1
|
Echevarría-Andino ML, Song JY, van Ginkel P, Chen S, Flynn CGK, Keles S, Allen BL, Wellik DM. Generation of Hoxa11-3XFLAG and Hoxd11-3XFLAG alleles to investigate Hox11 genome-wide binding. Dev Biol 2025:S0012-1606(25)00136-8. [PMID: 40389054 DOI: 10.1016/j.ydbio.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/13/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
Hox genes encode for evolutionary conserved transcription factors that direct the proper development of the body plan. Despite decades of research, little is known regarding their downstream target genes, especially in vertebrates. The strong evolutionary conservation of their DNA-binding homeodomain, their generic AT-rich binding sites, and the lack of specific antibodies has precluded rigorous examination. To circumvent these limitations, we have generated two mouse models in which a 3XFLAG epitope tag has been inserted into the 5' end of the coding sequence of both Hoxa11 and Hoxd11 loci via Cas9/CRISPR. The alleles have been validated by sequencing, PCR genotyping, western blotting, and protein expression analyses, demonstrating proper targeting and expression. Breeding these alleles in combination produces viable and fertile Hoxa11FLAG/FLAG; Hoxd11FLAG/FLAG animals, with no overt patterning defects unlike Hoxa11/Hoxd11 mutants that are infertile and have severe kidney and limb defects. By performing CUT&RUN and CUT&Tag analyses, we have confirmed DNA binding to a known Six2 enhancer in the developing kidney. These novel alleles will allow characterization of the genome-wide binding profile of HoxPG11 proteins in vivo.
Collapse
Affiliation(s)
- Martha L Echevarría-Andino
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Jane Y Song
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Paul van Ginkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Shuyang Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Corey G K Flynn
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Zhang X, Lei C, Lu H, Kang B, Liu M, Jiang H, Zan L. Circ_0070934 Regulates the Proliferation, Metastasis, and Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Targeting miR-203a-3p/HOXA13 Axis. J Biochem Mol Toxicol 2025; 39:e70173. [PMID: 39967473 DOI: 10.1002/jbt.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
The present work explored the functions of circ_0070934 in regulating malignant phenotype of colorectal cancer (CRC) cells and its underlying mechanisms. Gene expression data set was acquired based on Gene Expression Omnibus (GEO) database for examining circ_0070934 levels within CRC cells and tissues through quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Kaplan-Meier curve and log-rank test were adopted for assessing CRC patient prognosis based on circ_0070934 level. Functional assays including Cell Counting Kit (CCK)-8, EdU incorporation, Transwell invasion, and scratch assays were conducted to determine CRC cell malignancy. Molecular interactions were predicted using circInteractome and StarBase databases, and validated through luciferase reporter assay. Circ_0070934 was upregulated within CRC cells and tissues, which was related to a dismal prognostic outcome in CRC patients. Knocking down circ_0070934 inhibited CRC cell proliferation, epithelial-mesenchymal transition (EMT), and migration. Further, we identified miR-203a-3p as a target miRNA of circ_0070934, and miR-203a-3p negatively regulated Homeobox A13 (HOXA13) expression. miR-203a-3p/HOXA13 axis mediates the function of circ_0070934 in modulating CRC cell malignancy. These data revealed that circ_0070934 was important for maintaining the malignant phenotype of CRC cells, and circ_0070934 knockdown undermined CRC cell malignancy. Targeting circ_0070934/miR-203a-3p/HOXA13 axis is the promising intervention approach for managing CRC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Changjiang Lei
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, Hubei, China
| | - Hongxia Lu
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Biao Kang
- Department of Oncology, Dazhou Huakang Hospital, Dazhou, Sichuan Province, China
| | - Maoxi Liu
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huiyuan Jiang
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Likun Zan
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Chen Y, Zhang Y, Gan J, Ni K, Chen M, Bahar I, Xing J. GraphVelo allows for accurate inference of multimodal omics velocities and molecular mechanisms for single cells. RESEARCH SQUARE 2025:rs.3.rs-5613372. [PMID: 39877092 PMCID: PMC11774466 DOI: 10.21203/rs.3.rs-5613372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
RNA velocities and generalizations emerge as powerful approaches for extracting time-resolved information from high-throughput snapshot single-cell data. Yet, several inherent limitations restrict applying the approaches to genes not suitable for RNA velocity inference due to complex transcriptional dynamics, low expression, or lacking splicing dynamics, or data of non-transcriptomic modality. Here, we present GraphVelo, a graph-based machine learning procedure that uses as input the RNA velocities inferred from existing methods and infers velocity vectors lying in the tangent space of the low-dimensional manifold formed by the single cell data. GraphVelo preserves vector magnitude and direction information during transformations across different data representations. Tests on multiple synthetic and experimental scRNA-seq data including viral-host interactome and multi-omics datasets demonstrate that GraphVelo, together with downstream generalized dynamo analyses, extends RNA velocities to multi-modal data and reveals quantitative nonlinear regulation relations between genes, virus and host cells, and different layers of gene regulation.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiaqi Gan
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ke Ni
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Chen Y, Zhang Y, Gan J, Ni K, Chen M, Bahar I, Xing J. GraphVelo allows for accurate inference of multimodal velocities and molecular mechanisms for single cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.03.626638. [PMID: 39677753 PMCID: PMC11642879 DOI: 10.1101/2024.12.03.626638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
RNA velocities and generalizations emerge as powerful approaches for extracting time-resolved information from high-throughput snapshot single-cell data. Yet, several inherent limitations restrict applying the approaches to genes not suitable for RNA velocity inference due to complex transcriptional dynamics, low expression, or lacking splicing dynamics, or data of non-transcriptomic modality. Here, we present GraphVelo, a graph-based machine learning procedure that uses as input the RNA velocities inferred from existing methods and infers velocity vectors lying in the tangent space of the low-dimensional manifold formed by the single cell data. GraphVelo preserves vector magnitude and direction information during transformations across different data representations. Tests on multiple synthetic and experimental scRNA-seq data including viral-host interactome and multi-omics datasets demonstrate that GraphVelo, together with downstream generalized dynamo analyses, extends RNA velocities to multi-modal data and reveals quantitative nonlinear regulation relations between genes, virus and host cells, and different layers of gene regulation.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiaqi Gan
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ke Ni
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Frenette B, Guéno J, Houde N, Landry-Truchon K, Giguère A, Ashok T, Ryckman A, Morton BR, Mansfield JH, Jeannotte L. Loss of Hoxa5 function affects Hox gene expression in different biological contexts. Sci Rep 2024; 14:30903. [PMID: 39730789 DOI: 10.1038/s41598-024-81867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors. However, Hox genes themselves appeared as potentially conserved targets of HOXA5 across tissues. Notably, a trend toward reduced expression of HoxA genes was observed in Hoxa5 null mutants in several tissue contexts. Comparative analysis of epigenetic marks along the HoxA cluster in lung tissue from two different Hoxa5 mutant mouse lines revealed limited effect of either mutation indicating that Hoxa5 gene targeting did not significantly perturb the chromatin landscape of the surrounding HoxA cluster. Combined with the shared impact of the two Hoxa5 mutant alleles on phenotype and Hox expression, these data argue against the contribution of local cis effects to Hoxa5 mutant phenotypes and support the notion that the HOXA5 protein acts in trans in the control of Hox gene expression.
Collapse
Affiliation(s)
- Béatrice Frenette
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
| | - Josselin Guéno
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Kim Landry-Truchon
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Anthony Giguère
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada
| | - Theyjasvi Ashok
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Abigail Ryckman
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Brian R Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA.
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de L'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), 1401, 18e Rue, Québec, QC, G1J 1Z4, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada.
| |
Collapse
|
6
|
Kc R, López de Boer R, Lin M, Vagnozzi AN, Jeannotte L, Philippidou P. Multimodal Hox5 activity generates motor neuron diversity. Commun Biol 2024; 7:1166. [PMID: 39289460 PMCID: PMC11408534 DOI: 10.1038/s42003-024-06835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Motor neurons (MNs) are the final output of circuits driving fundamental behaviors, such as respiration and locomotion. Hox proteins are essential in generating the MN diversity required for accomplishing these functions, but the transcriptional mechanisms that enable Hox paralogs to assign distinct MN subtype identities despite their promiscuous DNA binding motif are not well understood. Here we show that Hoxa5 modifies chromatin accessibility in all mouse spinal cervical MN subtypes and engages TALE co-factors to directly bind and regulate subtype-specific genes. We identify a paralog-specific interaction of Hoxa5 with the phrenic MN-specific transcription factor Scip and show that heterologous expression of Hoxa5 and Scip is sufficient to suppress limb-innervating MN identity. We also demonstrate that phrenic MN identity is stable after Hoxa5 downregulation and identify Klf proteins as potential regulators of phrenic MN maintenance. Our data identify multiple modes of Hoxa5 action that converge to induce and maintain MN identity.
Collapse
Affiliation(s)
- Ritesh Kc
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Raquel López de Boer
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Minshan Lin
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alicia N Vagnozzi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Centre Recherche sur le Cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology), Québec, Canada
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Kawasumi-Kita A, Lee SW, Ohtsuka D, Niimi K, Asakura Y, Kitajima K, Sakane Y, Tamura K, Ochi H, Suzuki KIT, Morishita Y. hoxc12/c13 as key regulators for rebooting the developmental program in Xenopus limb regeneration. Nat Commun 2024; 15:3340. [PMID: 38649703 PMCID: PMC11035627 DOI: 10.1038/s41467-024-47093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.
Collapse
Affiliation(s)
- Aiko Kawasumi-Kita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Daisuke Ohtsuka
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Kaori Niimi
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Yoshifumi Asakura
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Keiichi Kitajima
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuto Sakane
- Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8526, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Ken-Ichi T Suzuki
- Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8526, Japan
- Emerging Model Organisms Facility, Trans-scale Biology Center, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
| |
Collapse
|
8
|
Ritesh KC, de Boer RL, Lin M, Jeannotte L, Philippidou P. Multimodal Hox5 activity generates motor neuron diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579338. [PMID: 38370781 PMCID: PMC10871347 DOI: 10.1101/2024.02.08.579338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Motor neurons (MNs) are the final output of circuits driving fundamental behaviors, such as respiration and locomotion. Hox proteins are essential in generating the MN diversity required for accomplishing these functions, but the transcriptional mechanisms that enable Hox paralogs to assign distinct MN subtype identities despite their promiscuous DNA binding motif are not well understood. Here we show that Hoxa5 controls chromatin accessibility in all mouse spinal cervical MN subtypes and engages TALE co-factors to directly bind and regulate subtype-specific genes. We identify a paralog-specific interaction of Hoxa5 with the phrenic MN-specific transcription factor Scip and show that heterologous expression of Hoxa5 and Scip is sufficient to suppress limb-innervating MN identity. We also demonstrate that phrenic MN identity is stable after Hoxa5 downregulation and identify Klf proteins as potential regulators of phrenic MN maintenance. Our data identify multiple modes of Hoxa5 action that converge to induce and maintain MN identity.
Collapse
Affiliation(s)
- K C Ritesh
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Raquel López de Boer
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Minshan Lin
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Centre Recherche sur le Cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology), Québec, Canada
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Kim S, Morgunova E, Naqvi S, Goovaerts S, Bader M, Koska M, Popov A, Luong C, Pogson A, Swigut T, Claes P, Taipale J, Wysocka J. DNA-guided transcription factor cooperativity shapes face and limb mesenchyme. Cell 2024; 187:692-711.e26. [PMID: 38262408 PMCID: PMC10872279 DOI: 10.1016/j.cell.2023.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Seppe Goovaerts
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Maram Bader
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mervenaz Koska
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christy Luong
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Pogson
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Peter Claes
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden; Department of Biochemistry, University of Cambridge, Cambridge, UK; Applied Tumor Genomics Program, University of Helsinki, Helsinki, Finland
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Chen Y, Zhou T, Liao Z, Gao W, Wu J, Zhang S, Li Y, Liu H, Zhou H, Xu C, Su P. Hnrnpk is essential for embryonic limb bud development as a transcription activator and a collaborator of insulator protein Ctcf. Cell Death Differ 2023; 30:2293-2308. [PMID: 37608075 PMCID: PMC10589297 DOI: 10.1038/s41418-023-01207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Proper development of the limb bud relies on the concordance of various signals, but its molecular mechanisms have not yet been fully illustrated. Here we report that heterogeneous nuclear ribonucleoprotein K (hnRNPK) is essential for limb bud development. Its ablation in the limb bud results in limbless forelimbs and severe deformities of the hindlimbs. In terms of mechanism, hnRNPK functions as a transcription activator for the vital genes involved in the three regulatory axes of limb bud development. Simultaneously, for the first time we elucidate that hnRNPK binds to and coordinates with the insulator protein CCCTC binding factor (CTCF) to maintain a three-dimensional chromatin architecture. Ablation of hnRNPK weakens the binding strength of CTCF to topologically associating domain (TAD) boundaries, then leading to the loose TADs, and decreased interactions between promoters and enhancers, and further decreased transcription of developmental genes. Our study establishes a fundamental and novel role of hnRNPK in regulating limb bud development.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenjie Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shun Zhang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongyong Li
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hang Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Caixia Xu
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
12
|
Kim S, Morgunova E, Naqvi S, Bader M, Koska M, Popov A, Luong C, Pogson A, Claes P, Taipale J, Wysocka J. DNA-guided transcription factor cooperativity shapes face and limb mesenchyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541540. [PMID: 37398193 PMCID: PMC10312427 DOI: 10.1101/2023.05.29.541540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how 'Coordinator', a long DNA motif comprised of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, while HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in shared regulation of genes involved in cell-type and positional identities, and ultimately shapes facial morphology and evolution.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Maram Bader
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Mervenaz Koska
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | | | - Christy Luong
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
| | - Angela Pogson
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Applied Tumor Genomics Program, University of Helsinki, Helsinki, Finland
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
13
|
Cittaro D, Lazarević D, Tonon G, Giannese F. Analyzing genomic and epigenetic profiles in single cells by hybrid transposase (scGET-seq). STAR Protoc 2023; 4:102176. [PMID: 37000619 PMCID: PMC10090441 DOI: 10.1016/j.xpro.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
scGET-seq simultaneously profiles euchromatin and heterochromatin. scGET-seq exploits the concurrent action of transposase Tn5 and its hybrid form TnH, which targets H3K9me3 domains. Here we present a step-by-step protocol to profile single cells by scGET-seq using a 10× Chromium Controller. We describe steps for transposomes preparation and validation. We detail nuclei preparation and transposition, followed by encapsulation, library preparation, sequencing, and data analysis. For complete details on the use and execution of this protocol, please refer to Tedesco et al. (2022)1 and de Pretis and Cittaro (2022).2.
Collapse
Affiliation(s)
- Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Hospital, Milano, Italy.
| | - Dejan Lazarević
- Center for Omics Sciences, IRCCS San Raffaele Hospital, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS San Raffaele Hospital, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | |
Collapse
|
14
|
Markman S, Zada M, David E, Giladi A, Amit I, Zelzer E. A single-cell census of mouse limb development identifies complex spatiotemporal dynamics of skeleton formation. Dev Cell 2023; 58:565-581.e4. [PMID: 36931270 DOI: 10.1016/j.devcel.2023.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/20/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Limb development has long served as a model system for coordinated spatial patterning of progenitor cells. Here, we identify a population of naive limb progenitors and show that they differentiate progressively to form the skeleton in a complex, non-consecutive, three-dimensional pattern. Single-cell RNA sequencing of the developing mouse forelimb identified three progenitor states: naive, proximal, and autopodial, as well as Msx1 as a marker for the naive progenitors. In vivo lineage tracing confirmed this role and localized the naive progenitors to the outer margin of the limb, along the anterior-posterior axis. Sequential pulse-chase experiments showed that the progressive transition of Msx1+ naive progenitors into proximal and autopodial progenitors coincides with their differentiation to Sox9+ chondroprogenitors, which occurs along all the forming skeletal segments. Indeed, tracking the spatiotemporal sequence of differentiation showed that the skeleton forms progressively in a complex pattern. These findings suggest an alternative model for limb skeleton development.
Collapse
Affiliation(s)
- Svetlana Markman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
15
|
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83:373-392. [PMID: 36693380 PMCID: PMC9898153 DOI: 10.1016/j.molcel.2022.12.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.
Collapse
Affiliation(s)
- Seungsoo Kim
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Abstract
Hox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events. Moreover, the continued expression and function of Hox genes at postnatal and adult stages highlights crucial roles for these genes throughout the life of an organism. Here, we provide an overview of Hox genes, highlighting their evolutionary history, their unique genomic organization and how this impacts the regulation of their expression, what is known about their protein structure, and their deployment in development and beyond.
Collapse
Affiliation(s)
- Katharine A. Hubert
- Program in Genetics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
17
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
The pioneering function of the hox transcription factors. Semin Cell Dev Biol 2022:S1084-9521(22)00354-8. [PMID: 36517345 DOI: 10.1016/j.semcdb.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Ever since the discovery that the Hox family of transcription factors establish morphological diversity in the developing embryo, major efforts have been directed towards understanding Hox-dependent patterning. This has led to important discoveries, notably on the mechanisms underlying the collinear expression of Hox genes and Hox binding specificity. More recently, several studies have provided evidence that Hox factors have the capacity to bind their targets in an inaccessible chromatin context and trigger the switch to an accessible, transcriptional permissive, chromatin state. In this review, we provide an overview of the evidences supporting that Hox factors behave as pioneer factors and discuss the potential mechanisms implicated in Hox pioneer activity as well as the significance of this functional property in Hox-dependent patterning.
Collapse
|
19
|
Pinto PB, Domsch K, Lohmann I. Hox function and specificity – A tissue centric view. Semin Cell Dev Biol 2022:S1084-9521(22)00353-6. [PMID: 36517344 DOI: 10.1016/j.semcdb.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Since their discovery, the Hox genes, with their incredible power to reprogram the identity of complete body regions, a phenomenon called homeosis, have captured the fascination of many biologists. Recent research has provided new insights into the function of Hox proteins in different germ layers and the mechanisms they employ to control tissue morphogenesis. We focus in this review on the ectoderm and mesoderm to highlight new findings and discuss them with regards to established concepts of Hox target gene regulation. Furthermore, we highlight the molecular mechanisms involved the transcriptional repression of specific groups of Hox target genes, and summarize the role of Hox mediated gene silencing in tissue development. Finally, we reflect on recent findings identifying a large number of tissue-specific Hox interactor partners, which open up new avenues and directions towards a better understanding of Hox function and specificity in different tissues.
Collapse
|
20
|
Tran V, Nahlé S, Robert A, Desanlis I, Killoran R, Ehresmann S, Thibault MP, Barford D, Ravichandran KS, Sauvageau M, Smith MJ, Kmita M, Côté JF. Biasing the conformation of ELMO2 reveals that myoblast fusion can be exploited to improve muscle regeneration. Nat Commun 2022; 13:7077. [PMID: 36400788 PMCID: PMC9674853 DOI: 10.1038/s41467-022-34806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Myoblast fusion is fundamental for the development of multinucleated myofibers. Evolutionarily conserved proteins required for myoblast fusion include RAC1 and its activator DOCK1. In the current study we analyzed the contribution of the DOCK1-interacting ELMO scaffold proteins to myoblast fusion. When Elmo1-/- mice underwent muscle-specific Elmo2 genetic ablation, they exhibited severe myoblast fusion defects. A mutation in the Elmo2 gene that reduced signaling resulted in a decrease in myoblast fusion. Conversely, a mutation in Elmo2 coding for a protein with an open conformation increased myoblast fusion during development and in muscle regeneration. Finally, we showed that the dystrophic features of the Dysferlin-null mice, a model of limb-girdle muscular dystrophy type 2B, were reversed when expressing ELMO2 in an open conformation. These data provide direct evidence that the myoblast fusion process could be exploited for regenerative purposes and improve the outcome of muscle diseases.
Collapse
Affiliation(s)
- Viviane Tran
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Sarah Nahlé
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Inès Desanlis
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Ryan Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Sophie Ehresmann
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | | | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 OQH, UK
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, 22908, VA, USA
- VIB/UGent Inflammation Research Centre, Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Martin Sauvageau
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3T 1J4, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Marie Kmita
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, H3G 2M1, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.
| |
Collapse
|
21
|
Bolt CC, Lopez-Delisle L, Hintermann A, Mascrez B, Rauseo A, Andrey G, Duboule D. Context-dependent enhancer function revealed by targeted inter-TAD relocation. Nat Commun 2022; 13:3488. [PMID: 35715427 PMCID: PMC9205857 DOI: 10.1038/s41467-022-31241-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022] Open
Abstract
The expression of some genes depends on large, adjacent regions of the genome that contain multiple enhancers. These regulatory landscapes frequently align with Topologically Associating Domains (TADs), where they integrate the function of multiple similar enhancers to produce a global, TAD-specific regulation. We asked if an individual enhancer could overcome the influence of one of these landscapes, to drive gene transcription. To test this, we transferred an enhancer from its native location, into a nearby TAD with a related yet different functional specificity. We used the biphasic regulation of Hoxd genes during limb development as a paradigm. These genes are first activated in proximal limb cells by enhancers located in one TAD, which is then silenced when the neighboring TAD activates its enhancers in distal limb cells. We transferred a distal limb enhancer into the proximal limb TAD and found that its new context suppresses its normal distal specificity, even though it is bound by HOX13 transcription factors, which are responsible for the distal activity. This activity can be rescued only when a large portion of the surrounding environment is removed. These results indicate that, at least in some cases, the functioning of enhancer elements is subordinated to the host chromatin context, which can exert a dominant control over its activity.
Collapse
Affiliation(s)
- Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aurélie Hintermann
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Antonella Rauseo
- Department of Medical Genetics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Guillaume Andrey
- Department of Medical Genetics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
- Collège de France, 11 Place Marcelin Berthelot, 75231, Paris, France.
| |
Collapse
|
22
|
Mulley JF. Regulation of posterior Hox genes by sex steroids explains vertebral variation in inbred mouse strains. J Anat 2022; 240:735-745. [PMID: 34747015 PMCID: PMC8930804 DOI: 10.1111/joa.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
A series of elegant embryo transfer experiments in the 1950s demonstrated that the uterine environment could alter vertebral patterning in inbred mouse strains. In the intervening decades, attention has tended to focus on the technical achievements involved and neglected the underlying biological question: how can genetically homogenous individuals have a heterogenous number of vertebrae? Here I revisit these experiments and, with the benefit of knowledge of the molecular-level processes of vertebral patterning gained over the intervening decades, suggest a novel hypothesis for homeotic transformation of the last lumbar vertebra to the adjacent sacral type through regulation of Hox genes by sex steroids. Hox genes are involved in both axial patterning and development of male and female reproductive systems and have been shown to be sensitive to sex steroids in vitro and in vivo. Regulation of these genes by sex steroids and resulting alterations to vertebral patterning may hint at a deep evolutionary link between the ribless lumbar region of mammals and the switch from egg-laying to embryo implantation. An appreciation of the impact of sex steroids on Hox genes may explain some puzzling aspects of human disease, and highlights the spine as a neglected target for in utero exposure to endocrine disruptors.
Collapse
|
23
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
24
|
Buffry AD, McGregor AP. Micromanagement of Drosophila Post-Embryonic Development by Hox Genes. J Dev Biol 2022; 10:13. [PMID: 35225966 PMCID: PMC8883937 DOI: 10.3390/jdb10010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Hox genes function early in development to determine regional identity in animals. Consequently, the loss or gain of Hox gene expression can change this identity and cause homeotic transformations. Over 20 years ago, it was observed that the role of Hox genes in patterning animal body plans involves the fine-scale regulation of cell fate and identity during development, playing the role of 'micromanagers' as proposed by Michael Akam in key perspective papers. Therefore, as well as specifying where structures develop on animal bodies, Hox genes can help to precisely sculpt their morphology. Here, we review work that has provided important insights about the roles of Hox genes in influencing cell fate during post-embryonic development in Drosophila to regulate fine-scale patterning and morphology. We also explore how this is achieved through the regulation of Hox genes, specific co-factors and their complex regulation of hundreds of target genes. We argue that further investigating the regulation and roles of Hox genes in Drosophila post-embryonic development has great potential for understanding gene regulation, cell fate and phenotypic differentiation more generally.
Collapse
|
25
|
Sawai A, Pfennig S, Bulajić M, Miller A, Khodadadi-Jamayran A, Mazzoni EO, Dasen JS. PRC1 sustains the integrity of neural fate in the absence of PRC2 function. eLife 2022; 11:e72769. [PMID: 34994686 PMCID: PMC8765755 DOI: 10.7554/elife.72769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
Collapse
Affiliation(s)
- Ayana Sawai
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Sarah Pfennig
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Milica Bulajić
- Department of Biology, New York UniversityNew YorkUnited States
| | - Alexander Miller
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, NYU School of MedcineNew YorkUnited States
| | | | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
26
|
Cain B, Gebelein B. Mechanisms Underlying Hox-Mediated Transcriptional Outcomes. Front Cell Dev Biol 2021; 9:787339. [PMID: 34869389 PMCID: PMC8635045 DOI: 10.3389/fcell.2021.787339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.
Collapse
Affiliation(s)
- Brittany Cain
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
27
|
Singh NP. Gene regulation: Context is everything. Curr Biol 2021; 31:R1115-R1117. [PMID: 34637709 DOI: 10.1016/j.cub.2021.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
How transcription factors regulate a distinct set of target genes in different cell types is a fundamental question. A new study demonstrates how Ultrabithorax, a Hox transcription factor, acts as both a repressor and an activator in a cell type-specific manner to alter chromatin accessibility and gene regulation.
Collapse
Affiliation(s)
- Narendra P Singh
- Stowers Institute for Medical Research, Kansas City, MI 64110, USA.
| |
Collapse
|
28
|
Loker R, Sanner JE, Mann RS. Cell-type-specific Hox regulatory strategies orchestrate tissue identity. Curr Biol 2021; 31:4246-4255.e4. [PMID: 34358443 PMCID: PMC8511240 DOI: 10.1016/j.cub.2021.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023]
Abstract
Hox proteins are homeodomain transcription factors that diversify serially homologous segments along the animal body axis, as revealed by the classic bithorax phenotype of Drosophila melanogaster, in which mutations in Ultrabithorax (Ubx) transform the third thoracic segment into the likeness of the second thoracic segment. To specify segment identity, we show that Ubx both increases and decreases chromatin accessibility, coinciding with its dual role as both an activator and repressor of transcription. However, the choice of transcriptional activity executed by Ubx is spatially regulated and depends on the availability of cofactors, with Ubx acting as a repressor in some populations and as an activator in others. Ubx-mediated changes to chromatin accessibility positively and negatively affect the binding of Scalloped (Sd), a transcription factor that is required for appendage development in both segments. These findings illustrate how a single Hox protein can modify complex gene regulatory networks to transform the identity of an entire tissue.
Collapse
Affiliation(s)
- Ryan Loker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jordyn E Sanner
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
29
|
Schwaner MJ, Hsieh ST, Braasch I, Bradley S, Campos CB, Collins CE, Donatelli CM, Fish FE, Fitch OE, Flammang BE, Jackson BE, Jusufi A, Mekdara PJ, Patel A, Swalla BJ, Vickaryous M, McGowan CP. Future Tail Tales: A Forward-Looking, Integrative Perspective on Tail Research. Integr Comp Biol 2021; 61:521-537. [PMID: 33999184 PMCID: PMC8680820 DOI: 10.1093/icb/icab082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis Tails are a defining characteristic of chordates and show enormous diversity in function and shape. Although chordate tails share a common evolutionary and genetic-developmental origin, tails are extremely versatile in morphology and function. For example, tails can be short or long, thin or thick, and feathered or spiked, and they can be used for propulsion, communication, or balancing, and they mediate in predator-prey outcomes. Depending on the species of animal the tail is attached to, it can have extraordinarily multi-functional purposes. Despite its morphological diversity and broad functional roles, tails have not received similar scientific attention as, for example, the paired appendages such as legs or fins. This forward-looking review article is a first step toward interdisciplinary scientific synthesis in tail research. We discuss the importance of tail research in relation to five topics: (1) evolution and development, (2) regeneration, (3) functional morphology, (4) sensorimotor control, and (5) computational and physical models. Within each of these areas, we highlight areas of research and combinations of long-standing and new experimental approaches to move the field of tail research forward. To best advance a holistic understanding of tail evolution and function, it is imperative to embrace an interdisciplinary approach, re-integrating traditionally siloed fields around discussions on tail-related research.
Collapse
Affiliation(s)
- M J Schwaner
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - S T Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - I Braasch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - S Bradley
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C B Campos
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C E Collins
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - F E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - O E Fitch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - B E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - B E Jackson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909, USA
| | - A Jusufi
- Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - P J Mekdara
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Patel
- Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa
| | - B J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - M Vickaryous
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C P McGowan
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
30
|
Bolt CC, Lopez-Delisle L, Mascrez B, Duboule D. Mesomelic dysplasias associated with the HOXD locus are caused by regulatory reallocations. Nat Commun 2021; 12:5013. [PMID: 34408147 PMCID: PMC8373931 DOI: 10.1038/s41467-021-25330-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Human families with chromosomal rearrangements at 2q31, where the human HOXD locus maps, display mesomelic dysplasia, a severe shortening and bending of the limb. In mice, the dominant Ulnaless inversion of the HoxD cluster produces a similar phenotype suggesting the same origin for these malformations in humans and mice. Here we engineer 1 Mb inversion including the HoxD gene cluster, which positioned Hoxd13 close to proximal limb enhancers. Using this model, we show that these enhancers contact and activate Hoxd13 in proximal cells, inducing the formation of mesomelic dysplasia. We show that a secondary Hoxd13 null mutation in-cis with the inversion completely rescues the alterations, demonstrating that ectopic HOXD13 is directly responsible for this bone anomaly. Single-cell expression analysis and evaluation of HOXD13 binding sites suggests that the phenotype arises primarily by acting through genes normally controlled by HOXD13 in distal limb cells. Altogether, these results provide a conceptual and mechanistic framework to understand and unify the molecular origins of human mesomelic dysplasia associated with 2q31.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Animals
- Bone Diseases, Developmental/embryology
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/metabolism
- Disease Models, Animal
- Female
- Gene Deletion
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Limb Deformities, Congenital/embryology
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/metabolism
- Loss of Function Mutation
- Male
- Mice, Inbred C57BL
- Multigene Family
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
- Collège de France, Paris, France.
| |
Collapse
|
31
|
Fernandez-Guerrero M, Zdral S, Castilla-Ibeas A, Lopez-Delisle L, Duboule D, Ros MA. Time-sequenced transcriptomes of developing distal mouse limb buds: A comparative tissue layer analysis. Dev Dyn 2021; 251:1550-1575. [PMID: 34254395 DOI: 10.1002/dvdy.394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The development of the amniote limb has been an important model system to study patterning mechanisms and morphogenesis. For proper growth and patterning, it requires the interaction between the distal sub-apical mesenchyme and the apical ectodermal ridge (AER) that involve the separate implementation of coordinated and tissue-specific genetic programs. RESULTS Here, we produce and analyze the transcriptomes of both distal limb mesenchymal progenitors and the overlying ectodermal cells, following time-coursed dissections that cover from limb bud initiation to fully patterned limbs. The comparison of transcriptomes within each layer as well as between layers over time, allowed the identification of specific transcriptional signatures for each of the developmental stages. Special attention was given to the identification of genes whose transcription dynamics suggest a previously unnoticed role in the context of limb development and also to signaling pathways enriched between layers. CONCLUSION We interpret the transcriptomic data in light of the known development pattern and we conclude that a major transcriptional transition occurs in distal limb buds between E9.5 and E10.5, coincident with the switch from an early phase continuation of the signature of trunk progenitors, related to the initial proximo distal specification, to a late intrinsic phase of development.
Collapse
Affiliation(s)
- Marc Fernandez-Guerrero
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | - Sofia Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | - Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | | | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland.,Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Collège de France, Paris, France
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain.,Facultad de Medicina, Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
32
|
The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. Dev Biol 2021; 477:284-292. [PMID: 34102167 PMCID: PMC8846413 DOI: 10.1016/j.ydbio.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.
Collapse
|
33
|
Ye Z, Braden CR, Wills A, Kimelman D. Identification of in vivo Hox13-binding sites reveals an essential locus controlling zebrafish brachyury expression. Development 2021; 148:268973. [PMID: 34061173 DOI: 10.1242/dev.199408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
During early embryogenesis, the vertebrate embryo extends from anterior to posterior because of the progressive addition of cells from a posteriorly localized neuromesodermal progenitor (NMp) population. An autoregulatory loop between Wnt and Brachyury/Tbxt is required for NMps to retain mesodermal potential and, hence, normal axis development. We recently showed that Hox13 genes help to support body axis formation and to maintain the autoregulatory loop, although the direct Hox13 target genes were unknown. Here, using a new method for identifying in vivo transcription factor-binding sites, we identified more than 500 potential Hox13 target genes in zebrafish. Importantly, we found two highly conserved Hox13-binding elements far from the tbxta transcription start site that also contain a conserved Tcf7/Lef1 (Wnt response) site. We show that the proximal of the two elements is sufficient to confer somitogenesis-stage expression to a tbxta promoter that, on its own, only drives NMp expression during gastrulation. Importantly, elimination of this proximal element produces shortened embryos due to aberrant formation of the most posterior somites. Our study provides a potential direct connection between Hox13 and regulation of the Wnt/Brachyury loop.
Collapse
Affiliation(s)
- Zhi Ye
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Christopher R Braden
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| |
Collapse
|
34
|
Zu B, Wang Z, Xu Y, You G, Fu Q. Nonframeshifting indel variations in polyalanine repeat of
HOXD13
gene underlies hereditary limb malformation for two Chinese families. Dev Dyn 2021; 250:1220-1228. [DOI: 10.1002/dvdy.310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bailing Zu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhigang Wang
- Department of Pediatric Orthopedic Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yunlan Xu
- Department of Pediatric Orthopedic Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Guoling You
- Department of Laboratory Medicine Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
35
|
Beccari L, Jaquier G, Lopez-Delisle L, Rodriguez-Carballo E, Mascrez B, Gitto S, Woltering J, Duboule D. Dbx2 regulation in limbs suggests interTAD sharing of enhancers. Dev Dyn 2021; 250:1280-1299. [PMID: 33497014 PMCID: PMC8451760 DOI: 10.1002/dvdy.303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During tetrapod limb development, the HOXA13 and HOXD13 transcription factors are critical for the emergence and organization of the autopod, the most distal aspect where digits will develop. Since previous work had suggested that the Dbx2 gene is a target of these factors, we set up to analyze in detail this potential regulatory interaction. RESULTS We show that HOX13 proteins bind to mammalian-specific sequences at the vicinity of the Dbx2 locus that have enhancer activity in developing digits. However, the functional inactivation of the DBX2 protein did not elicit any particular phenotype related to Hox genes inactivation in digits, suggesting either redundant or compensatory mechanisms. We report that the neighboring Nell2 and Ano6 genes are also expressed in distal limb buds and are in part controlled by the same Dbx2 enhancers despite being localized into two different topologically associating domains (TADs) flanking the Dbx2 locus. CONCLUSIONS We conclude that Hoxa13 and Hoxd genes cooperatively activate Dbx2 expression in developing digits through binding to mammalian specific regulatory sequences in the Dbx2 neighborhood. Furthermore, these enhancers can overcome TAD boundaries in either direction to co-regulate a set of genes located in distinct chromatin domains.
Collapse
Affiliation(s)
- Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon1, Lyon, France
| | - Gabriel Jaquier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Eddie Rodriguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Joost Woltering
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,School of Life Sciences, Federal School of Technology (EPFL), Lausanne, Switzerland.,Collège de France, Paris, France
| |
Collapse
|
36
|
Comprehensive Comparison of Amnion Stromal Cells and Chorion Stromal Cells by RNA-Seq. Int J Mol Sci 2021; 22:ijms22041901. [PMID: 33672986 PMCID: PMC7918623 DOI: 10.3390/ijms22041901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.
Collapse
|
37
|
Desanlis I, Paul R, Kmita M. Transcriptional Trajectories in Mouse Limb Buds Reveal the Transition from Anterior-Posterior to Proximal-Distal Patterning at Early Limb Bud Stage. J Dev Biol 2020; 8:jdb8040031. [PMID: 33297480 PMCID: PMC7768367 DOI: 10.3390/jdb8040031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Limb patterning relies in large part on the function of the Hox family of developmental genes. While the differential expression of Hox genes shifts from the anterior-posterior (A-P) to the proximal-distal (P-D) axis around embryonic day 11 (E11), whether this shift coincides with a more global change of A-P to P-D patterning program remains unclear. By performing and analyzing the transcriptome of the developing limb bud from E10.5 to E12.5, at single-cell resolution, we have uncovered transcriptional trajectories that revealed a general switch from A-P to P-D genetic program between E10.5 and E11.5. Interestingly, all the transcriptional trajectories at E10.5 end with cells expressing either proximal or distal markers suggesting a progressive acquisition of P-D identity. Moreover, we identified three categories of genes expressed in the distal limb mesenchyme characterized by distinct temporal expression dynamics. Among these are Hoxa13 and Hoxd13 (Hox13 hereafter), which start to be expressed around E10.5, and importantly the binding of the HOX13 factors was observed within or in the neighborhood of several of the distal limb genes. Our data are consistent with previous evidence suggesting that the transition from the early/proximal to the late/distal transcriptome of the limb mesenchyme largely relies on HOX13 function. Based on these results and the evidence that HOX13 factors restrict Hoxa11 expression to the proximal limb, in progenitor cells of the zeugopod, we propose that HOX13 act as a key determinant of P-D patterning.
Collapse
Affiliation(s)
- Ines Desanlis
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (I.D.); (R.P.)
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Rachel Paul
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (I.D.); (R.P.)
- Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (I.D.); (R.P.)
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-514-987-5749
| |
Collapse
|
38
|
Bulajić M, Srivastava D, Dasen JS, Wichterle H, Mahony S, Mazzoni EO. Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns. Development 2020; 147:dev194761. [PMID: 33028607 PMCID: PMC7710020 DOI: 10.1242/dev.194761] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
39
|
Gu Y, Gu J, Shen K, Zhou H, Hao J, Li F, Yu H, Chen Y, Li J, Li Y, Liang H, Dong Y. HOXA13 promotes colon cancer progression through β-catenin-dependent WNT pathway. Exp Cell Res 2020; 395:112238. [PMID: 32822724 DOI: 10.1016/j.yexcr.2020.112238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
Human class I homeobox A13 (HOXA13) was initially identified as a transcription factor and has an important role in embryonic development and malignant transformation. However, the clinical significance and the molecular mechanisms of HOXA13 in colon cancer development and progression are still unknown. In this study, we found that HOXA13 was highly expressed in colon cancer tissues, and its expression was associated with histological grade, T stage, N stage and tumour size. In vitro studies showed that HOXA13 promoted colon cancer cell proliferation, migration and invasion. Bioinformatics analysis revealed that HOXA13 expression was positively correlated with the WNT signalling pathway. In vitro studies showed that HOXA13 promoted the malignant phenotype of colon cancer cells by facilitating the nuclear translocation of β-Catenin. Moreover, XAV939, an inhibitor of β-Catenin, reversed the HOXA13-mediated effects on invasion and proliferation of colon cancer cells. In vivo studies further verified that HOXA13 promoted tumour formation through the Wnt/β-Catenin pathway. Collectively, these results suggest that HOXA13 is a potential oncogene that functions by promoting the nuclear translocation of β-Catenin, thereby maintaining the proliferation and metastasis of colon cancer.
Collapse
Affiliation(s)
- Yan Gu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jun Gu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Kaicheng Shen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Hongxu Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jie Hao
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Fu Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, 610072, China
| | - Yueqi Chen
- Department of Orthopaedic, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Yifei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China.
| | - Yan Dong
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400038, China.
| |
Collapse
|