1
|
Mount HO, Urbanus ML, Sheykhkarimli D, Coté AG, Laval F, Coppin G, Kishore N, Li R, Spirohn-Fitzgerald K, Petersen MO, Knapp JJ, Kim DK, Twizere JC, Calderwood MA, Vidal M, Roth FP, Ensminger AW. A comprehensive two-hybrid analysis to explore the Legionella pneumophila effector-effector interactome. mSystems 2024; 9:e0100424. [PMID: 39526800 DOI: 10.1128/msystems.01004-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Legionella pneumophila uses over 300 translocated effector proteins to rewire host cells during infection and create a replicative niche for intracellular growth. To date, several studies have identified L. pneumophila effectors that indirectly and directly regulate the activity of other effectors, providing an additional layer of regulatory complexity. Among these are "metaeffectors," a special class of effectors that regulate the activity of other effectors once inside the host. A defining feature of metaeffectors is direct, physical interaction with a target effector. Metaeffector identification, to date, has depended on phenotypes in heterologous systems and experimental serendipity. Using a multiplexed, recombinant barcode-based yeast two-hybrid technology we screened for protein-protein interactions among all L. pneumophila effectors and 28 components of the Dot/Icm type IV secretion system (>167,000 protein combinations). Of the 52 protein interactions identified by this approach, 44 are novel protein interactions, including 10 novel effector-effector interactions (doubling the number of known effector-effector interactions). IMPORTANCE Secreted bacterial effector proteins are typically viewed as modulators of host activity, entering the host cytosol to physically interact with and modify the activity of one or more host proteins in support of infection. A growing body of evidence suggests that a subset of effectors primarily function to modify the activities of other effectors inside the host. These "effectors of effectors" or metaeffectors are often identified through experimental serendipity during the study of canonical effector function against the host. We previously performed the first global effector-wide genetic interaction screen for metaeffectors within the arsenal of Legionella pneumophila, an intracellular bacterial pathogen with over 300 effectors. Here, using a high-throughput, scalable methodology, we present the first global interaction network of physical interactions between L. pneumophila effectors. This data set serves as a complementary resource to identify and understand both the scope and nature of non-canonical effector activity within this important human pathogen.
Collapse
Affiliation(s)
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Dayag Sheykhkarimli
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Atina G Coté
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
- Laboratory of Molecular and Cellular Epigenetics, GIGA Institute, University of Liège, Liège, Belgium
| | - Georges Coppin
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Nishka Kishore
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Roujia Li
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Kerstin Spirohn-Fitzgerald
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Morgan O Petersen
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer J Knapp
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Dae-Kyum Kim
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Jean-Claude Twizere
- TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Frederick P Roth
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander W Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Wehrmann M, Vilchez D. The emerging role and therapeutic implications of bacterial and parasitic deubiquitinating enzymes. Front Immunol 2023; 14:1303072. [PMID: 38077335 PMCID: PMC10703165 DOI: 10.3389/fimmu.2023.1303072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are emerging as key factors for the infection of human cells by pathogens such as bacteria and parasites. In this review, we discuss the most recent studies on the role of deubiquitinase activity in exploiting and manipulating ubiquitin (Ub)-dependent host processes during infection. The studies discussed here highlight the importance of DUB host-pathogen research and underscore the therapeutic potential of inhibiting pathogen-specific DUB activity to prevent infectious diseases.
Collapse
Affiliation(s)
- Markus Wehrmann
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Zhu J, Sun R, Sun K, Yan C, Jiang J, Kong F, Shi J. The deubiquitinase USP11 ameliorates intervertebral disc degeneration by regulating oxidative stress-induced ferroptosis via deubiquitinating and stabilizing Sirt3. Redox Biol 2023; 62:102707. [PMID: 37099926 PMCID: PMC10149406 DOI: 10.1016/j.redox.2023.102707] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Increasing studies have reported that intervertebral disc degeneration (IVDD) is the main contributor and independent risk factor for low back pain (LBP), it would be, therefore, enlightening that investigating the exact pathogenesis of IVDD and developing target-specific molecular drugs in the future. Ferroptosis is a new form of programmed cell death characterized by glutathione (GSH) depletion, and inactivation of the regulatory core of the antioxidant system (glutathione system) GPX4. The close relationship of oxidative stress and ferroptosis has been studied in various of diseases, but the crosstalk between of oxidative stress and ferroptosis has not been explored in IVDD. At the beginning of the current study, we proved that Sirt3 decreases and ferroptosis occurs after IVDD. Next, we found that knockout of Sirt3 (Sirt3-/-) promoted IVDD and poor pain-related behavioral scores via increasing oxidative stress-induced ferroptosis. The (immunoprecipitation coupled with mass spectrometry) IP/MS and co-IP demonstrated that USP11 was identified to stabilize Sirt3 via directly binding to Sirt3 and deubiquitinating Sirt3. Overexpression of USP11 significantly ameliorate oxidative stress-induced ferroptosis, thus relieving IVDD by increasing Sirt3. Moreover, knockout of USP11 in vivo (USP11-/-) resulted in exacerbated IVDD and poor pain-related behavioral scores, which could be reversed by overexpression of Sirt3 in intervertebral disc. In conclusion, the current study emphasized the importance of the interaction of USP11 and Sirt3 in the pathological process of IVDD via regulating oxidative stress-induced ferroptosis, and USP11-mediated oxidative stress-induced ferroptosis is identified as a promising target for treating IVDD.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Ruping Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Kaiqiang Sun
- Department of Orthopaedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Chen Yan
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jialin Jiang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Fanqi Kong
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jiangang Shi
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
5
|
Abstract
Our understanding of the ubiquitin code has greatly evolved from conventional E1, E2 and E3 enzymes that modify Lys residues on specific substrates with a single type of ubiquitin chain to more complex processes that regulate and mediate ubiquitylation. In this Review, we discuss recently discovered endogenous mechanisms and unprecedented pathways by which pathogens rewrite the ubiquitin code to promote infection. These processes include unconventional ubiquitin modifications involving ester linkages with proteins, lipids and sugars, or ubiquitylation through a phosphoribosyl bridge involving Arg42 of ubiquitin. We also introduce the enzymatic pathways that write and reverse these modifications, such as the papain-like proteases of severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Furthermore, structural studies have revealed that the ultimate functions of ubiquitin are mediated not simply by straightforward recognition by ubiquitin-binding domains. Instead, elaborate multivalent interactions between ubiquitylated targets or ubiquitin chains and their readers (for example, the proteasome, the MLL1 complex or DOT1L) can elicit conformational changes that regulate protein degradation or transcription. The newly discovered mechanisms provide opportunities for innovative therapeutic interventions for diseases such as cancer and infectious diseases.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
6
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
7
|
Iyer S, Das C. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. J Biol Chem 2021; 297:101340. [PMID: 34695417 PMCID: PMC8605245 DOI: 10.1016/j.jbc.2021.101340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular pathogen that uses the Dot/Icm Type IV secretion system (T4SS) to translocate many effectors into its host and establish a safe, replicative lifestyle. The bacteria, once phagocytosed, reside in a vacuolar structure known as the Legionella-containing vacuole (LCV) within the host cells and rapidly subvert organelle trafficking events, block inflammatory responses, hijack the host ubiquitination system, and abolish apoptotic signaling. This arsenal of translocated effectors can manipulate the host factors in a multitude of different ways. These proteins also contribute to bacterial virulence by positively or negatively regulating the activity of one another. Such effector-effector interactions, direct and indirect, provide the delicate balance required to maintain cellular homeostasis while establishing itself within the host. This review summarizes the recent progress in our knowledge of the structure-function relationship and biochemical mechanisms of select effector pairs from Legionella that work in opposition to one another, while highlighting the diversity of biochemical means adopted by this intracellular pathogen to establish a replicative niche within host cells.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
8
|
Chuaypen N, Limothai U, Kunadirek P, Kaewsapsak P, Kueanjinda P, Srisawat N, Tangkijvanich P. Identification and validation of circulating miRNAs as potential new biomarkers for severe liver disease in patients with leptospirosis. PLoS One 2021; 16:e0257805. [PMID: 34570814 PMCID: PMC8476044 DOI: 10.1371/journal.pone.0257805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background Leptospirosis, a global zoonotic infectious disease, has various clinical manifestations ranging from mild self-limiting illness to life-threatening with multi-organ damage, including liver involvement. This study was aimed at identifying circulating microRNAs (miRNAs) as novel biomarkers for predicting severe liver involvement in patients with leptospirosis. Methods In a discovery set, 12 serum samples of patients with anicteric and icteric leptospirosis at initial clinical presentation were used for miRNA profiling by a NanoString nCounter miRNA assay. In a validated cohort, top candidate miRNAs were selected and further tested by qRT-PCR in serum samples of 81 and 16 individuals with anicteric and icteric leptospirosis, respectively. Results The discovery set identified 38 significantly differential expression miRNAs between the two groups. Among these, miR-601 and miR-630 were selected as the top two candidates significantly up-regulated expressed in the icteric group. The enriched KEGG pathway showed that these miRNAs were mainly involved in immune responses and inflammation. In the validated cohort, miR-601 and miR-630 levels were significantly higher in the icteric group compared with the anicteric group. Additionally, these two miRNAs displayed good predictors of subsequent acute liver failure with a high sensitivity of 100%. On regression analysis, elevated miR-601 and miR-630 expression were also predictive of multi-organ failures and poor overall survival. Conclusion Our data indicated that miRNA expression profiles were significantly differentiated between the icteric and anicteric groups. Serum miR-601 and miR-630 at presentation could potentially serve as promising biomarkers for predicting subsequent acute liver failure and overall survival in patients with leptospirosis.
Collapse
Affiliation(s)
- Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Umaporn Limothai
- Excellence Center for Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattapon Kunadirek
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Kaewsapsak
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattachai Srisawat
- Excellence Center for Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
9
|
Affiliation(s)
- Tyler G. Franklin
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
10
|
Grishin A, Voth K, Gagarinova A, Cygler M. Structural biology of the invasion arsenal of Gram-negative bacterial pathogens. FEBS J 2021; 289:1385-1427. [PMID: 33650300 DOI: 10.1111/febs.15794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
In the last several years, there has been a tremendous progress in the understanding of host-pathogen interactions and the mechanisms by which bacterial pathogens modulate behavior of the host cell. Pathogens use secretion systems to inject a set of proteins, called effectors, into the cytosol of the host cell. These effectors are secreted in a highly regulated, temporal manner and interact with host proteins to modify a multitude of cellular processes. The number of effectors varies between pathogens from ~ 30 to as many as ~ 350. The functional redundancy of effectors encoded by each pathogen makes it difficult to determine the cellular effects or function of individual effectors, since their individual knockouts frequently produce no easily detectable phenotypes. Structural biology of effector proteins and their interactions with host proteins, in conjunction with cell biology approaches, has provided invaluable information about the cellular function of effectors and underlying molecular mechanisms of their modes of action. Many bacterial effectors are functionally equivalent to host proteins while being structurally divergent from them. Other effector proteins display new, previously unobserved functionalities. Here, we summarize the contribution of the structural characterization of effectors and effector-host protein complexes to our understanding of host subversion mechanisms used by the most commonly investigated Gram-negative bacterial pathogens. We describe in some detail the enzymatic activities discovered among effector proteins and how they affect various cellular processes.
Collapse
Affiliation(s)
- Andrey Grishin
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kevin Voth
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alla Gagarinova
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology, & Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
11
|
Puvar K, Das C. Acquisition of a Mysterious New Domain Modulates the Function of a Bacterial Effector. Biochemistry 2021; 60:635-636. [PMID: 33620203 DOI: 10.1021/acs.biochem.1c00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kedar Puvar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47906, United States
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47906, United States
| |
Collapse
|