richness, overall faunal density, and VME indicator density. Functional group mean carbon content varied with study area, as did each group's percentage contribution to carbon storage and faunal density. Of the environmental variables explored, sea-ice cover and primary production, both likely to be strongly impacted by climate change, featured in variable subsets most highly correlating with assemblage and carbon storage (by functional groups) structures. The study findings can underpin biodiversity- and climate-considerate marine spatial planning and conservation measures in the Southern Ocean.
Collapse
Affiliation(s)
- Bétina A V Frinault
- School of Geography and the Environment, Oxford University Centre for the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK.
| | - David K A Barnes
- British Antarctic Survey, UK Research and Innovation, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
2
|
De-la-Torre GE, Santillán L, Dioses-Salinas DC, Yenney E, Toapanta T, Okoffo ED, Kannan G, Madadi R, Dobaradaran S. Assessing the current state of plastic pollution research in Antarctica: Knowledge gaps and recommendations. CHEMOSPHERE 2024; 355:141870. [PMID: 38570048 DOI: 10.1016/j.chemosphere.2024.141870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Antarctica stands as one of the most isolated and pristine regions on our planet. Regardless, recent studies have evidenced the presence of plastic pollution in Antarctic environments and biota. While these findings are alarming and put into perspective the reach of plastic pollution, it is necessary to assess the current knowledge of plastic pollution in Antarctica. In the present review, an updated literature review of plastic pollution in multiple Antarctic environmental compartments and biota was conducted. Studies were cataloged based on environmental compartments (e.g., sediments, seawater, soil, atmosphere) and biota from different ecological niches. A detailed analysis of the main findings, as well as the flaws and shortcomings across studies, was conducted. In general terms, several studies have shown a lack of adequate sampling and analytical procedures for plastic research (particularly in the case of microplastics) and standard procedures; thus, compromising the reliability of the data reported and comparability across studies. Aiming to guide future studies and highlight research needs, a list of knowledge gaps and recommendations were provided based on the analysis and discussion of the literature and following standardized procedures.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Luis Santillán
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Emma Yenney
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Landau, Germany
| | - Tania Toapanta
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Gunasekaran Kannan
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
3
|
Moreno-Pino M, Manrique-de-la-Cuba MF, López-Rodríguez M, Parada-Pozo G, Rodríguez-Marconi S, Ribeiro CG, Flores-Herrera P, Guajardo M, Trefault N. Unveiling microbial guilds and symbiotic relationships in Antarctic sponge microbiomes. Sci Rep 2024; 14:6371. [PMID: 38493232 PMCID: PMC10944490 DOI: 10.1038/s41598-024-56480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | | | | | - Patricio Flores-Herrera
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Mariela Guajardo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile.
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile.
- FONDAP Center IDEAL- Dynamics of High Latitude Marine Ecosystem, Valdivia, Chile.
| |
Collapse
|
4
|
Deregibus D, Campana GL, Neder C, Barnes DKA, Zacher K, Piscicelli JM, Jerosch K, Quartino ML. Potential macroalgal expansion and blue carbon gains with northern Antarctic Peninsula glacial retreat. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106056. [PMID: 37385084 DOI: 10.1016/j.marenvres.2023.106056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
The West Antarctic Peninsula (WAP) is a hotspot of physical climate change, especially glacial retreat, particularly in its northern South Shetland Islands (SSI) region. Along coastlines, this process is opening up new ice-free areas, for colonization by a high biodiversity of flora and fauna. At Potter Cove, in the SSI (Isla 25 de Mayo/King George Island), Antarctica, colonization by macroalgae was studied in two newly ice-free areas, a low glacier influence area (LGI), and a high glacier influence area (HGI) differing in the presence of sediment run-off and light penetration, which are driven by levels of glacial influence. We installed artificial substrates (tiles) at 5 m depth to analyze benthic algal colonization and succession for four years (2010-2014). Photosynthetic active radiation (PAR, 400-700 nm), temperature, salinity, and turbidity were monitored at both sites in spring and summer. The turbidity and the light attenuation (Kd) were significantly lower at LGI than at HGI. All tiles were colonized by benthic algae, differing in species identity and successional patterns between areas, and with a significantly higher richness at LGI than HGI in the last year of the experiment. We scaled up a quadrat survey on the natural substrate to estimate benthic algal colonization in newly deglaciated areas across Potter Cove. Warming in recent decades has exposed much new habitat, with macroalgae making up an important part of colonist communities 'chasing' such glacier retreat. Our estimation of algal colonization in newly ice-free areas shows an expansion of ∼0.005-0.012 km2 with a carbon standing stock of ∼0.2-0.4 C tons, per year. Life moving into new space in such emerging fjords has the potential to be key for new carbon sinks and export. In sustained climate change scenarios, we expect that the processes of colonization and expansion of benthic assemblages will continue and generate significant transformations in Antarctic coastal ecosystems by increasing primary production, providing new structures, food and refuge to fauna, and capturing and storing more carbon.
Collapse
Affiliation(s)
- Dolores Deregibus
- Departamento de Biología Costera, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gabriela L Campana
- Departamento de Biología Costera, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - Camila Neder
- Ecosistemas Marinos y Polares, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Ecología Marina, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Katharina Zacher
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Juan Manuel Piscicelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Estación Hidrobiológica Puerto Quequén. Museo Argentino de Ciencias Naturales 'B. Rivadavia', Buenos Aires, Argentina
| | - Kerstin Jerosch
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - María Liliana Quartino
- Departamento de Biología Costera, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Museo Argentino de Ciencias Naturales 'B. Rivadavia', Buenos Aires, Argentina
| |
Collapse
|
5
|
Isla E. Animal-Energy Relationships in a Changing Ocean: The Case of Continental Shelf Macrobenthic Communities on the Weddell Sea and the Vicinity of the Antarctic Peninsula. BIOLOGY 2023; 12:biology12050659. [PMID: 37237473 DOI: 10.3390/biology12050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
The continental shelves of the Weddell Sea and the Antarctic Peninsula vicinity host abundant macrobenthic communities, and the persistence of which is facing serious global change threats. The current relationship among pelagic energy production, its distribution over the shelf, and macrobenthic consumption is a "clockwork" mechanism that has evolved over thousands of years. Together with biological processes such as production, consumption, reproduction, and competence, it also involves ice (e.g., sea ice, ice shelves, and icebergs), wind, and water currents, among the most important physical controls. This bio-physical machinery undergoes environmental changes that most likely will compromise the persistence of the valuable biodiversity pool that Antarctic macrobenthic communities host. Scientific evidence shows that ongoing environmental change leads to primary production increases and also suggests that, in contrast, macrobenthic biomass and the organic carbon concentration in the sediment may decrease. Warming and acidification may affect the existence of the current Weddell Sea and Antarctic Peninsula shelf macrobenthic communities earlier than other global change agents. Species with the ability to cope with warmer water may have a greater chance of persisting together with allochthonous colonizers. The Antarctic macrobenthos biodiversity pool is a valuable ecosystem service that is under serious threat, and establishing marine protected areas may not be sufficient to preserve it.
Collapse
Affiliation(s)
- Enrique Isla
- Institut de Ciències del Mar-CSIC, 08003 Barcelona, Spain
| |
Collapse
|
6
|
Marini S, Bonofiglio F, Corgnati LP, Bordone A, Schiaparelli S, Peirano A. Long-term High Resolution Image Dataset of Antarctic Coastal Benthic Fauna. Sci Data 2022; 9:750. [PMID: 36463241 PMCID: PMC9719491 DOI: 10.1038/s41597-022-01865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
Antarctica is a remote place, the continent is covered by ice and its surrounding coastal areas are frozen for the majority of the year. Due to its peculiarity the observation of the underwater organisms is particularly difficult, complicated by logistic factors. We present a long-term dataset consisting of 755 images acquired by using a non-invasive, autonomous imaging device and encompassing both the Antarctic daylight and dark periods, including the corresponding transition phases. All images have the same field of view showing the benthic fauna and part of the water column above, including fishes present in the monitored period. All the images are manually annotated after a visual inspection performed by expert biologists. The extended monitoring period and the annotated images make the dataset a valuable benchmark suitable for studying the dynamics of the long-term Antarctic underwater fauna as well as for developing and testing algorithms for automated image analysis focused on the recognition and classification of the Antarctic organisms and the automated analysis of their long-term dynamics.
Collapse
Affiliation(s)
- Simone Marini
- National Research Council of Italy (CNR), Institute of Marine Sciences, La Spezia, 19132, Italy.
- Stazione Zoologica Anton Dohrn, Naples, 80121, Italy.
| | - Federico Bonofiglio
- National Research Council of Italy (CNR), Institute of Marine Sciences, La Spezia, 19132, Italy
| | - Lorenzo Paolo Corgnati
- National Research Council of Italy (CNR), Institute of Marine Sciences, La Spezia, 19132, Italy
| | - Andrea Bordone
- ENEA-Marine Environment Research Centre, La Spezia, 19132, Italy
| | | | - Andrea Peirano
- ENEA-Marine Environment Research Centre, La Spezia, 19132, Italy
| |
Collapse
|
7
|
Antarctic Seabed Assemblages in an Ice-Shelf-Adjacent Polynya, Western Weddell Sea. BIOLOGY 2022; 11:biology11121705. [PMID: 36552215 PMCID: PMC9774262 DOI: 10.3390/biology11121705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.
Collapse
|
8
|
Abstract
AbstractDespite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.
Collapse
|
9
|
DNA barcoding provides insights into Fish Diversity and Molecular Taxonomy of the Amundsen Sea. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Smith P, Arneth A, Barnes DKA, Ichii K, Marquet PA, Popp A, Pörtner HO, Rogers AD, Scholes RJ, Strassburg B, Wu J, Ngo H. How do we best synergize climate mitigation actions to co-benefit biodiversity? GLOBAL CHANGE BIOLOGY 2022; 28:2555-2577. [PMID: 34951743 DOI: 10.1111/gcb.16056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
A multitude of actions to protect, sustainably manage and restore natural and modified ecosystems can have co-benefits for both climate mitigation and biodiversity conservation. Reducing greenhouse emissions to limit warming to less than 1.5 or 2°C above preindustrial levels, as outlined in the Paris Agreement, can yield strong co-benefits for land, freshwater and marine biodiversity and reduce amplifying climate feedbacks from ecosystem changes. Not all climate mitigation strategies are equally effective at producing biodiversity co-benefits, some in fact are counterproductive. Moreover, social implications are often overlooked within the climate-biodiversity nexus. Protecting biodiverse and carbon-rich natural environments, ecological restoration of potentially biodiverse and carbon-rich habitats, the deliberate creation of novel habitats, taking into consideration a locally adapted and meaningful (i.e. full consequences considered) mix of these measures, can result in the most robust win-win solutions. These can be further enhanced by avoidance of narrow goals, taking long-term views and minimizing further losses of intact ecosystems. In this review paper, we first discuss various climate mitigation actions that evidence demonstrates can negatively impact biodiversity, resulting in unseen and unintended negative consequences. We then examine climate mitigation actions that co-deliver biodiversity and societal benefits. We give examples of these win-win solutions, categorized as 'protect, restore, manage and create', in different regions of the world that could be expanded, upscaled and used for further innovation.
Collapse
Affiliation(s)
- Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Almut Arneth
- Atmospheric Environmental Research, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | | | - Kazuhito Ichii
- Center for Environmental Remote Sensing (CeRES), Chiba University, Chiba, Japan
| | - Pablo A Marquet
- Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alexander Popp
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Hans-Otto Pörtner
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Alex D Rogers
- Somerville College, University of Oxford, Oxford, UK
- REV Ocean, Lysaker, Norway
| | - Robert J Scholes
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Bernardo Strassburg
- Rio Conservation and Sustainability Science Centre, Department of Geography and Environment, Pontifical Catholic University, Rio de Janeiro, Brazil
- International Institute for Sustainability, Rio de Janeiro, Brazil
| | - Jianguo Wu
- The Institute of Environmental Ecology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Hien Ngo
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| |
Collapse
|
11
|
Benthic Biodiversity, Carbon Storage and the Potential for Increasing Negative Feedbacks on Climate Change in Shallow Waters of the Antarctic Peninsula. BIOLOGY 2022; 11:biology11020320. [PMID: 35205187 PMCID: PMC8869673 DOI: 10.3390/biology11020320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
The importance of cold-water blue carbon as biological carbon pumps that sequester carbon into ocean sediments is now being realised. Most polar blue carbon research to date has focussed on deep water, yet the highest productivity is in the shallows. This study measured the functional biodiversity and carbon standing stock accumulated by shallow-water (<25 m) benthic assemblages on both hard and soft substrata on the Antarctic Peninsula (WAP, 67° S). Soft substrata benthic assemblages (391 ± 499 t C km-2) contained 60% less carbon than hard substrata benthic assemblages (648 ± 909). In situ observations of substrata by SCUBA divers provided estimates of 59% hard (4700 km) and 12% soft (960 km) substrata on seasonally ice-free shores of the Antarctic Peninsula, giving an estimate of 253,000 t C at 20 m depth, with a sequestration potential of ~4500 t C year-1. Currently, 54% of the shoreline is permanently ice covered and so climate-mediated ice loss along the Peninsula is predicted to more than double this carbon sink. The steep fjordic shorelines make these assemblages a globally important pathway to sequestration, acting as one of the few negative (mitigating) feedbacks to climate change. The proposed WAP marine protected area could safeguard this ecosystem service, helping to tackle the climate and biodiversity crises.
Collapse
|
12
|
Purser A, Hehemann L, Boehringer L, Tippenhauer S, Wege M, Bornemann H, Pineda-Metz SEA, Flintrop CM, Koch F, Hellmer HH, Burkhardt-Holm P, Janout M, Werner E, Glemser B, Balaguer J, Rogge A, Holtappels M, Wenzhoefer F. A vast icefish breeding colony discovered in the Antarctic. Curr Biol 2022; 32:842-850.e4. [PMID: 35030328 DOI: 10.1016/j.cub.2021.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
A breeding colony of notothenioid icefish (Neopagetopsis ionah, Nybelin 1947) of globally unprecedented extent has been discovered in the southern Weddell Sea, Antarctica. The colony was estimated to cover at least ∼240 km2 of the eastern flank of the Filchner Trough, comprised of fish nests at a density of 0.26 nests per square meter, representing an estimated total of ∼60 million active nests and associated fish biomass of >60,000 tonnes. The majority of nests were each occupied by 1 adult fish guarding 1,735 eggs (±433 SD). Bottom water temperatures measured across the nesting colony were up to 2°C warmer than the surrounding bottom waters, indicating a spatial correlation between the modified Warm Deep Water (mWDW) upflow onto the Weddell Shelf and the active nesting area. Historical and concurrently collected seal movement data indicate that this concentrated fish biomass may be utilized by predators such as Weddell seals (Leptonychotes weddellii, Lesson 1826). Numerous degraded fish carcasses within and near the nesting colony suggest that, in death as well as life, these fish provide input for local food webs and influence local biogeochemical processing. To our knowledge, the area surveyed harbors the most spatially expansive continuous fish breeding colony discovered to date globally at any depth, as well as an exceptionally high Antarctic seafloor biomass. This discovery provides support for the establishment of a regional marine protected area in the Southern Ocean under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) umbrella. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Autun Purser
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany.
| | - Laura Hehemann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Lilian Boehringer
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Universität Bremen (Fachbereich 2, Biologie/Chemie), 28334 Bremen, Germany
| | - Sandra Tippenhauer
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Mia Wege
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Horst Bornemann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Santiago E A Pineda-Metz
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Clara M Flintrop
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Florian Koch
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Hartmut H Hellmer
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Patricia Burkhardt-Holm
- Programme Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Markus Janout
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Ellen Werner
- HafenCity University Hamburg, Henning-Voscherau-Platz 1, 20457 Hamburg, Germany
| | - Barbara Glemser
- Universität Bremen (Fachbereich 2, Biologie/Chemie), 28334 Bremen, Germany; Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jenna Balaguer
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Andreas Rogge
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Institute for Ecosystem Research, Kiel University, Kiel, Germany
| | - Moritz Holtappels
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Frank Wenzhoefer
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany; Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230 Odense M, Denmark
| |
Collapse
|
13
|
Zwerschke N, Sands CJ, Roman-Gonzalez A, Barnes DKA, Guzzi A, Jenkins S, Muñoz-Ramírez C, Scourse J. Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords. GLOBAL CHANGE BIOLOGY 2022; 28:8-20. [PMID: 34658117 DOI: 10.1111/gcb.15898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Global warming is causing significant losses of marine ice around the polar regions. In Antarctica, the retreat of tidewater glaciers is opening up novel, low-energy habitats (fjords) that have the potential to provide a negative feedback loop to climate change. These fjords are being colonized by organisms on and within the sediment and act as a sink for particulate matter. So far, blue carbon potential in Antarctic habitats has mainly been estimated using epifaunal megazoobenthos (although some studies have also considered macrozoobenthos). We investigated two further pathways of carbon storage and potential sequestration by measuring the concentration of carbon of infaunal macrozoobenthos and total organic carbon (TOC) deposited in the sediment. We took samples along a temporal gradient since time of last glacier ice cover (1-1000 years) at three fjords along the West Antarctic Peninsula. We tested the hypothesis that seabed carbon standing stock would be mainly driven by time since last glacier covered. However, results showed this to be much more complex. Infauna were highly variable over this temporal gradient and showed similar total mass of carbon standing stock per m2 as literature estimates of Antarctic epifauna. TOC mass in the sediment, however, was an order of magnitude greater than stocks of infaunal and epifaunal carbon and increased with time since last ice cover. Thus, blue carbon stocks and recent gains around Antarctica are likely much higher than previously estimated as is their negative feedback on climate change.
Collapse
Affiliation(s)
- Nadescha Zwerschke
- British Antarctic Survey, Cambridge, UK
- Joint Nature Conservation Committee, Aberdeen, UK
| | | | | | | | - Alice Guzzi
- Department of Physical Sciences, Earth and Environment (DSFTA), University of Siena, Siena, Italy
- Italian National Antarctic Museum (MNA, Section of Genoa), Genoa, Italy
| | - Stuart Jenkins
- School of Ocean Sciences, Bangor University, Bangor, Gwynedd, UK
| | - Carlos Muñoz-Ramírez
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
14
|
Societal importance of Antarctic negative feedbacks on climate change: blue carbon gains from sea ice, ice shelf and glacier losses. Naturwissenschaften 2021; 108:43. [PMID: 34491425 PMCID: PMC8423686 DOI: 10.1007/s00114-021-01748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Diminishing prospects for environmental preservation under climate change are intensifying efforts to boost capture, storage and sequestration (long-term burial) of carbon. However, as Earth’s biological carbon sinks also shrink, remediation has become a key part of the narrative for terrestrial ecosystems. In contrast, blue carbon on polar continental shelves have stronger pathways to sequestration and have increased with climate-forced marine ice losses—becoming the largest known natural negative feedback on climate change. Here we explore the size and complex dynamics of blue carbon gains with spatiotemporal changes in sea ice (60–100 MtCyear−1), ice shelves (4–40 MtCyear−1 = giant iceberg generation) and glacier retreat (< 1 MtCyear−1). Estimates suggest that, amongst these, reduced duration of seasonal sea ice is most important. Decreasing sea ice extent drives longer (not necessarily larger biomass) smaller cell-sized phytoplankton blooms, increasing growth of many primary consumers and benthic carbon storage—where sequestration chances are maximal. However, sea ice losses also create positive feedbacks in shallow waters through increased iceberg movement and scouring of benthos. Unlike loss of sea ice, which enhances existing sinks, ice shelf losses generate brand new carbon sinks both where giant icebergs were, and in their wake. These also generate small positive feedbacks from scouring, minimised by repeat scouring at biodiversity hotspots. Blue carbon change from glacier retreat has been least well quantified, and although emerging fjords are small areas, they have high storage-sequestration conversion efficiencies, whilst blue carbon in polar waters faces many diverse and complex stressors. The identity of these are known (e.g. fishing, warming, ocean acidification, non-indigenous species and plastic pollution) but not their magnitude of impact. In order to mediate multiple stressors, research should focus on wider verification of blue carbon gains, projecting future change, and the broader environmental and economic benefits to safeguard blue carbon ecosystems through law.
Collapse
|
15
|
Bax N, Sands CJ, Gogarty B, Downey RV, Moreau CVE, Moreno B, Held C, Paulsen ML, McGee J, Haward M, Barnes DKA. Perspective: Increasing blue carbon around Antarctica is an ecosystem service of considerable societal and economic value worth protecting. GLOBAL CHANGE BIOLOGY 2021; 27:5-12. [PMID: 33064891 DOI: 10.1111/gcb.15392] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/24/2020] [Indexed: 05/21/2023]
Abstract
Precautionary conservation and cooperative global governance are needed to protect Antarctic blue carbon: the world's largest increasing natural form of carbon storage with high sequestration potential. As patterns of ice loss around Antarctica become more uniform, there is an underlying increase in carbon capture-to-storage-to-sequestration on the seafloor. The amount of carbon captured per unit area is increasing and the area available to blue carbon is also increasing. Carbon sequestration could further increase under moderate (+1°C) ocean warming, contrary to decreasing global blue carbon stocks elsewhere. For example, in warmer waters, mangroves and seagrasses are in decline and benthic organisms are close to their physiological limits, so a 1°C increase in water temperature could push them above their thermal tolerance (e.g. bleaching of coral reefs). In contrast, on the basis of past change and current research, we expect that Antarctic blue carbon could increase by orders of magnitude. The Antarctic seafloor is biophysically unique and the site of carbon sequestration, the benthos, faces less anthropogenic disturbance than any other ocean continental shelf environment. This isolation imparts both vulnerability to change, and an avenue to conserve one of the world's last biodiversity refuges. In economic terms, the value of Antarctic blue carbon is estimated at between £0.65 and £1.76 billion (~2.27 billion USD) for sequestered carbon in the benthos around the continental shelf. To balance biodiversity protection against society's economic objectives, this paper builds on a proposal incentivising protection by building a 'non-market framework' via the 2015 Paris Agreement to the United Nations Framework Convention on Climate Change. This could be connected and coordinated through the Antarctic Treaty System to promote and motivate member states to value Antarctic blue carbon and maintain scientific integrity and conservation for the positive societal values ingrained in the Antarctic Treaty System.
Collapse
Affiliation(s)
- Narissa Bax
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | | | - Brendan Gogarty
- Faculty of Law, University of Tasmania, Hobart, Tas., Australia
| | | | | | | | | | | | - Jeffrey McGee
- Faculty of Law, University of Tasmania, Hobart, Tas., Australia
| | - Marcus Haward
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | | |
Collapse
|
16
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|