1
|
Oor EE, Salinas E, Stanford TR. Location- and feature-based selection histories make independent, qualitatively distinct contributions to urgent visuomotor performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.29.596532. [PMID: 38853897 PMCID: PMC11160778 DOI: 10.1101/2024.05.29.596532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Attention mechanisms guide visuomotor behavior by weighing physical salience and internal goals to prioritize stimuli as choices for action. Although less well studied, selection history, which reflects multiple facets of experience with recent events, is increasingly recognized as a distinct source of attentional bias. To examine how selection history impacts saccadic choices, we trained two macaque monkeys to perform an urgent version of an oddball search task in which a red target appeared among three green distracters, or vice versa. By imposing urgency, performance could be tracked continuously as it transitioned from uninformed guesses to informed choices as a function of processing time. This, in turn, permitted assessment of attentional control as manifest in motor biases, processing speed, and asymptotic accuracy. Here, we found that the probability of making a correct choice was strongly modulated by the histories of preceding target locations and target colors. Crucially, although both effects were gated by success (or reward), their dynamics were clearly distinct: whereas location history promoted a motor bias, color history modulated perceptual sensitivity, and these influences acted independently. Thus, combined selection histories can give rise to enormous swings in visuomotor performance even in simple tasks with highly discriminable stimuli.
Collapse
Affiliation(s)
- Emily E Oor
- Department of Psychology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Terrence R Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
2
|
Sheth J, Collina JS, Piasini E, Kording KP, Cohen YE, Geffen MN. The interplay of uncertainty, relevance and learning influences auditory categorization. Sci Rep 2025; 15:3348. [PMID: 39870756 PMCID: PMC11772889 DOI: 10.1038/s41598-025-86856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
Auditory perception requires categorizing sound sequences, such as speech or music, into classes, such as syllables or notes. Auditory categorization depends not only on the acoustic waveform, but also on variability and uncertainty in how the listener perceives the sound - including sensory and stimulus uncertainty, the listener's estimated relevance of the particular sound to the task, and their ability to learn the past statistics of the acoustic environment. Whereas these factors have been studied in isolation, whether and how these factors interact to shape categorization remains unknown. Here, we measured human participants' performance on a multi-tone categorization task and modeled each participant's behavior using a Bayesian framework. Task-relevant tones contributed more to category choice than task-irrelevant tones, confirming that participants combined information about sensory features with task relevance. Conversely, participants' poor estimates of task-relevant tones or high-sensory uncertainty adversely impacted category choice. Learning the statistics of sound category over both short and long timescales also affected decisions, biasing the decisions toward the overrepresented category. The magnitude of this effect correlated inversely with participants' relevance estimates. Our results demonstrate that individual participants idiosyncratically weigh sensory uncertainty, task relevance, and statistics over both short and long timescales, providing a novel understanding of and a computational framework for how sensory decisions are made under several simultaneous behavioral demands.
Collapse
Affiliation(s)
- Janaki Sheth
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jared S Collina
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Eugenio Piasini
- Department of Neuroscience, International School for Advanced Studies, Trieste, Italy
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yale E Cohen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria N Geffen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Liu J, Shen H, Yang Y, Yang M, Zhang Q, Chen K, Li X. Transformer-based representation learning and multiple-instance learning for cancer diagnosis exclusively from raw sequencing fragments of bisulfite-treated plasma cell-free DNA. Mol Oncol 2024; 18:2755-2769. [PMID: 39380154 PMCID: PMC11547222 DOI: 10.1002/1878-0261.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Early cancer diagnosis from bisulfite-treated cell-free DNA (cfDNA) fragments requires tedious data analytical procedures. Here, we present a deep-learning-based approach for early cancer interception and diagnosis (DECIDIA) that can achieve accurate cancer diagnosis exclusively from bisulfite-treated cfDNA sequencing fragments. DECIDIA relies on transformer-based representation learning of DNA fragments and weakly supervised multiple-instance learning for classification. We systematically evaluate the performance of DECIDIA for cancer diagnosis and cancer type prediction on a curated dataset of 5389 samples that consist of colorectal cancer (CRC; n = 1574), hepatocellular cell carcinoma (HCC; n = 1181), lung cancer (n = 654), and non-cancer control (n = 1980). DECIDIA achieved an area under the receiver operating curve (AUROC) of 0.980 (95% CI, 0.976-0.984) in 10-fold cross-validation settings on the CRC dataset by differentiating cancer patients from cancer-free controls, outperforming benchmarked methods that are based on methylation intensities. Noticeably, DECIDIA achieved an AUROC of 0.910 (95% CI, 0.896-0.924) on the externally independent HCC testing set in distinguishing HCC patients from cancer-free controls, although there was no HCC data used in model development. In the settings of cancer-type classification, we observed that DECIDIA achieved a micro-average AUROC of 0.963 (95% CI, 0.960-0.966) and an overall accuracy of 82.8% (95% CI, 81.8-83.9). In addition, we distilled four sequence signatures from the raw sequencing reads that exhibited differential patterns in cancer versus control and among different cancer types. Our approach represents a new paradigm towards eliminating the tedious data analytical procedures for liquid biopsy that uses bisulfite-treated cfDNA methylome.
Collapse
Affiliation(s)
- Jilei Liu
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and HospitalTianjin Medical UniversityChina
| | - Hongru Shen
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and HospitalTianjin Medical UniversityChina
| | - Yichen Yang
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and HospitalTianjin Medical UniversityChina
| | - Meng Yang
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and HospitalTianjin Medical UniversityChina
| | - Qiang Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and HospitalTianjin Medical UniversityChina
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Control of Major Diseases in the Population Ministry of Education, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and HospitalTianjin Medical UniversityChina
| | - Xiangchun Li
- Tianjin Cancer Institute, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and HospitalTianjin Medical UniversityChina
| |
Collapse
|
4
|
Vloeberghs R, Urai AE, Desender K, Linderman SW. A Bayesian Hierarchical Model of Trial-To-Trial Fluctuations in Decision Criterion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605869. [PMID: 39211219 PMCID: PMC11361103 DOI: 10.1101/2024.07.30.605869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Classical decision models assume that the parameters giving rise to choice behavior are stable, yet emerging research suggests these parameters may fluctuate over time. Such fluctuations, observed in neural activity and behavioral strategies, have significant implications for understanding decision-making processes. However, empirical studies on fluctuating human decision-making strategies have been limited due to the extensive data requirements for estimating these fluctuations. Here, we introduce hMFC (Hierarchical Model for Fluctuations in Criterion), a Bayesian framework designed to estimate slow fluctuations in the decision criterion from limited data. We first showcase the importance of considering fluctuations in decision criterion: incorrectly assuming a stable criterion gives rise to apparent history effects and underestimates perceptual sensitivity. We then present a hierarchical estimation procedure capable of reliably recovering the underlying state of the fluctuating decision criterion with as few as 500 trials per participant, offering a robust tool for researchers with typical human datasets. Critically, hMFC does not only accurately recover the state of the underlying decision criterion, it also effectively deals with the confounds caused by criterion fluctuations. Lastly, we provide code and a comprehensive demo at www.github.com/robinvloeberghs/hMFC to enable widespread application of hMFC in decision-making research.
Collapse
Affiliation(s)
| | - Anne E. Urai
- Cognitive Psychology, Leiden University, The Netherlands
| | | | - Scott W. Linderman
- Department of Statistics and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Fritsche M, Majumdar A, Strickland L, Liebana Garcia S, Bogacz R, Lak A. Temporal regularities shape perceptual decisions and striatal dopamine signals. Nat Commun 2024; 15:7093. [PMID: 39154025 PMCID: PMC11330509 DOI: 10.1038/s41467-024-51393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Perceptual decisions should depend on sensory evidence. However, such decisions are also influenced by past choices and outcomes. These choice history biases may reflect advantageous strategies to exploit temporal regularities of natural environments. However, it is unclear whether and how observers can adapt their choice history biases to different temporal regularities, to exploit the multitude of temporal correlations that exist in nature. Here, we show that male mice adapt their perceptual choice history biases to different temporal regularities of visual stimuli. This adaptation was slow, evolving over hundreds of trials across several days. It occurred alongside a fast non-adaptive choice history bias, limited to a few trials. Both fast and slow trial history effects are well captured by a normative reinforcement learning algorithm with multi-trial belief states, comprising both current trial sensory and previous trial memory states. We demonstrate that dorsal striatal dopamine tracks predictions of the model and behavior, suggesting that striatal dopamine reports reward predictions associated with adaptive choice history biases. Our results reveal the adaptive nature of perceptual choice history biases and shed light on their underlying computational principles and neural correlates.
Collapse
Affiliation(s)
- Matthias Fritsche
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
| | - Antara Majumdar
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Lauren Strickland
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Behavioral Neuroscience, University College London, London, UK
| | | | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Armin Lak
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Marrero K, Aruljothi K, Delgadillo C, Kabbara S, Swatch L, Zagha E. Goal-Directed Learning is Multidimensional and Accompanied by Diverse and Widespread Changes in Neocortical Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.13.528412. [PMID: 36824924 PMCID: PMC9948952 DOI: 10.1101/2023.02.13.528412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
New tasks are often learned in stages with each stage reflecting a different learning challenge. Accordingly, each learning stage is likely mediated by distinct neuronal processes. And yet, most rodent studies of the neuronal correlates of goal-directed learning focus on individual outcome measures and individual brain regions. Here, we longitudinally studied mice from naïve to expert performance in a head-fixed, operant conditioning whisker discrimination task. In addition to tracking the primary behavioral outcome of stimulus discrimination, we tracked and compared an array of object-based and temporal-based behavioral measures. These behavioral analyses identify multiple, partially overlapping learning stages in this task, consistent with initial response implementation, early stimulus-response generalization, and late response inhibition. To begin to understand the neuronal foundations of these learning processes, we performed widefield Ca2+ imaging of dorsal neocortex throughout learning and correlated behavioral measures with neuronal activity. We found distinct and widespread correlations between neocortical activation patterns and various behavioral measures. For example, improvements in sensory discrimination correlated with target stimulus evoked activations of licking-related cortices along with distractor stimulus evoked global cortical suppression. Our study reveals multidimensional learning for a simple goal-directed learning task and generates hypotheses for the neuronal modulations underlying these various learning processes.
Collapse
Affiliation(s)
- Krista Marrero
- Neuroscience Graduate Program, University of California, Riverside 900 University Avenue, Riverside CA 92521 USA
| | - Krithiga Aruljothi
- Department of Psychology, University of California, Riverside 900 University Avenue, Riverside CA 92521 USA
| | - Christian Delgadillo
- Division of Biomedical Sciences, University of California, Riverside 900 University Avenue, Riverside CA 92521 USA
| | - Sarah Kabbara
- Neuroscience Graduate Program, University of California, Riverside 900 University Avenue, Riverside CA 92521 USA
| | - Lovleen Swatch
- College of Natural & Agricultural Sciences, University of California, Riverside 900 University Avenue, Riverside CA 92521 USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California, Riverside 900 University Avenue, Riverside CA 92521 USA
- Department of Psychology, University of California, Riverside 900 University Avenue, Riverside CA 92521 USA
| |
Collapse
|
7
|
Gupta D, DePasquale B, Kopec CD, Brody CD. Trial-history biases in evidence accumulation can give rise to apparent lapses in decision-making. Nat Commun 2024; 15:662. [PMID: 38253526 PMCID: PMC10803295 DOI: 10.1038/s41467-024-44880-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Trial history biases and lapses are two of the most common suboptimalities observed during perceptual decision-making. These suboptimalities are routinely assumed to arise from distinct processes. However, previous work has suggested that they covary in their prevalence and that their proposed neural substrates overlap. Here we demonstrate that during decision-making, history biases and apparent lapses can both arise from a common cognitive process that is optimal under mistaken beliefs that the world is changing i.e. nonstationary. This corresponds to an accumulation-to-bound model with history-dependent updates to the initial state of the accumulator. We test our model's predictions about the relative prevalence of history biases and lapses, and show that they are robustly borne out in two distinct decision-making datasets of male rats, including data from a novel reaction time task. Our model improves the ability to precisely predict decision-making dynamics within and across trials, by positing a process through which agents can generate quasi-stochastic choices.
Collapse
Affiliation(s)
- Diksha Gupta
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Sainsbury Wellcome Centre, University College London, London, UK.
| | - Brian DePasquale
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Charles D Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Mihali A, Broeker M, Ragalmuto FDM, Horga G. Introspective inference counteracts perceptual distortion. Nat Commun 2023; 14:7826. [PMID: 38030601 PMCID: PMC10687029 DOI: 10.1038/s41467-023-42813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introspective agents can recognize the extent to which their internal perceptual experiences deviate from the actual states of the external world. This ability, also known as insight, is critically required for reality testing and is impaired in psychosis, yet little is known about its cognitive underpinnings. We develop a Bayesian modeling framework and a psychophysics paradigm to quantitatively characterize this type of insight while people experience a motion after-effect illusion. People can incorporate knowledge about the illusion into their decisions when judging the actual direction of a motion stimulus, compensating for the illusion (and often overcompensating). Furthermore, confidence, reaction-time, and pupil-dilation data all show signatures consistent with inferential adjustments in the Bayesian insight model. Our results suggest that people can question the veracity of what they see by making insightful inferences that incorporate introspective knowledge about internal distortions.
Collapse
Affiliation(s)
- Andra Mihali
- New York State Psychiatric Institute, New York, NY, USA.
- Columbia University, Department of Psychiatry, New York, NY, USA.
| | - Marianne Broeker
- New York State Psychiatric Institute, New York, NY, USA
- Columbia University, Department of Psychiatry, New York, NY, USA
- Columbia University, Teachers College, New York, NY, USA
- University of Oxford, Department of Experimental Psychology, Oxford, UK
| | - Florian D M Ragalmuto
- New York State Psychiatric Institute, New York, NY, USA
- Columbia University, Department of Psychiatry, New York, NY, USA
- Vrije Universiteit, Faculty of Behavioral and Movement Science, Amsterdam, the Netherlands
- Berliner FortbildungsAkademie, Berlin, DE, Germany
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, NY, USA.
- Columbia University, Department of Psychiatry, New York, NY, USA.
| |
Collapse
|
9
|
Lee HJ, Lee H, Lim CY, Rhim I, Lee SH. Corrective feedback guides human perceptual decision-making by informing about the world state rather than rewarding its choice. PLoS Biol 2023; 21:e3002373. [PMID: 37939126 PMCID: PMC10659185 DOI: 10.1371/journal.pbio.3002373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/20/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Corrective feedback received on perceptual decisions is crucial for adjusting decision-making strategies to improve future choices. However, its complex interaction with other decision components, such as previous stimuli and choices, challenges a principled account of how it shapes subsequent decisions. One popular approach, based on animal behavior and extended to human perceptual decision-making, employs "reinforcement learning," a principle proven successful in reward-based decision-making. The core idea behind this approach is that decision-makers, although engaged in a perceptual task, treat corrective feedback as rewards from which they learn choice values. Here, we explore an alternative idea, which is that humans consider corrective feedback on perceptual decisions as evidence of the actual state of the world rather than as rewards for their choices. By implementing these "feedback-as-reward" and "feedback-as-evidence" hypotheses on a shared learning platform, we show that the latter outperforms the former in explaining how corrective feedback adjusts the decision-making strategy along with past stimuli and choices. Our work suggests that humans learn about what has happened in their environment rather than the values of their own choices through corrective feedback during perceptual decision-making.
Collapse
Affiliation(s)
- Hyang-Jung Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Heeseung Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Chae Young Lim
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Issac Rhim
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Bond K, Rasero J, Madan R, Bahuguna J, Rubin J, Verstynen T. Competing neural representations of choice shape evidence accumulation in humans. eLife 2023; 12:e85223. [PMID: 37818943 PMCID: PMC10624421 DOI: 10.7554/elife.85223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Making adaptive choices in dynamic environments requires flexible decision policies. Previously, we showed how shifts in outcome contingency change the evidence accumulation process that determines decision policies. Using in silico experiments to generate predictions, here we show how the cortico-basal ganglia-thalamic (CBGT) circuits can feasibly implement shifts in decision policies. When action contingencies change, dopaminergic plasticity redirects the balance of power, both within and between action representations, to divert the flow of evidence from one option to another. When competition between action representations is highest, the rate of evidence accumulation is the lowest. This prediction was validated in in vivo experiments on human participants, using fMRI, which showed that (1) evoked hemodynamic responses can reliably predict trial-wise choices and (2) competition between action representations, measured using a classifier model, tracked with changes in the rate of evidence accumulation. These results paint a holistic picture of how CBGT circuits manage and adapt the evidence accumulation process in mammals.
Collapse
Affiliation(s)
- Krista Bond
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Raghav Madan
- Department of Biomedical and Health Informatics, University of WashingtonSeattleUnited States
| | - Jyotika Bahuguna
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Jonathan Rubin
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Mathematics, University of PittsburghPittsburghUnited States
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
- Department of Biomedical Engineering, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
11
|
Gupta D, DePasquale B, Kopec CD, Brody CD. Trial-history biases in evidence accumulation can give rise to apparent lapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524599. [PMID: 36778392 PMCID: PMC9915493 DOI: 10.1101/2023.01.18.524599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Trial history biases and lapses are two of the most common suboptimalities observed during perceptual decision-making. These suboptimalities are routinely assumed to arise from distinct processes. However, several hints in the literature suggest that they covary in their prevalence and that their proposed neural substrates overlap - what could underlie these links? Here we demonstrate that history biases and apparent lapses can both arise from a common cognitive process that is normative under misbeliefs about non-stationarity in the world. This corresponds to an accumulation-to-bound model with history-dependent updates to the initial state of the accumulator. We test our model's predictions about the relative prevalence of history biases and lapses, and show that they are robustly borne out in two distinct rat decision-making datasets, including data from a novel reaction time task. Our model improves the ability to precisely predict decision-making dynamics within and across trials, by positing a process through which agents can generate quasi-stochastic choices.
Collapse
Affiliation(s)
- Diksha Gupta
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Brian DePasquale
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Charles D Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
- Howard Hughes Medical Institute, Princeton University, Princeton, United States
| |
Collapse
|
12
|
Mafi F, Tang MF, Afarinesh MR, Ghasemian S, Sheibani V, Arabzadeh E. Temporal order judgment of multisensory stimuli in rat and human. Front Behav Neurosci 2023; 16:1070452. [PMID: 36710957 PMCID: PMC9879721 DOI: 10.3389/fnbeh.2022.1070452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
We do not fully understand the resolution at which temporal information is processed by different species. Here we employed a temporal order judgment (TOJ) task in rats and humans to test the temporal precision with which these species can detect the order of presentation of simple stimuli across two modalities of vision and audition. Both species reported the order of audiovisual stimuli when they were presented from a central location at a range of stimulus onset asynchronies (SOA)s. While both species could reliably distinguish the temporal order of stimuli based on their sensory content (i.e., the modality label), rats outperformed humans at short SOAs (less than 100 ms) whereas humans outperformed rats at long SOAs (greater than 100 ms). Moreover, rats produced faster responses compared to humans. The reaction time data further revealed key differences in decision process across the two species: at longer SOAs, reaction times increased in rats but decreased in humans. Finally, drift-diffusion modeling allowed us to isolate the contribution of various parameters including evidence accumulation rates, lapse and bias to the sensory decision. Consistent with the psychophysical findings, the model revealed higher temporal sensitivity and a higher lapse rate in rats compared to humans. These findings suggest that these species applied different strategies for making perceptual decisions in the context of a multimodal TOJ task.
Collapse
Affiliation(s)
- Fatemeh Mafi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Matthew F. Tang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sadegh Ghasemian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Arabzadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Persistent activity in human parietal cortex mediates perceptual choice repetition bias. Nat Commun 2022; 13:6015. [PMID: 36224207 PMCID: PMC9556658 DOI: 10.1038/s41467-022-33237-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Humans and other animals tend to repeat or alternate their previous choices, even when judging sensory stimuli presented in a random sequence. It is unclear if and how sensory, associative, and motor cortical circuits produce these idiosyncratic behavioral biases. Here, we combined behavioral modeling of a visual perceptual decision with magnetoencephalographic (MEG) analyses of neural dynamics, across multiple regions of the human cerebral cortex. We identified distinct history-dependent neural signals in motor and posterior parietal cortex. Gamma-band activity in parietal cortex tracked previous choices in a sustained fashion, and biased evidence accumulation toward choice repetition; sustained beta-band activity in motor cortex inversely reflected the previous motor action, and biased the accumulation starting point toward alternation. The parietal, not motor, signal mediated the impact of previous on current choice and reflected individual differences in choice repetition. In sum, parietal cortical signals seem to play a key role in shaping choice sequences.
Collapse
|
14
|
Manneschi L, Gigante G, Vasilaki E, Del Giudice P. Signal neutrality, scalar property, and collapsing boundaries as consequences of a learned multi-timescale strategy. PLoS Comput Biol 2022; 18:e1009393. [PMID: 35930590 PMCID: PMC9462745 DOI: 10.1371/journal.pcbi.1009393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
We postulate that three fundamental elements underlie a decision making process: perception of time passing, information processing in multiple timescales and reward maximisation. We build a simple reinforcement learning agent upon these principles that we train on a random dot-like task. Our results, similar to the experimental data, demonstrate three emerging signatures. (1) signal neutrality: insensitivity to the signal coherence in the interval preceding the decision. (2) Scalar property: the mean of the response times varies widely for different signal coherences, yet the shape of the distributions stays almost unchanged. (3) Collapsing boundaries: the “effective” decision-making boundary changes over time in a manner reminiscent of the theoretical optimal. Removing the perception of time or the multiple timescales from the model does not preserve the distinguishing signatures. Our results suggest an alternative explanation for signal neutrality. We propose that it is not part of motor planning. It is part of the decision-making process and emerges from information processing on multiple timescales.
Collapse
Affiliation(s)
- Luca Manneschi
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Guido Gigante
- Istituto Superiore di Sanità, Rome, Italy
- INFN, Sezione di Roma, Rome, Italy
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| | - Paolo Del Giudice
- Istituto Superiore di Sanità, Rome, Italy
- INFN, Sezione di Roma, Rome, Italy
| |
Collapse
|
15
|
Xue C, Kramer LE, Cohen MR. Dynamic task-belief is an integral part of decision-making. Neuron 2022; 110:2503-2511.e3. [PMID: 35700735 PMCID: PMC9357195 DOI: 10.1016/j.neuron.2022.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
Natural decisions involve two seemingly separable processes: inferring the relevant task (task-belief) and performing the believed-relevant task. The assumed separability has led to the traditional practice of studying task-switching and perceptual decision-making individually. Here, we used a novel paradigm to manipulate and measure macaque monkeys' task-belief and demonstrated inextricable neuronal links between flexible task-belief and perceptual decision-making. We showed that in animals, but not in artificial networks that performed as well or better than the animals, stronger task-belief is associated with better perception. Correspondingly, recordings from neuronal populations in cortical areas 7a and V1 revealed that stronger task-belief is associated with better discriminability of the believed-relevant, but not the believed-irrelevant, feature. Perception also impacts belief updating; noise fluctuations in V1 help explain how task-belief is updated. Our results demonstrate that complex tasks and multi-area recordings can reveal fundamentally new principles of how biology affects behavior in health and disease.
Collapse
Affiliation(s)
- Cheng Xue
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Lily E Kramer
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marlene R Cohen
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
16
|
Pérez-Parra JE, Rojas-Líbano D. Drift-diffusion cognitive models: description, applications and perspectives ( Modelos cognitivos de deriva-difusión: descripción, aplicaciones y perspectivas). STUDIES IN PSYCHOLOGY 2022. [DOI: 10.1080/02109395.2022.2056802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Ashwood ZC, Roy NA, Stone IR, Urai AE, Churchland AK, Pouget A, Pillow JW. Mice alternate between discrete strategies during perceptual decision-making. Nat Neurosci 2022; 25:201-212. [PMID: 35132235 PMCID: PMC8890994 DOI: 10.1038/s41593-021-01007-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Classical models of perceptual decision-making assume that subjects use a single, consistent strategy to form decisions, or that decision-making strategies evolve slowly over time. Here we present new analyses suggesting that this common view is incorrect. We analyzed data from mouse and human decision-making experiments and found that choice behavior relies on an interplay among multiple interleaved strategies. These strategies, characterized by states in a hidden Markov model, persist for tens to hundreds of trials before switching, and often switch multiple times within a session. The identified decision-making strategies were highly consistent across mice and comprised a single 'engaged' state, in which decisions relied heavily on the sensory stimulus, and several biased states in which errors frequently occurred. These results provide a powerful alternate explanation for 'lapses' often observed in rodent behavioral experiments, and suggest that standard measures of performance mask the presence of major changes in strategy across trials.
Collapse
Affiliation(s)
- Zoe C Ashwood
- Deptartment of Computer Science, Princeton University, Princeton, NJ, USA.
- Princeton Neuroscience Institute, Princeton, NJ, USA.
| | | | - Iris R Stone
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | - Anne E Urai
- Cognitive Psychology Unit, Leiden University, Leiden, Netherlands
| | - Anne K Churchland
- David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandre Pouget
- Faculty of Medicine & Deptartment of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton, NJ, USA.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
18
|
Wu S, Chen A, Cao C, Ma S, Feng Y, Wang S, Song J, Xu G. Repeated subconcussive exposure alters low-frequency neural oscillation in memory retrieval processing. J Neurotrauma 2022; 39:398-410. [PMID: 35021889 DOI: 10.1089/neu.2021.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repeated subconcussive head impacts are frequently experienced by athletes involved in competitive sports, such as boxing. The objective of the present study was to investigate the changes in working memory performance and memory retrieval-related neural oscillations in boxing athletes who experienced repeated subconcussive head impacts. Twenty-one boxing athletes (boxing group) and twenty-five matched controls (control group) completed a modified visual working memory task, and their continuous scalp electroencephalography (EEG) data were collected simultaneously. The behavioral measures and retrieval-related low-frequency neural oscillations were analyzed at each working memory set size in both groups. Subjects in the boxing group showed a reduced mean accuracy, diminished capacity estimates, and slower reaction time at demanding set sizes and a marginally increased intraindividual coefficient of variation (ICV) for overall set sizes. Additionally, decreased event-related frontal theta synchronization, parieto-occipital alpha desynchronization, and frontal low beta synchronization were observed in the boxing group, suggesting underlying working memory dysfunction for efficient neurocognitive resource employment, inhibition of distracting stimuli, and post-retrieval control in the boxing group. Moreover, a negative correlation was found between frontal beta synchronization and reaction time for most set sizes in both groups. The present study was the first to reveal the underlying working memory deficits caused by the cumulative effects of boxing-related subconcussive head impacts from the perspective of behavior and EEG time-frequency oscillations. Joint analysis of EEG low-frequency oscillations and the innovative task with multiple challenging load conditions may serve as a promising way to detect concealed deficiencies within working memory processing. Keywords: repeated subconcussive head impacts, working memory, modified Sternberg task, event-related desynchronization, event-related synchronization, boxing athletes.
Collapse
Affiliation(s)
- Shukai Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,The Second Affiliated Hospital of Fujian Medical University, neurosurgery, Quanzhou, Fujian, China;
| | - Aobo Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Chenglong Cao
- The First School of Clinical Medicine, Southern Medical University, Neurosurgery, Guangzhou, China.,Maastricht University Faculty of Psychology and Neuroscience, 396107, Maastricht, Limburg, Netherlands;
| | - Shenghui Ma
- Medical College of Wuhan University of Science and Technology, 481115, Wuhan, Hubei , China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Yu Feng
- Medical College of Wuhan University of Science and Technology, 481115, Wuhan, Hubei , China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Shuochen Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, neurosurgery, Wuhan, China;
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| |
Collapse
|
19
|
Bond K, Dunovan K, Porter A, Rubin JE, Verstynen T. Dynamic decision policy reconfiguration under outcome uncertainty. eLife 2021; 10:e65540. [PMID: 34951589 PMCID: PMC8806193 DOI: 10.7554/elife.65540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
In uncertain or unstable environments, sometimes the best decision is to change your mind. To shed light on this flexibility, we evaluated how the underlying decision policy adapts when the most rewarding action changes. Human participants performed a dynamic two-armed bandit task that manipulated the certainty in relative reward (conflict) and the reliability of action-outcomes (volatility). Continuous estimates of conflict and volatility contributed to shifts in exploratory states by changing both the rate of evidence accumulation (drift rate) and the amount of evidence needed to make a decision (boundary height), respectively. At the trialwise level, following a switch in the optimal choice, the drift rate plummets and the boundary height weakly spikes, leading to a slow exploratory state. We find that the drift rate drives most of this response, with an unreliable contribution of boundary height across experiments. Surprisingly, we find no evidence that pupillary responses associated with decision policy changes. We conclude that humans show a stereotypical shift in their decision policies in response to environmental changes.
Collapse
Affiliation(s)
- Krista Bond
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
| | - Kyle Dunovan
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Alexis Porter
- Department of Psychology, Northwestern UniversityEvanstonUnited States
| | - Jonathan E Rubin
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Mathematics, University of PittsburghPittsburghUnited States
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
- Department of Biomedical Engineering, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
20
|
Lebovich L, Yunerman M, Scaiewicz V, Loewenstein Y, Rokni D. Paradoxical relationship between speed and accuracy in olfactory figure-background segregation. PLoS Comput Biol 2021; 17:e1009674. [PMID: 34871306 PMCID: PMC8675919 DOI: 10.1371/journal.pcbi.1009674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/16/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022] Open
Abstract
In natural settings, many stimuli impinge on our sensory organs simultaneously. Parsing these sensory stimuli into perceptual objects is a fundamental task faced by all sensory systems. Similar to other sensory modalities, increased odor backgrounds decrease the detectability of target odors by the olfactory system. The mechanisms by which background odors interfere with the detection and identification of target odors are unknown. Here we utilized the framework of the Drift Diffusion Model (DDM) to consider possible interference mechanisms in an odor detection task. We first considered pure effects of background odors on either signal or noise in the decision-making dynamics and showed that these produce different predictions about decision accuracy and speed. To test these predictions, we trained mice to detect target odors that are embedded in random background mixtures in a two-alternative choice task. In this task, the inter-trial interval was independent of behavioral reaction times to avoid motivating rapid responses. We found that increased backgrounds reduce mouse performance but paradoxically also decrease reaction times, suggesting that noise in the decision making process is increased by backgrounds. We further assessed the contributions of background effects on both noise and signal by fitting the DDM to the behavioral data. The models showed that background odors affect both the signal and the noise, but that the paradoxical relationship between trial difficulty and reaction time is caused by the added noise. Sensory systems are constantly stimulated by signals from many objects in the environment. Segmentation of important signals from the cluttered background is therefore a task that is faced by all sensory systems. For many mammalians, the sense of smell is the primary sense that guides many daily behaviors. As such, the olfactory system must be able to detect and identify odors of interest against varying and dynamic backgrounds. Here we studied how background odors interfere with the detection of target odors. We trained mice on a task in which they are presented with odor mixtures and are required to report whether they include either of two target odors. We analyze the behavioral data using a common model of sensory-guided decision-making—the drift-diffusion-model. In this model, decisions are influenced by two elements: a drift which is the signal produced by the stimulus, and noise. We show that the addition of background odors has a dual effect—a reduction in the drift, as well as an increase in the noise. The increased noise also causes more rapid decisions, thereby producing a paradoxical relationship between trial difficulty and decision speed; mice make faster decisions on more difficult trials.
Collapse
Affiliation(s)
- Lior Lebovich
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Michael Yunerman
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Viviana Scaiewicz
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- Department of Cognitive Sciences and The Federmann Center for the Study of Rationality, The Hebrew University, Jerusalem, Israel
| | - Dan Rokni
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
21
|
Abstract
Identical physical inputs do not always evoke identical percepts. To investigate the role of stimulus history in tactile perception, we designed a task in which rats had to judge each vibrissal vibration, in a long series, as strong or weak depending on its mean speed. After a low-speed stimulus (trial n - 1), rats were more likely to report the next stimulus (trial n) as strong, and after a high-speed stimulus, they were more likely to report the next stimulus as weak, a repulsive effect that did not depend on choice or reward on trial n - 1. This effect could be tracked over several preceding trials (i.e., n - 2 and earlier) and was characterized by an exponential decay function, reflecting a trial-by-trial incorporation of sensory history. Surprisingly, the influence of trial n - 1 strengthened as the time interval between n - 1 and n grew. Human subjects receiving fingertip vibrations showed these same key findings. We are able to account for the repulsive stimulus history effect, and its detailed time scale, through a single-parameter model, wherein each new stimulus gradually updates the subject's decision criterion. This model points to mechanisms underlying how the past affects the ongoing subjective experience.
Collapse
|
22
|
Choice history effects in mice and humans improve reward harvesting efficiency. PLoS Comput Biol 2021; 17:e1009452. [PMID: 34606493 PMCID: PMC8516315 DOI: 10.1371/journal.pcbi.1009452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 10/14/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022] Open
Abstract
Choice history effects describe how future choices depend on the history of past choices. In experimental tasks this is typically framed as a bias because it often diminishes the experienced reward rates. However, in natural habitats, choices made in the past constrain choices that can be made in the future. For foraging animals, the probability of earning a reward in a given patch depends on the degree to which the animals have exploited the patch in the past. One problem with many experimental tasks that show choice history effects is that such tasks artificially decouple choice history from its consequences on reward availability over time. To circumvent this, we use a variable interval (VI) reward schedule that reinstates a more natural contingency between past choices and future reward availability. By examining the behavior of optimal agents in the VI task we discover that choice history effects observed in animals serve to maximize reward harvesting efficiency. We further distil the function of choice history effects by manipulating first- and second-order statistics of the environment. We find that choice history effects primarily reflect the growth rate of the reward probability of the unchosen option, whereas reward history effects primarily reflect environmental volatility. Based on observed choice history effects in animals, we develop a reinforcement learning model that explicitly incorporates choice history over multiple time scales into the decision process, and we assess its predictive adequacy in accounting for the associated behavior. We show that this new variant, known as the double trace model, has a higher performance in predicting choice data, and shows near optimal reward harvesting efficiency in simulated environments. These results suggests that choice history effects may be adaptive for natural contingencies between consumption and reward availability. This concept lends credence to a normative account of choice history effects that extends beyond its description as a bias. Animals foraging for food in natural habitats compete to obtain better quality food patches. To achieve this goal, animals can rely on memory and choose the same patches that have provided higher quality of food in the past. However, in natural habitats simply identifying better food patches may not be sufficient to successfully compete with their conspecifics, as food resources can grow over time. Therefore, it makes sense to visit from time to time those patches that were associated with lower food quality in the past. This demands optimal foraging animals to keep in memory not only which food patches provided the best food quality, but also which food patches they visited recently. To see if animals track their history of visits and use it to maximize the food harvesting efficiency, we subjected them to experimental conditions that mimicked natural foraging behavior. In our behavioral tasks, we replaced food foraging behavior with a two choice task that provided rewards to mice and humans. By developing a new computational model and subjecting animals to various behavioral manipulations, we demonstrate that keeping a memory of past visits helps the animals to optimize the efficiency with which they can harvest rewards.
Collapse
|
23
|
Over-representation of fundamental decision variables in the prefrontal cortex underlies decision bias. Neurosci Res 2021; 173:1-13. [PMID: 34274406 DOI: 10.1016/j.neures.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
The brain is organized into anatomically distinct structures consisting of a variety of projection neurons. While such evolutionarily conserved neural circuit organization underlies the innate ability of animals to swiftly adapt to environments, they can cause biased cognition and behavior. Although recent studies have begun to address the causal importance of projection-neuron types as distinct computational units, it remains unclear how projection types are functionally organized in encoding variables during cognitive tasks. This review focuses on the neural computation of decision making in the prefrontal cortex and discusses what decision variables are encoded by single neurons, neuronal populations, and projection type, alongside how specific projection types constrain decision making. We focus particularly on "over-representations" of distinct decision variables in the prefrontal cortex that reflect the biological and subjective significance of the variables for the decision makers. We suggest that task-specific over-representation in the prefrontal cortex involves the refinement of the given decision making, while generalized over-representation of fundamental decision variables is associated with suboptimal decision biases, including pathological ones such as those in patients with psychiatric disorders. Such over-representation of the fundamental decision variables in the prefrontal cortex appear to be tightly constrained by afferent and efferent connections that can be optogenetically intervened on. These ideas may provide critical insights into potential therapeutic targets for psychiatric disorders, including addiction and depression.
Collapse
|
24
|
Aguillon-Rodriguez V, Angelaki D, Bayer H, Bonacchi N, Carandini M, Cazettes F, Chapuis G, Churchland AK, Dan Y, Dewitt E, Faulkner M, Forrest H, Haetzel L, Häusser M, Hofer SB, Hu F, Khanal A, Krasniak C, Laranjeira I, Mainen ZF, Meijer G, Miska NJ, Mrsic-Flogel TD, Murakami M, Noel JP, Pan-Vazquez A, Rossant C, Sanders J, Socha K, Terry R, Urai AE, Vergara H, Wells M, Wilson CJ, Witten IB, Wool LE, Zador AM. Standardized and reproducible measurement of decision-making in mice. eLife 2021; 10:e63711. [PMID: 34011433 PMCID: PMC8137147 DOI: 10.7554/elife.63711] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here, we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We adopted a task for head-fixed mice that assays perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path toward achieving reproducibility in neuroscience through collaborative open-science approaches.
Collapse
Affiliation(s)
- The International Brain Laboratory
- Cold Spring Harbor LaboratoryNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
- Champalimaud Centre for the UnknownLisbonPortugal
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Sainsbury-Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
- Watson School of Biological SciencesNew YorkUnited States
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- Sanworks LLCNew YorkUnited States
- Cognitive Psychology Unit, Leiden UniversityLeidenNetherlands
| | | | - Dora Angelaki
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Hannah Bayer
- Zuckerman Institute, Columbia UniversityNew YorkUnited States
| | | | - Matteo Carandini
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
| | | | - Gaelle Chapuis
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | | | - Yang Dan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eric Dewitt
- Champalimaud Centre for the UnknownLisbonPortugal
| | - Mayo Faulkner
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Hamish Forrest
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
| | - Laura Haetzel
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Sonja B Hofer
- Sainsbury-Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Fei Hu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Anup Khanal
- Cold Spring Harbor LaboratoryNew YorkUnited States
| | - Christopher Krasniak
- Cold Spring Harbor LaboratoryNew YorkUnited States
- Watson School of Biological SciencesNew YorkUnited States
| | | | | | - Guido Meijer
- Champalimaud Centre for the UnknownLisbonPortugal
| | - Nathaniel J Miska
- Sainsbury-Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Thomas D Mrsic-Flogel
- Sainsbury-Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | | | - Jean-Paul Noel
- Center for Neural Science, New York UniversityNew YorkUnited States
| | | | - Cyrille Rossant
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | | | - Karolina Socha
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
| | - Rebecca Terry
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Anne E Urai
- Cold Spring Harbor LaboratoryNew YorkUnited States
- Cognitive Psychology Unit, Leiden UniversityLeidenNetherlands
| | - Hernando Vergara
- Sainsbury-Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Miles Wells
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | | | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Lauren E Wool
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | | |
Collapse
|
25
|
Pisupati S, Chartarifsky-Lynn L, Khanal A, Churchland AK. Lapses in perceptual decisions reflect exploration. eLife 2021; 10:55490. [PMID: 33427198 PMCID: PMC7846276 DOI: 10.7554/elife.55490] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Abstract
Perceptual decision-makers often display a constant rate of errors independent of evidence strength. These ‘lapses’ are treated as a nuisance arising from noise tangential to the decision, e.g. inattention or motor errors. Here, we use a multisensory decision task in rats to demonstrate that these explanations cannot account for lapses’ stimulus dependence. We propose a novel explanation: lapses reflect a strategic trade-off between exploiting known rewarding actions and exploring uncertain ones. We tested this model’s predictions by selectively manipulating one action’s reward magnitude or probability. As uniquely predicted by this model, changes were restricted to lapses associated with that action. Finally, we show that lapses are a powerful tool for assigning decision-related computations to neural structures based on disruption experiments (here, posterior striatum and secondary motor cortex). These results suggest that lapses reflect an integral component of decision-making and are informative about action values in normal and disrupted brain states.
Collapse
Affiliation(s)
- Sashank Pisupati
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States.,CSHL School of Biological Sciences, Cold Spring Harbor, New York, United States
| | - Lital Chartarifsky-Lynn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States.,CSHL School of Biological Sciences, Cold Spring Harbor, New York, United States
| | - Anup Khanal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| | | |
Collapse
|