1
|
Xiao YL, Wu Y, Tang W. An adenine base editor variant expands context compatibility. Nat Biotechnol 2024; 42:1442-1453. [PMID: 38168987 DOI: 10.1038/s41587-023-01994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024]
Abstract
Adenine base editors (ABEs) are precise gene-editing agents that convert A:T pairs into G:C through a deoxyinosine intermediate. Existing ABEs function most effectively when the target A is in a TA context. Here we evolve the Escherichia coli transfer RNA-specific adenosine deaminase (TadA) to generate TadA8r, which extends potent deoxyadenosine deamination to RA (R = A or G) and is faster in processing GA than TadA8.20 and TadA8e, the two most active TadA variants reported so far. ABE8r, comprising TadA8r and a Streptococcus pyogenes Cas9 nickase, expands the editing window at the protospacer adjacent motif-distal end and outperforms ABE7.10, ABE8.20 and ABE8e in correcting disease-associated G:C-to-A:T transitions in the human genome, with a controlled off-target profile. We show ABE8r-mediated editing of clinically relevant sites that are poorly accessed by existing editors, including sites in PCSK9, whose disruption reduces low-density lipoprotein cholesterol, and ABCA4-p.Gly1961Glu, the most frequent mutation in Stargardt disease.
Collapse
Affiliation(s)
- Yu-Lan Xiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yuan Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
3
|
Yuan YG, Liu SZ, Farhab M, Lv MY, Zhang T, Cao SX. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock. Funct Integr Genomics 2024; 24:81. [PMID: 38709433 DOI: 10.1007/s10142-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Song-Zi Liu
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Muhammad Farhab
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mei-Yun Lv
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ting Zhang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, China
| | - Shao-Xiao Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center for Precision animal Breeding, Nanjing, 210014, China
| |
Collapse
|
4
|
Wang Y, Chen J, Huang X, Wu B, Dai P, Zhang F, Li J, Wang L. Gene-knockout by iSTOP enables rapid reproductive disease modeling and phenotyping in germ cells of the founder generation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1035-1050. [PMID: 38332217 DOI: 10.1007/s11427-023-2408-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 02/10/2024]
Abstract
Cytosine base editing achieves C•G-to-T•A substitutions and can convert four codons (CAA/CAG/CGA/TGG) into STOP-codons (induction of STOP-codons, iSTOP) to knock out genes with reduced mosaicism. iSTOP enables direct phenotyping in founders' somatic cells, but it remains unknown whether this works in founders' germ cells so as to rapidly reveal novel genes for fertility. Here, we initially establish that iSTOP in mouse zygotes enables functional characterization of known genes in founders' germ cells: Cfap43-iSTOP male founders manifest expected sperm features resembling human "multiple morphological abnormalities of the flagella" syndrome (i.e., MMAF-like features), while oocytes of Zp3-iSTOP female founders have no zona pellucida. We further illustrate iSTOP's utility for dissecting the functions of unknown genes with Ccdc183, observing MMAF-like features and male infertility in Ccdc183-iSTOP founders, phenotypes concordant with those of Ccdc183-KO offspring. We ultimately establish that CCDC183 is essential for sperm morphogenesis through regulating the assembly of outer dynein arms and participating in the intra-flagellar transport. Our study demonstrates iSTOP as an efficient tool for direct reproductive disease modeling and phenotyping in germ cells of the founder generation, and rapidly reveals the essentiality of Ccdc183 in fertility, thus providing a time-saving approach for validating genetic defects (like nonsense mutations) for human infertility.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingwen Chen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bangguo Wu
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingbo Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
5
|
Johnson GA, Gould SI, Sánchez-Rivera FJ. Deconstructing cancer with precision genome editing. Biochem Soc Trans 2024; 52:803-819. [PMID: 38629716 PMCID: PMC11088927 DOI: 10.1042/bst20230984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Recent advances in genome editing technologies are allowing investigators to engineer and study cancer-associated mutations in their endogenous genetic contexts with high precision and efficiency. Of these, base editing and prime editing are quickly becoming gold-standards in the field due to their versatility and scalability. Here, we review the merits and limitations of these precision genome editing technologies, their application to modern cancer research, and speculate how these could be integrated to address future directions in the field.
Collapse
Affiliation(s)
- Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| |
Collapse
|
6
|
Jing Q, Liu W, Jiang H, Liao Y, Yang Q, Xing Y. Highly Efficient A-to-G Editing in PFFs via Multiple ABEs. Genes (Basel) 2023; 14:genes14040908. [PMID: 37107666 PMCID: PMC10137487 DOI: 10.3390/genes14040908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Cytosine base editors (CBEs) and adenine base editors (ABEs) are recently developed CRISPR-mediated genome-editing tools that do not introduce double-strand breaks. In this study, five ABEs, ABE7.10, ABEmax, NG-ABEmax, ABE8e and NG-ABE8e, were used to generate A-to-G (T-to-C) conversions in five genome loci in porcine fetal fibroblasts (PFFs). Variable yet appreciable editing efficiencies and variable activity windows were observed in these targeting regions via these five editors. The strategy of two sgRNAs in one vector exhibited superior editing efficiency to that of using two separate sgRNA expression vectors. ABE-mediated start-codon mutation in APOE silenced its expression of protein and, unexpectedly, eliminated the vast majority of its mRNA. No off-target DNA site was detected for these editors. Substantial off-target RNA events were present in the ABE-edited cells, but no KEGG pathway was found to be significantly enriched. Our study supports that ABEs are powerful tools for A-to-G (T-to-C) point-mutation modification in porcine cells.
Collapse
Affiliation(s)
- Qiqi Jing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haoyun Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaya Liao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiang Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Janssen P, Isa T, Lanciego J, Leech K, Logothetis N, Poo MM, Mitchell AS. Visualizing advances in the future of primate neuroscience research. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100064. [PMID: 36582401 PMCID: PMC9792703 DOI: 10.1016/j.crneur.2022.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address. At the same time, we highlight some current caveats to global NHP research and collaborations including the lack of common ethical and regulatory frameworks for NHP research, the limitations involving animal transportation and exports, and the ongoing influence of activist groups opposed to NHP research.
Collapse
Affiliation(s)
- Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Belgium
| | - Tadashi Isa
- Graduate School of Medicine, Kyoto University, Japan
| | - Jose Lanciego
- Department Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, CiberNed., Pamplona, Spain
| | - Kirk Leech
- European Animal Research Association, United Kingdom
| | - Nikos Logothetis
- International Center for Primate Brain Research, Shanghai, China
| | - Mu-Ming Poo
- International Center for Primate Brain Research, Shanghai, China
| | - Anna S. Mitchell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand,Department of Experimental Psychology, University of Oxford, United Kingdom,Corresponding author. School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
8
|
Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Commun Biol 2022; 5:1163. [PMID: 36323848 PMCID: PMC9630288 DOI: 10.1038/s42003-022-04152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/21/2022] [Indexed: 01/09/2023] Open
Abstract
Cas12a can process multiple sgRNAs from a single transcript of CRISPR array, conferring advantages in multiplexed base editing when incorporated into base editor systems, which is extremely helpful given that phenotypes commonly involve multiple genes or single-nucleotide variants. However, multiplexed base editing through Cas12a-derived base editors has been barely reported, mainly due to the compromised efficiencies and restricted protospacer-adjacent motif (PAM) of TTTV for wild-type Cas12a. Here, we develop Cas12a-mediated cytosine base editor (CBE) and adenine base editor (ABE) systems with elevated efficiencies and expanded targeting scope, by combining highly active deaminases with Lachnospiraceae bacterium Cas12a (LbCas12a) variants. We confirm that these CBEs and ABEs can perform efficient C-to-T and A-to-G conversions, respectively, on targets with PAMs of NTTN, TYCN, and TRTN. Notably, multiplexed base editing can be conducted using the developed CBEs and ABEs in somatic cells and embryos. These Cas12a variant-mediated base editors will serve as versatile tools for multiplexed point mutation, which is notably important in genetic improvement, disease modeling, and gene therapy.
Collapse
|
9
|
Liang W, He J, Mao C, Yu C, Meng Q, Xue J, Wu X, Li S, Wang Y, Yi H. Gene editing monkeys: Retrospect and outlook. Front Cell Dev Biol 2022; 10:913996. [PMID: 36158194 PMCID: PMC9493099 DOI: 10.3389/fcell.2022.913996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models play a key role in life science research, especially in the study of human disease pathogenesis and drug screening. Because of the closer proximity to humans in terms of genetic evolution, physiology, immunology, biochemistry, and pathology, nonhuman primates (NHPs) have outstanding advantages in model construction for disease mechanism study and drug development. In terms of animal model construction, gene editing technology has been widely applied to this area in recent years. This review summarizes the current progress in the establishment of NHPs using gene editing technology, which mainly focuses on rhesus and cynomolgus monkeys. In addition, we discuss the limiting factors in the applications of genetically modified NHP models as well as the possible solutions and improvements. Furthermore, we highlight the prospects and challenges of the gene-edited NHP models.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Chenyu Mao
- University of Pennsylvania, Philadelphia, PA, United States
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shanliang Li
- Department of Pharmacology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| |
Collapse
|
10
|
Tu T, Song Z, Liu X, Wang S, He X, Xi H, Wang J, Yan T, Chen H, Zhang Z, Lv X, Lv J, Huang XF, Zhao J, Lin CP, Gao C, Zhang J, Gu F. A precise and efficient adenine base editor. Mol Ther 2022; 30:2933-2941. [PMID: 35821638 PMCID: PMC9481987 DOI: 10.1016/j.ymthe.2022.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/26/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Adenine base editors (ABEs) are novel genome-editing tools, and their activity has been greatly enhanced by eight additional mutations, thus named ABE8e. However, elevated catalytic activity was concomitant with frequent generation of bystander mutations. This bystander effect precludes its safe applications required in human gene therapy. To develop next-generation ABEs that are both catalytically efficient and positionally precise, we performed combinatorial engineering of NG-ABE8e. We identify a novel variant (NG-ABE9e), which harbors nine mutations. NG-ABE9e exhibits robust and precise base-editing activity in human cells, with more than 7-fold bystander editing reduction at some sites, compared with NG-ABE8e. To demonstrate its practical utility, we used NG-ABE9e to correct the frequent T17M mutation in Rhodopsin for autosomal dominant retinitis pigmentosa. It reduces bystander editing by ∼4-fold while maintaining comparable efficiency. NG-ABE9e possesses substantially higher activity than NG-ABEmax and significantly lower bystander editing than NG-ABE8e in rice. Therefore, this study provides a versatile and improved adenine base editor for genome editing.
Collapse
Affiliation(s)
- Tianxiang Tu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Xiaoyu Liu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue He
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haitao Xi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahua Wang
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tong Yan
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Chen
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Feng Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Schmidt JK, Reynolds MR, Golos TG, Slukvin II. CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology 2022; 19:17. [PMID: 35948929 PMCID: PMC9363854 DOI: 10.1186/s12977-022-00604-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nonhuman primates (NHPs) are well-established basic and translational research models for human immunodeficiency virus (HIV) infections and pathophysiology, hematopoietic stem cell (HSC) transplantation, and assisted reproductive technologies. Recent advances in CRISPR/Cas9 gene editing technologies present opportunities to refine NHP HIV models for investigating genetic factors that affect HIV replication and designing cellular therapies that exploit genetic barriers to HIV infections, including engineering mutations into CCR5 and conferring resistance to HIV/simian immunodeficiency virus (SIV) infections. In this report, we provide an overview of recent advances and challenges in gene editing NHP embryos and discuss the value of genetically engineered animal models for developing novel stem cell-based therapies for curing HIV.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew R Reynolds
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Luo L, Shi Y, Wang H, Wang Z, Dang Y, Li S, Wang S, Zhang K. Base editing in bovine embryos reveals a species-specific role of SOX2 in regulation of pluripotency. PLoS Genet 2022; 18:e1010307. [PMID: 35788719 PMCID: PMC9286228 DOI: 10.1371/journal.pgen.1010307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/15/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
The emergence of the first three lineages during development is orchestrated by a network of transcription factors, which are best characterized in mice. However, the role and regulation of these factors are not completely conserved in other mammals, including human and cattle. Here, we establish a gene inactivation system with a robust efficiency by introducing premature codon with cytosine base editors in bovine early embryos. By using this approach, we have determined the functional consequences of three critical lineage-specific genes (SOX2, OCT4 and CDX2) in bovine embryos. In particular, SOX2 knockout results in a failure of the establishment of pluripotency in blastocysts. Indeed, OCT4 level is significantly reduced and NANOG barely detectable. Furthermore, the formation of primitive endoderm is compromised with few SOX17 positive cells. RNA-seq analysis of single blastocysts (day 7.5) reveals dysregulation of 2074 genes, among which 90% are up-regulated in SOX2-null blastocysts. Intriguingly, more than a dozen lineage-specific genes, including OCT4 and NANOG, are down-regulated. Moreover, SOX2 level is sustained in the trophectoderm in absence of CDX2. However, OCT4 knockout does not affect the expression of SOX2. Overall, we propose that SOX2 is indispensable for OCT4 and NANOG expression and CDX2 represses the expression of SOX2 in the trophectoderm in cattle, which are all in sharp contrast with results in mice. The first and second cell fate decisions of a new life are important for subsequent embryonic and placental development. These events are finely controlled by a network of transcriptional factors, which are extensively characterized in mice. Species-specific roles of these proteins are emerging in mammals. Here, we develop a gene loss-of-function system by using cytosine base editors in bovine early embryos. We find that expression pattern, functional roles, and regulation of SOX2 are all different between mouse and bovine embryos. Remarkably, SOX2 is extremely important for OCT4 and NANOG, two well-established pluripotency factors. Furthermore, CDX2 is required to repress SOX2 in the trophectoderm. Given similar expression pattern of SOX2 between human and bovine blastocysts, bovine embryo represents a putative model to investigate human pluripotency regulation in vivo.
Collapse
Affiliation(s)
- Lei Luo
- Laboratory of Mammalian Molecular Embryology, Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yan Shi
- Laboratory of Mammalian Molecular Embryology, Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huanan Wang
- Laboratory of Mammalian Molecular Embryology, Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Department of Veterinary Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zizengchen Wang
- Laboratory of Mammalian Molecular Embryology, Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Department of Veterinary Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanna Dang
- Laboratory of Mammalian Molecular Embryology, Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Li
- Laboratory of Mammalian Molecular Embryology, Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shaohua Wang
- Laboratory of Mammalian Molecular Embryology, Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
13
|
Yuan Q, Gao X. Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nat Commun 2022; 13:2771. [PMID: 35589728 PMCID: PMC9120480 DOI: 10.1038/s41467-022-30514-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
Current base- and prime-editing technologies lack efficient strategies to edit multiple genomic loci simultaneously, limiting their applications in complex genomics and polygenic diseases. Here, we describe drive-and-process (DAP) CRISPR array architectures for multiplex base-editing (MBE) and multiplex prime-editing (MPE) in human cells. We leverage tRNA as the RNA polymerase III promoter to drive the expression of tandemly assembled tRNA-guide RNA (gRNA) arrays, of which the individual gRNAs are released by the cellular endogenous tRNA processing machinery. We engineer a 75-nt human cysteine tRNA (hCtRNA) for the DAP array, achieving up to 31-loci MBE and up to 3-loci MPE. By applying MBE or MPE elements for deliveries via adeno-associated virus (AAV) and lentivirus, we demonstrate simultaneous editing of multiple disease-relevant genomic loci. Our work streamlines the expression and processing of gRNAs on a single array and establishes efficient MBE and MPE strategies for biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
14
|
Schmidt JK, Jones KM, Van Vleck T, Emborg ME. Modeling genetic diseases in nonhuman primates through embryonic and germline modification: Considerations and challenges. Sci Transl Med 2022; 14:eabf4879. [PMID: 35235338 PMCID: PMC9373237 DOI: 10.1126/scitranslmed.abf4879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic modification of the embryo or germ line of nonhuman primates is envisioned as a method to develop improved models of human disease, yet the promise of such animal models remains unfulfilled. Here, we discuss current methods and their limitations for producing nonhuman primate genetic models that faithfully genocopy and phenocopy human disease. We reflect on how to ethically maximize the translational relevance of such models in the search for new therapeutic strategies to treat human disease.
Collapse
Affiliation(s)
- Jenna K. Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn M. Jones
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Trevor Van Vleck
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Zhao D, Qian Y, Li J, Li Z, Lai L. Highly efficient A-to-G base editing by ABE8.17 in rabbits. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:1156-1163. [PMID: 35282412 PMCID: PMC8888895 DOI: 10.1016/j.omtn.2022.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
|
16
|
Lu Z, He S, Jiang J, Zhuang L, Wang Y, Yang G, Jiang X, Nie Y, Fu J, Zhang X, Lu Y, Bian X, Chang HC, Xiong Z, Huang X, Liu Z, Sun Q. Base-edited Cynomolgus Monkeys mimic core symptoms of STXBP1 encephalopathy. Mol Ther 2022; 30:2163-2175. [DOI: 10.1016/j.ymthe.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
|
17
|
Abstract
Genome editing by programmable RNA-dependent Cas endonucleases has revolutionised the field of genome engineering, achieving targeted genomic change at unprecedented efficiencies with considerable application in laboratory animal research. Despite its ease of use and wide application, there remain concerns about the precision of this technology and a number of unpredictable consequences have been reported, mostly resulting from the DNA double-strand break (DSB) that conventional CRISPR editing induces. In order to improve editing precision, several iterations of the technology been developed over the years. Base editing is one of most successful developments, allowing for single base conversions but without the need for a DSB. Cytosine and adenine base editing are now established as reliable methods to achieve precise genome editing in animal research studies. Both cytosine and adenine base editors have been applied successfully to the editing of zygotes, resulting in the generation of animal models. Similarly, both base editors have achieved precise editing of point mutations in somatic cells, facilitating the development of gene therapy approaches. Despite rapid progress in optimising these tools, base editing can address only a subset of possible base conversions within a relatively narrow window and larger genomic manipulations are not possible. The recent development of prime editing, originally defined as a simple 'search and replace' editing tool, may help address these limitations and could widen the range of genome manipulations possible. Preliminary reports of prime editing in animals are being published, and this new technology may allow significant advancements for laboratory animal research.
Collapse
Affiliation(s)
- Federico Caso
- Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, UK
| |
Collapse
|
18
|
Abstract
For four decades, genetically altered laboratory animals have provided invaluable information. Originally, genetic modifications were performed on only a few animal species, often chosen because of the ready accessibility of embryonic materials and short generation times. The methods were often slow, inefficient and expensive. In 2013, a new, extremely efficient technology, namely CRISPR/Cas9, not only made the production of genetically altered organisms faster and cheaper, but also opened it up to non-conventional laboratory animal species. CRISPR/Cas9 relies on a guide RNA as a 'location finder' to target DNA double strand breaks induced by the Cas9 enzyme. This is a prerequisite for non-homologous end joining repair to occur, an error prone mechanism often generating insertion or deletion of genetic material. If a DNA template is also provided, this can lead to homology directed repair, allowing precise insertions, deletions or substitutions. Due to its high efficiency in targeting DNA, CRISPR/Cas9-mediated genetic modification is now possible in virtually all animal species for which we have genome sequence data. Furthermore, modifications of Cas9 have led to more refined genetic alterations from targeted single base-pair mutations to epigenetic modifications. The latter offer altered gene expression without genome alteration. With this ever growing genetic toolbox, the number and range of genetically altered conventional and non-conventional laboratory animals with simple or complex genetic modifications is growing exponentially.
Collapse
|
19
|
Piotter E, McClements ME, MacLaren RE. The Scope of Pathogenic ABCA4 Mutations Targetable by CRISPR DNA Base Editing Systems-A Systematic Review. Front Genet 2022; 12:814131. [PMID: 35154257 PMCID: PMC8830518 DOI: 10.3389/fgene.2021.814131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
Stargardt macular dystrophy (STGD1) is the most common form of inherited childhood blindness worldwide and for which no current treatments exist. It is an autosomal recessive disease caused by mutations in ABCA4. To date, a variety of gene supplementation approaches have been tested to create a therapy, with some reaching clinical trials. New technologies, such as CRISPR-Cas based editing systems, provide an exciting frontier for addressing genetic disease by allowing targeted DNA or RNA base editing of pathogenic mutations. ABCA4 has ∼1,200 known pathogenic mutations, of which ∼63% are transition mutations amenable to this editing technology. In this report, we screened the known "pathogenic" and "likely pathogenic" mutations in ABCA4 from available data in gnomAD, Leiden Open Variation Database (LOVD), and ClinVar for potential PAM sites of relevant base editors, including Streptococcus pyogenes Cas (SpCas), Staphylococcus aureus Cas (SaCas), and the KKH variant of SaCas (Sa-KKH). Overall, of the mutations screened, 53% (ClinVar), 71% (LOVD), and 71% (gnomAD), were editable, pathogenic transition mutations, of which 35-47% had "ideal" PAM sites. Of these mutations, 16-20% occur within a range of multiple PAM sites, enabling a variety of editing strategies. Further, in relevant patient data looking at three cohorts from Germany, Denmark, and China, we find that 44-76% of patients, depending on the presence of complex alleles, have at least one transition mutation with a nearby SaCas, SpCas, or Sa-KKH PAM site, which would allow for potential DNA base editing as a treatment strategy. Given the complexity of the genetic landscape of Stargardt, these findings provide a clearer understanding of the potential for DNA base editing approaches to be applied as ABCA4 gene therapy strategies.
Collapse
Affiliation(s)
- Elena Piotter
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust and NIHR Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
20
|
Stephan T, Burgess SM, Cheng H, Danko CG, Gill CA, Jarvis ED, Koepfli KP, Koltes JE, Lyons E, Ronald P, Ryder OA, Schriml LM, Soltis P, VandeWoude S, Zhou H, Ostrander EA, Karlsson EK. Darwinian genomics and diversity in the tree of life. Proc Natl Acad Sci U S A 2022; 119:e2115644119. [PMID: 35042807 PMCID: PMC8795533 DOI: 10.1073/pnas.2115644119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.
Collapse
Affiliation(s)
- Taylorlyn Stephan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Shawn M Burgess
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Hans Cheng
- Avian Disease and Oncology Laboratory, Agricultural Research Service, US Department of Agriculture, East Lansing, MI 48823
| | - Charles G Danko
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850
| | - Clare A Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Eric Lyons
- School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, AZ 85721
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley, CA 94720
- Grass Genetics, Joint Bioenergy Institute, Emeryville, CA 94608
| | - Oliver A Ryder
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior, and Ecology, University of California San Diego, La Jolla, CA 92093
| | - Lynn M Schriml
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
| | - Sue VandeWoude
- Department of Micro-, Immuno-, and Pathology, Colorado State University, Fort Collins, CO 80532
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655;
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
21
|
Generation of in situ CRISPR-mediated primary and metastatic cancer from monkey liver. Signal Transduct Target Ther 2021; 6:411. [PMID: 34857736 PMCID: PMC8640017 DOI: 10.1038/s41392-021-00799-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Non-human primates (NHPs) represent the most valuable animals for drug discovery. However, the current main challenge remains that the NHP has not yet been used to develop an efficient translational medicine platform simulating human diseases, such as cancer. This study generated an in situ gene-editing approach to induce efficient loss-of-function mutations of Pten and p53 genes for rapid modeling primary and metastatic liver tumors using the CRISPR/Cas9 in the adult cynomolgus monkey. Under ultrasound guidance, the CRISPR/Cas9 was injected into the cynomolgus monkey liver through the intrahepatic portal vein. The results showed that the ultrasound-guided CRISPR/Cas9 resulted in indels of the Pten and p53 genes in seven out of eight monkeys. The best mutation efficiencies for Pten and p53 were up to 74.71% and 74.68%, respectively. Furthermore, the morbidity of primary and extensively metastatic (lung, spleen, lymph nodes) hepatoma in CRISPR-treated monkeys was 87.5%. The ultrasound-guided CRISPR system could have great potential to successfully pursue the desired target genes, thereby reducing possible side effects associated with hitting non-specific off-target genes, and significantly increasing more efficiency as well as higher specificity of in situ gene editing in vivo, which holds promise as a powerful, yet feasible tool, to edit disease genes to build corresponding human disease models in adult NHPs and to greatly accelerate the discovery of new drugs and save economic costs.
Collapse
|
22
|
Yang L, Tang J, Ma X, Lin Y, Ma G, Shan M, Wang L, Yang Y. Progression and application of CRISPR-Cas genomic editors. Methods 2021; 194:65-74. [PMID: 33774156 DOI: 10.1016/j.ymeth.2021.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022] Open
Abstract
Base editing technology is an efficient tool for genome editing, particularly in the correction of base mutations. Diverse base editing systems were developed according to the dCas9 or nCas9 linked with different deaminase or reverse transcriptase in the editors, including ABEs, CBEs, PEs and dual-functional of base editor (such as CGBE1, A&C-BEmax, ACBE, etc.). Currently, Base editing technology has been widely applied to various fields such as microorganisms, plants, animals and medicine for basic research and therapeutics. Here, we reviewed the advancement of base editing technology. We also discussed the application of base editors in different areas in the future.
Collapse
Affiliation(s)
- Li Yang
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing Tang
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xuelei Ma
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yuan Lin
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Guorong Ma
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Minghai Shan
- General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Libin Wang
- General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Yanhui Yang
- Basic Medical School, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
23
|
Huang M, Yang J, Li P, Chen Y. Embryo-Engineered Nonhuman Primate Models: Progress and Gap to Translational Medicine. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9898769. [PMID: 34549187 PMCID: PMC8404551 DOI: 10.34133/2021/9898769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/01/2021] [Indexed: 12/17/2022]
Abstract
Animal models of human diseases are vital in better understanding the mechanism of pathogenesis and essential for evaluating and validating potential therapeutic interventions. As close relatives of humans, nonhuman primates (NHPs) play an increasingly indispensable role in advancing translational medicine research. In this review, we summarized the progress of NHP models generated by embryo engineering, analyzed their unique advantages in mimicking clinical patients, and discussed the remaining gap between basic research of NHP models to translational medicine.
Collapse
Affiliation(s)
- Mei Huang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Jiao Yang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Peng Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
24
|
Hisey EA, Ross PJ, Meyers S. Genetic Manipulation of the Equine Oocyte and Embryo. J Equine Vet Sci 2021; 99:103394. [PMID: 33781418 PMCID: PMC8605602 DOI: 10.1016/j.jevs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/19/2023]
Abstract
As standard in vitro fertilization is not a viable technique in horses yet, many different techniques have been used to create equine embryos for research purposes. One such method is parthenogenesis in which an oocyte is induced to mature into an embryo-like state without the introduction of a spermatozoon, and thus they are not considered true embryos. Another method is somatic cell nuclear transfer (SCNT), in which a somatic cell nucleus from an extant horse is inserted into an enucleated oocyte, creating a genetic clone of the donor horse. Due to limited availability of equine oocytes in the United States, researchers have investigated the potential for combining equine somatic cell nuclei with oocytes from other species to make embryos for research purposes, which has not been successful to date. There has also been a rising interest in producing transgenic animals using sperm exposed to exogenous DNA. The successful creation of transgenic equine blastocysts shows the promise of sperm mediated gene transfer (SMGT), but this method is not ideal for other applications, like gene therapy, because it cannot be used to induce targeted mutations. That is why technologies like CRISPR/Cas9 are vital. In this review, we argue that parthenogenesis, SCNT, and interspecies SCNT can be considered genetic manipulation strategies as they create embryos that are genetically identical to their parent cell. Here, we describe how these methods are performed and their applications and we also describe the few methods that have been used to directly modify equine embryos: SMGT and CRISPR/Cas9.
Collapse
Affiliation(s)
- Erin A. Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,Corresponding author at: S. Meyers, 1089 Veterinary Medicine Dr. Davis CA 95616. (S. Meyers)
| |
Collapse
|
25
|
Park JE, Sasaki E. Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR J 2021; 61:286-303. [PMID: 33693670 PMCID: PMC8918153 DOI: 10.1093/ilar/ilab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Genetic modification of nonhuman primate (NHP) zygotes is a useful method for the development of NHP models of human diseases. This review summarizes the recent advances in the development of assisted reproductive and genetic manipulation techniques in NHP, providing the basis for the generation of genetically modified NHP disease models. In this study, we review assisted reproductive techniques, including ovarian stimulation, in vitro maturation of oocytes, in vitro fertilization, embryo culture, embryo transfer, and intracytoplasmic sperm injection protocols in marmosets. Furthermore, we review genetic manipulation techniques, including transgenic strategies, target gene knock-out and knock-in using gene editing protocols, and newly developed gene-editing approaches that may potentially impact the production of genetically manipulated NHP models. We further discuss the progress of assisted reproductive and genetic manipulation techniques in NHP; future prospects on genetically modified NHP models for biomedical research are also highlighted.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Neurobiology, University of Pittsburgh, School of Medicine in Pittsburgh, Pennsylvania, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals in Kawasaki, Kanagawa, Japan
| |
Collapse
|
26
|
Pal M, Herold MJ. CRISPR base editing applications for identifying cancer-driving mutations. Biochem Soc Trans 2021; 49:269-280. [PMID: 33449100 PMCID: PMC7925010 DOI: 10.1042/bst20200550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
CRISPR base editing technology is a promising genome editing tool as (i) it does not require a DNA template to introduce mutations and (ii) it avoids creating DNA double-strand breaks, which can lead to unintended chromosomal alterations or elicit an unwanted DNA damage response. Given many cancers originate from point mutations in cancer-driving genes, the application of base editing for either modelling tumour development, therapeutic editing, or functional screening is of great promise. In this review, we summarise current DNA base editing technologies and will discuss recent advancements and existing hurdles for its usage in cancer research.
Collapse
Affiliation(s)
- Martin Pal
- WEHI (Walter and Eliza Hall Institute of Melbourne), Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Marco J. Herold
- WEHI (Walter and Eliza Hall Institute of Melbourne), Melbourne, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| |
Collapse
|
27
|
Lyu P, Lu Z, Cho SI, Yadav M, Yoo KW, Atala A, Kim JS, Lu B. Adenine Base Editor Ribonucleoproteins Delivered by Lentivirus-Like Particles Show High On-Target Base Editing and Undetectable RNA Off-Target Activities. CRISPR J 2021; 4:69-81. [PMID: 33616436 DOI: 10.1089/crispr.2020.0095] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adenine base editors (ABEs) can correct gene mutations without creating double-strand breaks. However, in recent reports, these editors showed guide-independent RNA off-target activities. This work describes our development of a delivery method to minimize ABEs' RNA off-target activity. After discovering a RNA off-target hot spot for sensitive detection of RNA off-target activities, we found that delivering ribonucleoproteins (RNPs) by electroporation generated undetectable non-specific RNA editing, but on-target base editing activity was also relatively low. We then explored a lentivirus capsid-based delivery strategy to deliver ABE. We used aptamer/aptamer-binding protein (ABP) interactions to package ABE RNPs into lentiviral capsids. Capsid RNPs were delivered to human cells for highly efficient guided base editing. Importantly, RNA off-target activities from the capsid RNPs were undetectable. Our new lentiviral capsid-based ABE RNP delivery method with minimal RNA off-target activities makes ABE one step closer to possible therapeutic applications.
Collapse
Affiliation(s)
- Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
- School of Physical Education and Health, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Zuyan Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Sung-Ik Cho
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science, Seoul, Republic of Korea
| | - Manish Yadav
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| |
Collapse
|
28
|
Aida T, Feng G. The dawn of non-human primate models for neurodevelopmental disorders. Curr Opin Genet Dev 2020; 65:160-168. [PMID: 32693220 PMCID: PMC7955645 DOI: 10.1016/j.gde.2020.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022]
Abstract
Non-human primates (NHPs) have been proposed as good models for neurodevelopmental disorders due to close similarities to humans in terms of brain structure and cognitive function. The recent development of genome editing technologies has opened new avenues to generate and investigate genetically modified NHPs as models for human disorders. Here, we review the early successes of genetic NHP models for neurodevelopmental disorders and further discuss the technological challenges and opportunities to create next generation NHP models with more sophisticated genetic manipulation and faithful representations of the human genetic mutations. Taken together, the field is now poised to usher in a new era of research using genetically modified NHP models to empower a more rapid translation of basic research and maximize the preclinical potential for biomarker discovery and therapeutic development.
Collapse
Affiliation(s)
- Tomomi Aida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|