1
|
Duhamel S. The microbial phosphorus cycle in aquatic ecosystems. Nat Rev Microbiol 2025; 23:239-255. [PMID: 39528792 DOI: 10.1038/s41579-024-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus is an essential element for life, and phosphorus cycling is crucial to planetary habitability. In aquatic environments, microorganisms are a major component of phosphorus cycling and rapidly transform the diverse chemical forms of phosphorus through various uptake, assimilation and release pathways. Recent discoveries have revealed a more dynamic and complex aquatic microbial phosphorus cycle than previously understood. Some microorganisms have been shown to use and produce new phosphorus compounds, including those in reduced forms. New findings have also raised numerous unanswered questions that warrant further investigation. There is an expanding influence of human activity on aquatic ecosystems. Advancements in understanding the phosphorus biogeochemistry of evolving aquatic environments offer a unique opportunity to comprehend, anticipate and mitigate the effect of human activities. In this Review, I discuss the wealth of new aquatic phosphorus cycle research, spanning disciplines from omics and physiology to global biogeochemical modelling, with a focus on the current comprehension of how aquatic microorganisms sense, transport, assimilate, store, produce and release phosphorus. Of note, I delve into cellular phosphorus allocation, an underexplored topic with wide-ranging implications for energy and element flux in aquatic ecosystems.
Collapse
Affiliation(s)
- Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Clifton BE, Alcolombri U, Uechi GI, Jackson CJ, Laurino P. The ultra-high affinity transport proteins of ubiquitous marine bacteria. Nature 2024; 634:721-728. [PMID: 39261732 PMCID: PMC11485210 DOI: 10.1038/s41586-024-07924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
SAR11 bacteria are the most abundant microorganisms in the surface ocean1 and have global biogeochemical importance2-4. To thrive in their competitive oligotrophic environment, these bacteria rely heavily on solute-binding proteins that facilitate uptake of specific substrates via membrane transporters5,6. The functions and properties of these transport proteins are key factors in the assimilation of dissolved organic matter and biogeochemical cycling of nutrients in the ocean, but they have remained largely inaccessible to experimental investigation. Here we performed genome-wide experimental characterization of all solute-binding proteins in a prototypical SAR11 bacterium, revealing specific functions and general trends in their properties that contribute to the success of SAR11 bacteria in oligotrophic environments. We found that the solute-binding proteins of SAR11 bacteria have extremely high binding affinity (dissociation constant >20 pM) and high binding specificity, revealing molecular mechanisms of oligotrophic adaptation. Our functional data have uncovered new carbon sources for SAR11 bacteria and enable accurate biogeographical analysis of SAR11 substrate uptake capabilities throughout the ocean. This study provides a comprehensive view of the substrate uptake capabilities of ubiquitous marine bacteria, providing a necessary foundation for understanding their contribution to assimilation of dissolved organic matter in marine ecosystems.
Collapse
Affiliation(s)
- Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gen-Ichiro Uechi
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
3
|
Waggoner EM, Djaoudi K, Diaz JM, Duhamel S. Dissolved organic phosphorus bond-class utilization by Synechococcus. FEMS Microbiol Ecol 2024; 100:fiae099. [PMID: 39003239 PMCID: PMC11319936 DOI: 10.1093/femsec/fiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus-carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5'-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5'-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus-carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5'-triphosphate, and lastly adenosine 5'-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains' exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5'-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.
Collapse
Affiliation(s)
- Emily M Waggoner
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Kahina Djaoudi
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Julia M Diaz
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, United States
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| |
Collapse
|
4
|
Solovchenko A, Plouviez M, Khozin-Goldberg I. Getting Grip on Phosphorus: Potential of Microalgae as a Vehicle for Sustainable Usage of This Macronutrient. PLANTS (BASEL, SWITZERLAND) 2024; 13:1834. [PMID: 38999674 PMCID: PMC11243885 DOI: 10.3390/plants13131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Phosphorus (P) is an important and irreplaceable macronutrient. It is central to energy and information storage and exchange in living cells. P is an element with a "broken geochemical cycle" since it lacks abundant volatile compounds capable of closing the P cycle. P fertilizers are critical for global food security, but the reserves of minable P are scarce and non-evenly distributed between countries of the world. Accordingly, the risks of global crisis due to limited access to P reserves are expected to be graver than those entailed by competition for fossil hydrocarbons. Paradoxically, despite the scarcity and value of P reserves, its usage is extremely inefficient: the current waste rate reaches 80% giving rise to a plethora of unwanted consequences such as eutrophication leading to harmful algal blooms. Microalgal biotechnology is a promising solution to tackle this challenge. The proposed review briefly presents the relevant aspects of microalgal P metabolism such as cell P reserve composition and turnover, and the regulation of P uptake kinetics for maximization of P uptake efficiency with a focus on novel knowledge. The multifaceted role of polyPhosphates, the largest cell depot for P, is discussed with emphasis on the P toxicity mediated by short-chain polyPhosphates. Opportunities and hurdles of P bioremoval via P uptake from waste streams with microalgal cultures, either suspended or immobilized, are discussed. Possible avenues of P-rich microalgal biomass such as biofertilizer production or extraction of valuable polyPhosphates and other bioproducts are considered. The review concludes with a comprehensive assessment of the current potential of microalgal biotechnology for ensuring the sustainable usage of phosphorus.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | | | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sde-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
5
|
Zhu Y, Mulholland MR, Bernhardt PW, Neeley AR, Widner B, Tapia AM, Echevarria MA. Nitrogen uptake rates and phytoplankton composition across contrasting North Atlantic Ocean coastal regimes north and south of Cape Hatteras. Front Microbiol 2024; 15:1380179. [PMID: 38784802 PMCID: PMC11113559 DOI: 10.3389/fmicb.2024.1380179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Understanding nitrogen (N) uptake rates respect to nutrient availability and the biogeography of phytoplankton communities is crucial for untangling the complexities of marine ecosystems and the physical, biological, and chemical forces shaping them. In the summer of 2016, we conducted measurements of bulk microbial uptake rates for six 15N-labeled substrates: nitrate, nitrite, ammonium, urea, cyanate, and dissolve free amino acids across distinct marine provinces, including the continental shelf of the Mid-and South Atlantic Bights (MAB and SAB), the Slope Sea, and the Gulf Stream, marking the first instance of simultaneously measuring six different N uptake rates in this dynamic region. Total measured N uptake rates were lowest in the Gulf Stream followed by the SAB. Notably, the MAB exhibited significantly higher N uptake rates compared to the SAB, likely due to the excess levels of pre-existing phosphorus present in the MAB. Together, urea and nitrate uptake contributed approximately 50% of the total N uptake across the study region. Although cyanate uptake rates were consistently low, they accounted for up to 11% of the total measured N uptake at some Gulf Stream stations. Phytoplankton groups were identified based on specific pigment markers, revealing a dominance of diatoms in the shelf community, while Synechococcus, Prochlorococcus, and pico-eukaryotes dominated in oligotrophic Gulf Stream waters. The reported uptake rates in this study were mostly in agreement with previous studies conducted in coastal waters of the North Atlantic Ocean. This study suggests there are distinct regional patterns of N uptake in this physically dynamic region, correlating with nutrient availability and phytoplankton community composition. These findings contribute valuable insights into the intricate interplay of biological and chemical factors shaping N dynamics in disparate marine ecosystems.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Margaret R. Mulholland
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
| | - Peter W. Bernhardt
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
| | | | - Brittany Widner
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
| | - Alfonso Macías Tapia
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
- Office of Education, National Oceanic and Atmospheric Administration, Silver Spring, MD, United States
| | - Michael A. Echevarria
- Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
6
|
Shen A, Gao S, Jiang J, Hu Q, Wang H, Yuan S. Oscillations of algal cell quota: Considering two-stage phosphate uptake kinetics. J Theor Biol 2024; 581:111739. [PMID: 38280542 DOI: 10.1016/j.jtbi.2024.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Elucidating the mechanism of effect of phosphate (PO43-) uptake on the growth of algal cells helps understand the frequent outbreaks of algal blooms caused by eutrophication. In this study, we develop a comprehensive mathematical model that incorporates two stages of PO43- uptake and accounts for transport time delay. The model parameter values are determined by fitting experimental data of Prorocentrum donghaiense and the model is validated using experimental data of Karenia mikimotoi. The numerical results demonstrate that the model successfully captures the general characteristics of algal growth and PO43- uptake under PO43- sufficient conditions. Significantly, the experimental and mathematical findings suggest that the time delay associated with the transfer of PO43- from the surface-adsorbed PO43- (Ps) pool to the intracellular PO43- (Pi) pool may serve as a physiologically plausible mechanism leading to oscillations of algal cell quota. These results have important implications for resource managers, enabling them to predict and deepen their understanding of harmful algal blooms.
Collapse
Affiliation(s)
- Anglu Shen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shufei Gao
- College of science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jie Jiang
- College of science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingjing Hu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
| | - Sanling Yuan
- College of science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Garcia NS, Du M, Guindani M, McIlvin MR, Moran DM, Saito MA, Martiny AC. Proteome trait regulation of marine Synechococcus elemental stoichiometry under global change. THE ISME JOURNAL 2024; 18:wrae046. [PMID: 38513256 PMCID: PMC11020310 DOI: 10.1093/ismejo/wrae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Recent studies have demonstrated regional differences in marine ecosystem C:N:P with implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient stress explain variability in C:N:P equally well. A reductionistic approach can link changes in individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we quantified effects of temperature and nutrient stress on Synechococcus chemistry using laboratory chemostats, chemical analyses, and data-independent acquisition mass spectrometry proteomics. Nutrient supply accounted for most C:N:Pcell variability and induced tradeoffs between nutrient acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal effects via the "translation-compensation hypothesis" were only seen under P-stress. A Nonparametric Bayesian Local Clustering algorithm suggested that changes in lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P regulation. Physiological responses match field-based trends in ecosystem stoichiometry and suggest a hierarchical environmental regulation of current and future ocean C:N:P.
Collapse
Affiliation(s)
- Nathan S Garcia
- Department of Earth System Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Mingyu Du
- Department of Statistics, University of California, Irvine, Irvine, CA 92697, United States
| | - Michele Guindani
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, Irvine, CA 92697, United States
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, United States
| |
Collapse
|
8
|
Rihtman B, Torcello-Requena A, Mikhaylina A, Puxty RJ, Clokie MRJ, Millard AD, Scanlan DJ. Coordinated transcriptional response to environmental stress by a Synechococcus virus. THE ISME JOURNAL 2024; 18:wrae032. [PMID: 38431846 PMCID: PMC10976474 DOI: 10.1093/ismejo/wrae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.
Collapse
Affiliation(s)
- Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Alberto Torcello-Requena
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Alevtina Mikhaylina
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Martha R J Clokie
- Leicester Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Andrew D Millard
- Leicester Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
9
|
Raven JA. Avoiding and allowing apatite precipitation in oxygenic photolithotrophs. THE NEW PHYTOLOGIST 2023; 238:1801-1812. [PMID: 36856343 DOI: 10.1111/nph.18849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
The essential elements Ca and P, taken up and used metabolically as Ca2+ and H2 PO4 - /HPO4 2- respectively, could precipitate as one or more of the insoluble forms calcium phosphate (mainly apatite) if the free ion concentrations and pH are high enough. In the cytosol, chloroplast stroma, and mitochondrial matrix, the very low free Ca2+ concentration avoids calcium phosphate precipitation, apart from occasionally in the mitochondrial matrix. The low free Ca2+ concentration in these compartments is commonly thought of in terms of the role of Ca2+ in signalling. However, it also helps avoids calcium phosphate precipitation, and this could be its earliest function in evolution. In vacuoles, cell walls, and xylem conduits, there can be relatively high concentrations of Ca2+ and inorganic orthophosphate, but pH and/or other ligands for Ca2+ , suggests that calcium phosphate precipitates are rare. However, apatite is precipitated under metabolic control in shoot trichomes, and by evaporative water loss in hydathodes, in some terrestrial flowering plants. In aquatic macrophytes that deposit CaCO3 on their cell walls or in their environment as a result of pH increase or removal of inhibitors of nucleation or crystal growth, phosphate is sometimes incorporated in the CaCO3 . Calcium phosphate precipitation also occurs in some stromatolites.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Climate Change Cluster, Faculty of Science, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
10
|
Song X, Ding J, Tian W, Xu H, Zou H, Wang Z. Effects of plastisphere on phosphorus availability in freshwater system: Critical roles of polymer type and colonizing habitat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161990. [PMID: 36737019 DOI: 10.1016/j.scitotenv.2023.161990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Biofilm covered microplastics (BMPs) can act as vectors for the transport of exogenous microbial groups to aquatic ecosystem. However, a consensus regarding the formation and development of BMPs and their effect on phosphorus (P) availability has not been reached. Herein, plastic particles made of fuel-based (PET) and biobased polymers (PLA) were deployed in water and hyporheic zones of an urban river for biofilm colonization. Then, BMPs were transferred to lab incubation to study their effects on the P availability. The results showed that different microplastic biofilms had various bacteria and phytoplankton compositions. Additionally, BMPs induced a shift in the microbial co-occurrence patterns co-differentiated by polymer type and colonizing habitats. Network analyses revealed that the structure of PLA BMPs was more robust, while PET colonized in the hyporheic zone reduced network complexity with looser connections between species, and stronger negatively correlated interactions. However, PET formed denser biofilms by the excretion of extracellular polymeric substances from microalgae, which contributed to the better capacity of P utilization. PET colonized in the water/hyporheic zone significantly decreased soluble reactive phosphate by 42.5 % and 30.8 %, respectively. The abovementioned results indicated that BMPs have the potential to disrupt nutrient availability. This study broadens our perspectives for the ecological effects of BMPs in the aquatic environment.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Wenqing Tian
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Xu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Markússon S, Hjörleifsson JG, Kursula P, Ásgeirsson B. Structural Characterization of Functionally Important Chloride Binding Sites in the Marine Vibrio Alkaline Phosphatase. Biochemistry 2022; 61:2248-2260. [PMID: 36194497 DOI: 10.1021/acs.biochem.2c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme stability and function can be affected by various environmental factors, such as temperature, pH, and ionic strength. Enzymes that are located outside the relatively unchanging environment of the cytosol, such as those residing in the periplasmic space of bacteria or extracellularly secreted, are challenged by more fluctuations in the aqueous medium. Bacterial alkaline phosphatases (APs) are generally affected by ionic strength of the medium, but this varies substantially between species. An AP from the marine bacterium Vibrio splendidus (VAP) shows complex pH-dependent activation and stabilization in the 0-1.0 M range of halogen salts and has been hypothesized to specifically bind chloride anions. Here, using X-ray crystallography and anomalous scattering, we have located two chloride binding sites in the structure of VAP, one in the active site and another one at a peripheral site. Further characterization of the binding sites using site-directed mutagenesis and small-angle X-ray scattering showed that upon binding of chloride to the peripheral site, structural dynamics decreased locally, resulting in thermal stabilization of the VAP active conformation. Binding of the chloride ion in the active site did not displace the bound inorganic phosphate product, but it may promote product release by facilitating rotational stabilization of the substrate-binding Arg129. Overall, these results reveal the complex nature and dynamics of chloride binding to enzymes through long-range modulation of electronic potential in the vicinity of the active site, resulting in increased catalytic efficiency and stability.
Collapse
Affiliation(s)
- Sigurbjörn Markússon
- Science Institute, University of Iceland, 107 Reykjavik, Iceland.,Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland.,Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | | |
Collapse
|
12
|
Differentiated Evolutionary Strategies of Genetic Diversification in Atlantic and Pacific Thaumarchaeal Populations. mSystems 2022; 7:e0147721. [PMID: 35695431 PMCID: PMC9239043 DOI: 10.1128/msystems.01477-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Some marine microbes are seemingly “ubiquitous,” thriving across a wide range of environmental conditions. While the increased depth in metagenomic sequencing has led to a growing body of research on within-population heterogeneity in environmental microbial populations, there have been fewer systematic comparisons and characterizations of population-level genetic diversity over broader expanses of time and space. Here, we investigated the factors that govern the diversification of ubiquitous microbial taxa found within and between ocean basins. Specifically, we use mapped metagenomic paired reads to examine the genetic diversity of ammonia-oxidizing archaeal (“Candidatus Nitrosopelagicus brevis”) populations in the Pacific (Hawaii Ocean Time-series [HOT]) and Atlantic (Bermuda Atlantic Time Series [BATS]) Oceans sampled over 2 years. We observed higher nucleotide diversity in “Ca. N. brevis” at HOT, driven by a higher rate of homologous recombination. In contrast, “Ca. N. brevis” at BATS featured a more open pangenome with a larger set of genes that were specific to BATS, suggesting a history of dynamic gene gain and loss events. Furthermore, we identified highly differentiated genes that were regulatory in function, some of which exhibited evidence of recent selective sweeps. These findings indicate that different modes of genetic diversification likely incur specific adaptive advantages depending on the selective pressures that they are under. Within-population diversity generated by the environment-specific strategies of genetic diversification is likely key to the ecological success of “Ca. N. brevis.” IMPORTANCE Ammonia-oxidizing archaea (AOA) are one of the most abundant chemolithoautotrophic microbes in the marine water column and are major contributors to global carbon and nitrogen cycling. Despite their ecological importance and geographical pervasiveness, there have been limited systematic comparisons and characterizations of their population-level genetic diversity over time and space. Here, we use metagenomic time series from two ocean observatories to address the fundamental questions of how abiotic and biotic factors shape the population-level genetic diversity and how natural microbial populations adapt across diverse habitats. We show that the marine AOA “Candidatus Nitrosopelagicus brevis” in different ocean basins exhibits distinct modes of genetic diversification in response to their selective regimes shaped by nutrient availability and patterns of environmental fluctuations. Our findings specific to “Ca. N. brevis” have broader implications, particularly in understanding the population-level responses to the changing climate and predicting its impact on biogeochemical cycles.
Collapse
|
13
|
Zhao F, Lin X, Cai K, Jiang Y, Ni T, Chen Y, Feng J, Dang S, Zhou CZ, Zeng Q. Biochemical and structural characterization of the cyanophage-encoded phosphate binding protein: implications for enhanced phosphate uptake of infected cyanobacteria. Environ Microbiol 2022; 24:3037-3050. [PMID: 35590460 DOI: 10.1111/1462-2920.16043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/01/2022]
Abstract
To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modeled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fangxin Zhao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xingqin Lin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kun Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - YongLiang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Tianchi Ni
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jianrong Feng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shangyu Dang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
| |
Collapse
|
14
|
Konopáčová E, Nedoma J, Čapková K, Čapek P, Znachor P, Pouzar M, Říha M, Řeháková K. Low Specific Phosphorus Uptake Affinity of Epilithon in Three Oligo- to Mesotrophic Post-mining Lakes. Front Microbiol 2021; 12:735498. [PMID: 34690974 PMCID: PMC8527014 DOI: 10.3389/fmicb.2021.735498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Epilithon contributes to phosphorus (P) cycling in lakes, but its P uptake traits have been rarely studied. We measured the chemical composition of epilithon and its inorganic P uptake kinetics using isotope 33P in three deep oligo- to mesotrophic post-mining lakes in April, July, and October 2019. Over the sampling period, epilithon biomass doubled, while the P content in biomass dropped to 60% of the April values, and the seasonal changes in P content expressed per epilithon area were only marginal and statistically not significant. High epilithic C:P molar ratios (677 on average) suggested strong P deficiency in all investigated lakes. Regarding the kinetic parameters of phosphorus uptake, maximum uptake velocity (Vmax, seasonal range 1.9–129 mg P g OM–1 h–1) decreased by an order of magnitude from April to October, while half-saturation constant (KS, seasonal range 3.9–135 mg P L–1) did not show any consistent temporal trend. Values of epilithic specific P uptake affinity (SPUAE, seasonal range 0.08–3.1 L g OM–1 h–1) decreased from spring to autumn and were two to four orders of magnitude lower than the corresponding values for seston (SPUAsest), which showed an opposite trend. Considering our results, we suggest a possible mechanism underlying a stable coexistence of planktonic and epilithic microorganisms, with plankton prospering mostly in summer and autumn and epilithon in winter and spring season. Additionally, a phenomenon of reversible abiotic P adsorption on epilithon was observed.
Collapse
Affiliation(s)
- Eliška Konopáčová
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia.,Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Jiří Nedoma
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Kateřina Čapková
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Petr Čapek
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Miloslav Pouzar
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia.,Center of Materials and Nanotechnologies, University of Pardubice, Pardubice, Czechia
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Klára Řeháková
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
15
|
Xu Y, Curtis T, Dolfing J, Wu Y, Rittmann BE. N-acyl-homoserine-lactones signaling as a critical control point for phosphorus entrapment by multi-species microbial aggregates. WATER RESEARCH 2021; 204:117627. [PMID: 34509868 DOI: 10.1016/j.watres.2021.117627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Quorum sensing (QS) has been extensively studied in pure stains of microorganisms, but the ecological roles of QS in multi-species microbial aggregates are poorly understood due to the aggregates' heterogeneity and complexity, in particular the phosphorus (P) entrapment, a key aspect of element cycling. Using periphytic biofilm as a microbial-aggregate model, we addressed how QS signaling via N-acyl-homoserine-lactones (AHLs) regulated P entrapment. The most-abundant AHLs detected were C8-HSL, 3OC8-HSL, and C12-HSL, are the primary regulator of P entrapment in the periphytic biofilm. QS signaling-AHL is a beneficial molecule for bacterial growth in periphytic biofilm and the addition of these three AHLs optimized polyphosphate accumulating organisms (PAOs) community. Growth promotion was accompanied by up-regulation of pyrimidine, purine and energy metabolism. Both intra- and extra-cellular P entrapment were enhanced in the addition of AHLs. AHLs increased extracellular polymeric substances (EPS) production to drive extracellular P entrapment, via up-regulating amino acids biosynthesis and amino sugar/nucleotide sugar metabolism. Also, AHLs improved intracellular P entrapment potential by regulating genes involved in inorganic-P accumulation (ppk, ppx) and P uptake and transport (pit, pstSCAB). This proof-of-concept evidence about how QS signaling regulates P entrapment by microbial aggregates paves the way for managing QS to enhance P removal by microbial aggregates in aquatic environments.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thomas Curtis
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P. O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
16
|
Dwivedi P, Sharma AK, Singh SP. Biochemical properties and repression studies of an alkaline serine protease from a haloalkaliphilic actinomycete, Nocardiopsis dassonvillei subsp. albirubida OK-14. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Nanomolar phosphate supply and its recycling drive net community production in the subtropical North Pacific. Nat Commun 2021; 12:3462. [PMID: 34103533 PMCID: PMC8187552 DOI: 10.1038/s41467-021-23837-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
Seasonal drawdown of dissolved inorganic carbon (DIC) in the subtropical upper ocean makes a significant contribution to net community production (NCP) globally. Although NCP requires macronutrient supply, surface macronutrients are chronically depleted, and their supply has been unable to balance the NCP demand. Here, we report nanomolar increases in surface nitrate plus nitrite (N+N, ~20 nM) and phosphate (PO4, ~15 nM) from summer to winter in the western subtropical North Pacific. Molar ratios of upward fluxes of DIC:N+N:PO4 to the euphotic zone (< 100 m) were in near-stoichiometric balance with microbial C:N:P ratios (107~243:16~35:1). Comparison of these upward influxes with other atmospheric and marine sources demonstrated that total supply is largely driven by the other sources for C and N (93~96%), but not for P (10%), suggesting that nanomolar upward supply of P and its preferential recycling play a vital role in sustaining the NCP.
Collapse
|
18
|
Zhang Q, Chen Y, Wang M, Zhang J, Chen Q, Liu D. Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa. WATER RESEARCH 2021; 196:117048. [PMID: 33773451 DOI: 10.1016/j.watres.2021.117048] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Toxic cyanobacteria bloom is a ubiquitous phenomenon worldwide in eutrophic lakes or reservoirs. Microcystis, is a cosmopolitan genus in cyanobacteria and exists in many different forms. Microcystis aeruginosa (M. aeruginosa) can produce microcystins (MCs) with strong liver toxicity during its growth and decomposition. Phosphorus (P) is a typical growth limiting factor of M. aeruginosa. Though different forms and concentrations of P are common in natural water, the molecular responses in the growth and MCs formation of M. aeruginosa remain unclear. In this study, laboratory experiments were conducted to determine the uptake of P, cell activity, MCs release, and related gene expression under different concentrations of dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP). We found that the growth of M. aeruginosa was promoted by increasing DIP concentration but coerced under high concentration (0.6 and 1.0 mg P/L) of DOP after P starvation. The growth stress was not related to the alkaline phosphatase activity (APA). Although alkaline phosphatase (AP) could convert DOP into algae absorbable DIP, the growth status of M. aeruginosa mainly depended on the response mechanism of phosphate transporter expression to the extracellular P concentration. High-concentration DIP promoted MCs production in M. aeruginosa, while high-concentration DOP triggered the release of intracellular MCs rather than affecting MCs production. Our study revealed the molecular responses of algal growth and toxin formation under different P sources, and provided a theoretical basis and novel idea for risk management of eutrophic lakes and reservoirs.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yuchen Chen
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Min Wang
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210098, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210098, China.
| | - Dongsheng Liu
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|