1
|
Trexler M, Bányai L, Kerekes K, Patthy L. Evolution of termination codons of proteins and the TAG-TGA paradox. Sci Rep 2023; 13:14294. [PMID: 37653005 PMCID: PMC10471768 DOI: 10.1038/s41598-023-41410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
In most eukaryotes and prokaryotes TGA is used at a significantly higher frequency than TAG as termination codon of protein-coding genes. Although this phenomenon has been recognized several years ago, there is no generally accepted explanation for the TAG-TGA paradox. Our analyses of human mutation data revealed that out of the eighteen sense codons that can give rise to a nonsense codon by single base substitution, the CGA codon is exceptional: it gives rise to the TGA stop codon at an order of magnitude higher rate than the other codons. Here we propose that the TAG-TGA paradox is due to methylation and hypermutabilty of CpG dinucleotides. In harmony with this explanation, we show that the coding genomes of organisms with strong CpG methylation have a significant bias for TGA whereas those from organisms that lack CpG methylation use TGA and TAG termination codons with similar probability.
Collapse
Affiliation(s)
- Mária Trexler
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - László Bányai
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Matsen FA, Ralph PL. Enabling Inference for Context-Dependent Models of Mutation by Bounding the Propagation of Dependency. J Comput Biol 2022; 29:802-824. [PMID: 35776513 PMCID: PMC9419934 DOI: 10.1089/cmb.2021.0644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the rates at which positions in the genome mutate are known to depend not only on the nucleotide to be mutated, but also on neighboring nucleotides, it remains challenging to do phylogenetic inference using models of context-dependent mutation. In these models, the effects of one mutation may in principle propagate to faraway locations, making it difficult to compute exact likelihoods. This article shows how to use bounds on the propagation of dependency to compute likelihoods of mutation of a given segment of genome by marginalizing over sufficiently long flanking sequence. This can be used for maximum likelihood or Bayesian inference. Protocols examining residuals and iterative model refinement are also discussed. Tools for efficiently working with these models are provided in an R package, which could be used in other applications. The method is used to examine context dependence of mutations since the common ancestor of humans and chimpanzee.
Collapse
Affiliation(s)
- Frederick A. Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Genome Sciences, and University of Washington, Seattle, Washington, USA
- Department of Statistics, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Peter L. Ralph
- Departments of Biology and Mathematics, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
3
|
Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M, Klein M, Hildebrandt J, Neumann M, Kliebenstein D, Weng ML, Imbert E, Ågren J, Rutter MT, Fenster CB, Weigel D. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022; 602:101-105. [PMID: 35022609 PMCID: PMC8810380 DOI: 10.1038/s41586-021-04269-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, USA.
| | - Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Faculty of Biology, Ludwig Maximilian University, Martinsried, Germany
| | - Mariele Lensink
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marie Klein
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Julia Hildebrandt
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Eric Imbert
- ISEM, University of Montpellier, Montpellier, France
| | - Jon Ågren
- Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Charles B Fenster
- Oak Lake Field Station, South Dakota State University, Brookings, SD, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Mian SA, Bonnet D. Nature or Nurture? Role of the Bone Marrow Microenvironment in the Genesis and Maintenance of Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:4116. [PMID: 34439269 PMCID: PMC8394536 DOI: 10.3390/cancers13164116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Myelodysplastic syndrome (MDS) are clonal haematopoietic stem cell (HSC) disorders driven by a complex combination(s) of changes within the genome that result in heterogeneity in both clinical phenotype and disease outcomes. MDS is among the most common of the haematological cancers and its incidence markedly increases with age. Currently available treatments have limited success, with <5% of patients undergoing allogeneic HSC transplantation, a procedure that offers the only possible cure. Critical contributions of the bone marrow microenvironment to the MDS have recently been investigated. Although the better understanding of the underlying biology, particularly genetics of haematopoietic stem cells, has led to better disease and risk classification; however, the role that the bone marrow microenvironment plays in the development of MDS remains largely unclear. This review provides a comprehensive overview of the latest developments in understanding the aetiology of MDS, particularly focussing on understanding how HSCs and the surrounding immune/non-immune bone marrow niche interacts together.
Collapse
Affiliation(s)
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| |
Collapse
|
5
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|