1
|
Karpinska MA, Zhu Y, Fakhraei Ghazvini Z, Ramasamy S, Barbieri M, Cao TBN, Varahram N, Aljahani A, Lidschreiber M, Papantonis A, Oudelaar AM. CTCF depletion decouples enhancer-mediated gene activation from chromatin hub formation. Nat Struct Mol Biol 2025:10.1038/s41594-025-01555-z. [PMID: 40360814 DOI: 10.1038/s41594-025-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025]
Abstract
Enhancers and promoters interact in three-dimensional (3D) chromatin structures to regulate gene expression. Here we characterize the mechanisms that drive the formation and function of these structures in a lymphoid-to-myeloid transdifferentiation system. Based on analyses at base pair resolution, we demonstrate a close correlation between binding of regulatory proteins, formation of chromatin interactions and gene expression. Multi-way interaction analyses and computational modeling show that tissue-specific gene loci are organized into chromatin hubs, characterized by cooperative interactions between multiple enhancers, promoters and CTCF-binding sites. While depletion of CTCF strongly impairs the formation of these chromatin hubs, the effects of CTCF depletion on gene expression are modest and can be explained by rewired enhancer-promoter interactions. These findings demonstrate a role for enhancer-promoter interactions in gene regulation that is independent of cooperative interactions in chromatin hubs. Together, these results contribute to our understanding of the structure-function relationship of the genome during cellular differentiation.
Collapse
Affiliation(s)
- Magdalena A Karpinska
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Yi Zhu
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Zahra Fakhraei Ghazvini
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Shyam Ramasamy
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Mariano Barbieri
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - T B Ngoc Cao
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Natalie Varahram
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Abrar Aljahani
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - A Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Georgiades E, Harrold C, Roberts N, Kassouf M, Riva SG, Sanders E, Downes D, Francis HS, Blayney J, Oudelaar AM, Milne TA, Higgs D, Hughes JR. Active regulatory elements recruit cohesin to establish cell specific chromatin domains. Sci Rep 2025; 15:11780. [PMID: 40189615 PMCID: PMC11973168 DOI: 10.1038/s41598-025-96248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
As the 3D structure of the genome is analysed at ever increasing resolution it is clear that there is considerable variation in the 3D chromatin architecture across different cell types. It has been proposed that this may, in part, be due to increased recruitment of cohesin to activated cis-elements (enhancers and promoters) leading to cell-type specific loop extrusion underlying the formation of new sub-TADs. Here we show that cohesin correlates well with the presence of active enhancers and that this varies in an allele-specific manner with the presence or absence of polymorphic enhancers which vary from one individual to another. Using the alpha globin cluster as a model, we show that when all enhancers are removed, peaks of cohesin disappear from these regions and the erythroid specific sub-TAD is no longer formed. Re-insertion of the major alpha globin enhancer (R2) is associated with re-establishment of recruitment and increased interactions. In complementary experiments insertion of the R2 enhancer element into a "neutral" region of the genome recruits cohesin, induces transcription and creates a new large (75 kb) erythroid-specific domain. Together these findings support the proposal that active enhancers recruit cohesin, stimulate loop extrusion and promote the formation of cell specific sub-TADs.
Collapse
Affiliation(s)
- Emily Georgiades
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Caroline Harrold
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mira Kassouf
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Simone G Riva
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Edward Sanders
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien Downes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Helena S Francis
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joseph Blayney
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Jim R Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Preston AE, Frost JN, Teh MR, Badat M, Armitage AE, Norfo R, Wideman SK, Hanifi M, White N, Roy NB, Babbs C, Ghesquiere B, Davies J, Howden AJ, Sinclair LV, Hughes JR, Kassouf M, Beagrie R, Higgs DR, Drakesmith H. Ancient genomic linkage of α-globin and Nprl3 couples metabolism with erythropoiesis. Nat Commun 2025; 16:2749. [PMID: 40128524 PMCID: PMC11933693 DOI: 10.1038/s41467-025-57683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Red blood cell development from erythroid progenitors requires profound reshaping of metabolism and gene expression. How these transcriptional and metabolic alterations are coupled is unclear. Nprl3 (an inhibitor of mTORC1) has remained in synteny with the α-globin genes for >500 million years, and harbours most of the a-globin enhancers. However, whether Nprl3 serves an erythroid role is unknown. We found that while haematopoietic progenitors require basal Nprl3 expression, erythroid Nprl3 expression is further boosted by the α-globin enhancers. This lineage-specific upregulation is required for sufficient erythropoiesis. Loss of Nprl3 affects erythroblast metabolism via elevating mTORC1 signalling, suppressing autophagy and disrupting glycolysis. Broadly consistent with these murine findings, human NPRL3-knockout erythroid progenitors produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Therefore, we propose that the anciently conserved linkage of NprI3, α-globin and their associated enhancers has coupled metabolic and developmental control of erythropoiesis.
Collapse
Affiliation(s)
- Alexandra E Preston
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Joe N Frost
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mohsin Badat
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London and Barts Health, Whitechapel, London, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ruggiero Norfo
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sarah K Wideman
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Natasha White
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Noémi Ba Roy
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bart Ghesquiere
- Metabolomics Expertise Center, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - James Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Andrew Jm Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rob Beagrie
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Lee U, Laguillo-Diego A, Wong W, Ni Z, Cheng L, Li J, Pelham-Webb B, Pertsinidis A, Leslie C, Apostolou E. Post-mitotic transcriptional activation and 3D regulatory interactions show locus- and differentiation-specific sensitivity to cohesin depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638153. [PMID: 40034648 PMCID: PMC11875242 DOI: 10.1101/2025.02.13.638153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Prior studies showed that structural loops collapse upon acute cohesin depletion, while regulatory enhancer-promoter (E-P) loops largely persist, consistent with minimal transcriptional changes. However, these studies, conducted in asynchronous cells, could not resolve whether cohesin is required for the establishment of regulatory interactions and transcriptional activation during cell division or cell state transitions. To address this gap, we degraded RAD21, a core cohesin subunit, in naïve mouse embryonic stem cells (ESCs) transitioning from mitosis to G1 either in self-renewal condition or during differentiation toward formative pluripotency. Although most structural loops failed to be re-established without cohesin, about 35% of regulatory loops reformed at normal or higher frequencies. Cohesin-independent loops showed characteristics of strong active enhancers and promoters and a significant association with H3K27ac mitotic bookmarks. However, inhibition of CBP/p300 during mitotic exit did not impact these cohesin-independent interactions, suggesting the presence of complex compensatory mechanisms. At the transcriptional level, cohesin depletion induced only minor changes, supporting that post-mitotic transcriptional reactivation is largely independent of cohesin. The few genes with impaired reactivation were directly bound by RAD21 at their promoters, engaged in many structural loops, and located within strongly insulated TADs with low gene density. Importantly, degrading cohesin during the M-to-G1 transition in the presence of EpiLC differentiation signals revealed a larger group of susceptible genes, including key signature genes and transcription factors. Impaired activation of these genes was partly due to the failure to establish de novo EpiLC-specific interactions in the absence of cohesin. These experiments revealed locus-specific and context-specific dependencies between cohesin, E-P interactions, and transcription.
Collapse
Affiliation(s)
- UkJin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Molecular Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, 10065, USA
| | - Alejandra Laguillo-Diego
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Zhangli Ni
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lingling Cheng
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jieru Li
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bobbie Pelham-Webb
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alexandros Pertsinidis
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
5
|
Kassouf MT, Francis HS, Gosden M, Suciu MC, Downes DJ, Harrold C, Larke M, Oudelaar M, Cornell L, Blayney J, Telenius J, Xella B, Shen Y, Sousos N, Sharpe JA, Sloane-Stanley J, Smith AJH, Babbs C, Hughes JR, Higgs DR. The α-globin super-enhancer acts in an orientation-dependent manner. Nat Commun 2025; 16:1033. [PMID: 39863595 PMCID: PMC11762767 DOI: 10.1038/s41467-025-56380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Individual enhancers are defined as short genomic regulatory elements, bound by transcription factors, and able to activate cell-specific gene expression at a distance, in an orientation-independent manner. Within mammalian genomes, enhancer-like elements may be found individually or within clusters referred to as locus control regions or super-enhancers (SEs). While these behave similarly to individual enhancers with respect to cell specificity, distribution and distance, their orientation-dependence has not been formally tested. Here, using the α-globin locus as a model, we show that while an individual enhancer works in an orientation-independent manner, the direction of activity of a SE changes with its orientation. When the SE is inverted within its normal chromosomal context, expression of its normal targets, the α-globin genes, is severely reduced and the normally silent genes lying upstream of the α-globin locus are upregulated. These findings add to our understanding of enhancer-promoter specificity that precisely activate transcription.
Collapse
Affiliation(s)
- Mira T Kassouf
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK.
| | - Helena S Francis
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Matthew Gosden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Maria C Suciu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Caroline Harrold
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Martin Larke
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, 37077, Gottingen, Germany
| | - Lucy Cornell
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Joseph Blayney
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Barbara Xella
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Yuki Shen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Nikolaos Sousos
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Jacqueline A Sharpe
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Jacqueline Sloane-Stanley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Andrew J H Smith
- Institute for Regeneration and Repair, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Christian Babbs
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Douglas R Higgs
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, OX3 7BN, Oxford, UK.
| |
Collapse
|
6
|
Mahara S, Prüssing S, Smialkovska V, Krall S, Holliman S, Blum B, Dachtler V, Borgers H, Sollier E, Plass C, Feldmann A. Transient promoter interactions modulate developmental gene activation. Mol Cell 2024; 84:4486-4502.e7. [PMID: 39476844 DOI: 10.1016/j.molcel.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 12/08/2024]
Abstract
Transcriptional induction coincides with the formation of various chromatin topologies. Strong evidence supports that gene activation is accompanied by a general increase in promoter-enhancer interactions. However, it remains unclear how these topological changes are coordinated across time and space during transcriptional activation. Here, we combine chromatin conformation capture with transcription and chromatin profiling during an embryonic stem cell (ESC) differentiation time course to determine how 3D genome restructuring is related to transcriptional transitions. This approach allows us to identify distinct topological alterations that are associated with the magnitude of transcriptional induction. We detect transiently formed interactions and demonstrate by genetic deletions that associated distal regulatory elements (DREs), as well as appropriate formation and disruption of these interactions, can contribute to the transcriptional induction of linked genes. Together, our study links topological dynamics to the magnitude of transcriptional induction and detects an uncharacterized type of transcriptionally important DREs.
Collapse
Affiliation(s)
- Sylvia Mahara
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Sonja Prüssing
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Valeriia Smialkovska
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Samuel Krall
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | | | - Belinda Blum
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Victoria Dachtler
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Helena Borgers
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Angelika Feldmann
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany.
| |
Collapse
|
7
|
Fleck K, Luria V, Garag N, Karger A, Hunter T, Marten D, Phu W, Nam KM, Sestan N, O’Donnell-Luria AH, Erceg J. Functional associations of evolutionarily recent human genes exhibit sensitivity to the 3D genome landscape and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585403. [PMID: 38559085 PMCID: PMC10980080 DOI: 10.1101/2024.03.17.585403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome organization is intricately tied to regulating genes and associated cell fate decisions. Here, we examine the positioning and functional significance of human genes, grouped by their lineage restriction level, within the 3D organization of the genome. We reveal that genes of different lineage restriction levels have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young lineage restricted genes to ancient genes present in most species. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nitanta Garag
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Hunter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Marten
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Phu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne H. O’Donnell-Luria
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
8
|
Tsang F, Stolper R, Hanifi M, Cornell L, Francis H, Davies B, Higgs D, Kassouf M. The characteristics of CTCF binding sequences contribute to enhancer blocking activity. Nucleic Acids Res 2024; 52:10180-10193. [PMID: 39106157 PMCID: PMC11417384 DOI: 10.1093/nar/gkae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
While the elements encoding enhancers and promoters have been relatively well studied, the full spectrum of insulator elements which bind the CCCTC binding factor (CTCF), is relatively poorly characterized. This is partly due to the genomic context of CTCF sites greatly influencing their roles and activity. Here we have developed an experimental system to determine the ability of minimal, consistently sized, individual CTCF elements to interpose between enhancers and promoters and thereby reduce gene expression during differentiation. Importantly, each element is tested in the identical location thereby minimising the effect of genomic context. We found no correlation between the ability of CTCF elements to block enhancer-promoter activity with the degree of evolutionary conservation; their resemblance to the consensus core sequences; or the number of CTCF core motifs harboured in the element. Nevertheless, we have shown that the strongest enhancer-promoter blockers include a previously described bound element lying upstream of the CTCF core motif. In addition, we found other uncharacterised DNaseI footprints located close to the core motif that may affect function. We have developed an assay of CTCF sequences which will enable researchers to sub-classify individual CTCF elements in a uniform and unbiased way.
Collapse
Affiliation(s)
- Felice H Tsang
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Rosa J Stolper
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Lucy J Cornell
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Helena S Francis
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Mira T Kassouf
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
9
|
Abbineni PS, Baid S, Weiss MJ. A moonlighting job for α-globin in blood vessels. Blood 2024; 144:834-844. [PMID: 38848504 PMCID: PMC11830976 DOI: 10.1182/blood.2023022192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
ABSTRACT Red blood cells express high levels of hemoglobin A tetramer (α2β2) to facilitate oxygen transport. Hemoglobin subunits and related proteins are also expressed at lower levels in other tissues across the animal kingdom. Physiological functions for most nonerythroid globins likely derive from their ability to catalyze reduction-oxidation (redox) reactions via electron transfer through heme-associated iron. An interesting example is illustrated by the recent discovery that α-globin without β-globin is expressed in some arteriolar endothelial cells (ECs). α-globin binds EC nitric oxide (NO) synthase (eNOS) and degrades its enzymatic product NO, a potent vasodilator. Thus, depletion of α-globin in ECs or inhibition of its association with eNOS causes arteriolar relaxation and lowering of blood pressure in mice. Some of these findings have been replicated in isolated human blood vessels, and genetic studies are tractable in populations in which α-thalassemia alleles are prevalent. Two small studies identified associations between loss of α-globin genes in humans and NO-regulated vascular responses elicited by local hypoxia-induced blood flow or thermal stimulation. In a few larger population-based studies, no associations were detected between loss of α-globin genes and blood pressure, ischemic stroke, or pulmonary hypertension. In contrast, a significant positive association between α-globin gene copy number and kidney disease was detected in an African American cohort. Further studies are required to define comprehensively the expression of α-globin in different vascular beds and ascertain their overall impact on normal and pathological vascular physiology.
Collapse
Affiliation(s)
- Prabhodh S. Abbineni
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Srishti Baid
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Mitchell J. Weiss
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
10
|
Murtaza G, Butaney B, Wagner J, Singh R. scGrapHiC: deep learning-based graph deconvolution for Hi-C using single cell gene expression. Bioinformatics 2024; 40:i490-i500. [PMID: 38940151 PMCID: PMC11256916 DOI: 10.1093/bioinformatics/btae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Single-cell Hi-C (scHi-C) protocol helps identify cell-type-specific chromatin interactions and sheds light on cell differentiation and disease progression. Despite providing crucial insights, scHi-C data is often underutilized due to the high cost and the complexity of the experimental protocol. We present a deep learning framework, scGrapHiC, that predicts pseudo-bulk scHi-C contact maps using pseudo-bulk scRNA-seq data. Specifically, scGrapHiC performs graph deconvolution to extract genome-wide single-cell interactions from a bulk Hi-C contact map using scRNA-seq as a guiding signal. Our evaluations show that scGrapHiC, trained on seven cell-type co-assay datasets, outperforms typical sequence encoder approaches. For example, scGrapHiC achieves a substantial improvement of 23.2% in recovering cell-type-specific Topologically Associating Domains over the baselines. It also generalizes to unseen embryo and brain tissue samples. scGrapHiC is a novel method to generate cell-type-specific scHi-C contact maps using widely available genomic signals that enables the study of cell-type-specific chromatin interactions. AVAILABILITY AND IMPLEMENTATION The GitHub link: https://github.com/rsinghlab/scGrapHiC contains the source code of scGrapHiC and associated scripts to preprocess publicly available datasets to produce the results and visualizations we have discuss in this manuscript.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI, 02912, United States
| | - Byron Butaney
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI, 02912, United States
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Ritambhara Singh
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI, 02912, United States
- Center for Computational Molecular Biology, Brown University, 164 Angell Street, Providence, RI, 02912, United States
| |
Collapse
|
11
|
Žumer K, Ochmann M, Aljahani A, Zheenbekova A, Devadas A, Maier KC, Rus P, Neef U, Oudelaar AM, Cramer P. FACT maintains chromatin architecture and thereby stimulates RNA polymerase II pausing during transcription in vivo. Mol Cell 2024; 84:2053-2069.e9. [PMID: 38810649 DOI: 10.1016/j.molcel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone that supports transcription through chromatin in vitro, but its functional roles in vivo remain unclear. Here, we analyze the in vivo functions of FACT with the use of multi-omics analysis after rapid FACT depletion from human cells. We show that FACT depletion destabilizes chromatin and leads to transcriptional defects, including defective promoter-proximal pausing and elongation, and increased premature termination of RNA polymerase II. Unexpectedly, our analysis revealed that promoter-proximal pausing depends not only on the negative elongation factor (NELF) but also on the +1 nucleosome, which is maintained by FACT.
Collapse
Affiliation(s)
- Kristina Žumer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Moritz Ochmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Abrar Aljahani
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Am Fassberg 11, 37077 Göttingen, Germany
| | - Aiturgan Zheenbekova
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Arjun Devadas
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kerstin Caroline Maier
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Petra Rus
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ute Neef
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
12
|
Keenan CR, Coughlan HD, Iannarella N, Tapia Del Fierro A, Keniry A, Johanson TM, Chan WF, Garnham AL, Whitehead LW, Blewitt ME, Smyth GK, Allan RS. Suv39h-catalyzed H3K9me3 is critical for euchromatic genome organization and the maintenance of gene transcription. Genome Res 2024; 34:556-571. [PMID: 38719473 PMCID: PMC11146594 DOI: 10.1101/gr.279119.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/03/2024] [Indexed: 06/05/2024]
Abstract
H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.
Collapse
Affiliation(s)
- Christine R Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nadia Iannarella
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Andres Tapia Del Fierro
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wing Fuk Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lachlan W Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
13
|
Tomikawa J. Potential roles of inter-chromosomal interactions in cell fate determination. Front Cell Dev Biol 2024; 12:1397807. [PMID: 38774644 PMCID: PMC11106443 DOI: 10.3389/fcell.2024.1397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Mammalian genomic DNA is packed in a small nucleus, and its folding and organization in the nucleus are critical for gene regulation and cell fate determination. In interphase, chromosomes are compartmentalized into certain nuclear spaces and territories that are considered incompatible with each other. The regulation of gene expression is influenced by the epigenetic characteristics of topologically associated domains and A/B compartments within chromosomes (intrachromosomal). Previously, interactions among chromosomes detected via chromosome conformation capture-based methods were considered noise or artificial errors. However, recent studies based on newly developed ligation-independent methods have shown that inter-chromosomal interactions play important roles in gene regulation. This review summarizes the recent understanding of spatial genomic organization in mammalian interphase nuclei and discusses the potential mechanisms that determine cell identity. In addition, this review highlights the potential role of inter-chromosomal interactions in early mouse development.
Collapse
Affiliation(s)
- Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
14
|
Afanasyev AY, Kim Y, Tolokh IS, Sharakhov IV, Onufriev AV. The probability of chromatin to be at the nuclear lamina has no systematic effect on its transcription level in fruit flies. Epigenetics Chromatin 2024; 17:13. [PMID: 38705995 PMCID: PMC11071202 DOI: 10.1186/s13072-024-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Multiple studies have demonstrated a negative correlation between gene expression and positioning of genes at the nuclear envelope (NE) lined by nuclear lamina, but the exact relationship remains unclear, especially in light of the highly stochastic, transient nature of the gene association with the NE. RESULTS In this paper, we ask whether there is a causal, systematic, genome-wide relationship between the expression levels of the groups of genes in topologically associating domains (TADs) of Drosophila nuclei and the probabilities of TADs to be found at the NE. To investigate the nature of this possible relationship, we combine a coarse-grained dynamic model of the entire Drosophila nucleus with genome-wide gene expression data; we analyze the TAD averaged transcription levels of genes against the probabilities of individual TADs to be in contact with the NE in the control and lamins-depleted nuclei. Our findings demonstrate that, within the statistical error margin, the stochastic positioning of Drosophila melanogaster TADs at the NE does not, by itself, systematically affect the mean level of gene expression in these TADs, while the expected negative correlation is confirmed. The correlation is weak and disappears completely for TADs not containing lamina-associated domains (LADs) or TADs containing LADs, considered separately. Verifiable hypotheses regarding the underlying mechanism for the presence of the correlation without causality are discussed. These include the possibility that the epigenetic marks and affinity to the NE of a TAD are determined by various non-mutually exclusive mechanisms and remain relatively stable during interphase. CONCLUSIONS At the level of TADs, the probability of chromatin being in contact with the nuclear envelope has no systematic, causal effect on the transcription level in Drosophila. The conclusion is reached by combining model-derived time-evolution of TAD locations within the nucleus with their experimental gene expression levels.
Collapse
Affiliation(s)
- Alexander Y Afanasyev
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Yoonjin Kim
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor S Tolokh
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Recent work reveals that cell cycle duration and structure are remodeled in lock-step with distinct stages of erythroid differentiation. These cell cycle features have regulatory roles in differentiation, beyond the generic function of increasing cell number. RECENT FINDINGS Developmental progression through the early erythroid progenitor stage (known as colony-forming-erythroid, or 'CFU-e') is characterized by gradual shortening of G1 phase of the cycle. This process culminates in a key transcriptional switch to erythroid terminal differentiation (ETD) that is synchronized with, and dependent on, S phase progression. Further, the CFU-e/ETD switch takes place during an unusually short S phase, part of an exceptionally short cell cycle that is characterized by globally fast replication fork speeds. Cell cycle and S phase speed can alter developmental events during erythroid differentiation, through pathways that are targeted by glucocorticoid and erythropoietin signaling during the erythroid stress response. SUMMARY There is close inter-dependence between cell cycle structure and duration, S phase and replication fork speeds, and erythroid differentiation stage. Further, modulation of cell cycle structure and speed cycle impacts developmental progression and cell fate decisions during erythroid differentiation. These pathways may offer novel mechanistic insights and potential therapeutic targets.
Collapse
Affiliation(s)
- Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Moreno-Oñate M, Gallardo-Fuentes L, Martínez-García PM, Naranjo S, Jiménez-Gancedo S, Tena JJ, Santos-Pereira JM. Rewiring of the epigenome and chromatin architecture by exogenously induced retinoic acid signaling during zebrafish embryonic development. Nucleic Acids Res 2024; 52:3682-3701. [PMID: 38321954 PMCID: PMC11040003 DOI: 10.1093/nar/gkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.
Collapse
Affiliation(s)
- Marta Moreno-Oñate
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Pedro M Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - José M Santos-Pereira
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
17
|
Yamasaki T, Nishiyama A, Kurogi N, Nishimura K, Nishida S, Kurotaki D, Ban T, Ramilowski JA, Ozato K, Toyoda A, Tamura T. Physical and functional interaction among Irf8 enhancers during dendritic cell differentiation. Cell Rep 2024; 43:114107. [PMID: 38613785 DOI: 10.1016/j.celrep.2024.114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
The production of type 1 conventional dendritic cells (cDC1s) requires high expression of the transcription factor IRF8. Three enhancers at the Irf8 3' region function in a differentiation stage-specific manner. However, whether and how these enhancers interact physically and functionally remains unclear. Here, we show that the Irf8 3' enhancers directly interact with each other and contact the Irf8 gene body during cDC1 differentiation. The +56 kb enhancer, which functions from multipotent progenitor stages, activates the other 3' enhancers through an IRF8-dependent transcription factor program, that is, in trans. Then, the +32 kb enhancer, which operates in cDC1-committed cells, reversely acts in cis on the other 3' enhancers to maintain the high expression of Irf8. Indeed, mice with compound heterozygous deletion of the +56 and +32 kb enhancers are unable to generate cDC1s. These results illustrate how multiple enhancers cooperate to induce a lineage-determining transcription factor gene during cell differentiation.
Collapse
Affiliation(s)
- Takaya Yamasaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Nagomi Kurogi
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Koutarou Nishimura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shion Nishida
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, Sagamihara, Kanagawa, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuma Ban
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Jordan A Ramilowski
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
18
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
19
|
Pollex T, Rabinowitz A, Gambetta MC, Marco-Ferreres R, Viales RR, Jankowski A, Schaub C, Furlong EEM. Enhancer-promoter interactions become more instructive in the transition from cell-fate specification to tissue differentiation. Nat Genet 2024; 56:686-696. [PMID: 38467791 PMCID: PMC11018526 DOI: 10.1038/s41588-024-01678-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
To regulate expression, enhancers must come in proximity to their target gene. However, the relationship between the timing of enhancer-promoter (E-P) proximity and activity remains unclear, with examples of uncoupled, anticorrelated and correlated interactions. To assess this, we selected 600 characterized enhancers or promoters with tissue-specific activity in Drosophila embryos and performed Capture-C in FACS-purified myogenic or neurogenic cells during specification and tissue differentiation. This enabled direct comparison between E-P proximity and activity transitioning from OFF-to-ON and ON-to-OFF states across developmental conditions. This showed remarkably similar E-P topologies between specified muscle and neuronal cells, which are uncoupled from activity. During tissue differentiation, many new distal interactions emerge where changes in E-P proximity reflect changes in activity. The mode of E-P regulation therefore appears to change as embryogenesis proceeds, from largely permissive topologies during cell-fate specification to more instructive regulation during terminal tissue differentiation, when E-P proximity is coupled to activation.
Collapse
Affiliation(s)
- Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Directors' Research Unit, Heidelberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Maria Cristina Gambetta
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Aleksander Jankowski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
20
|
Santarelli P, Rosti V, Vivo M, Lanzuolo C. Chromatin organization of muscle stem cell. Curr Top Dev Biol 2024; 158:375-406. [PMID: 38670713 DOI: 10.1016/bs.ctdb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.
Collapse
Affiliation(s)
- Philina Santarelli
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Valentina Rosti
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy
| | - Maria Vivo
- Università degli studi di Salerno, Fisciano, Italy.
| | - Chiara Lanzuolo
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy.
| |
Collapse
|
21
|
Mañes-García J, Marco-Ferreres R, Beccari L. Shaping gene expression and its evolution by chromatin architecture and enhancer activity. Curr Top Dev Biol 2024; 159:406-437. [PMID: 38729683 DOI: 10.1016/bs.ctdb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Transcriptional regulation plays a pivotal role in orchestrating the intricate genetic programs governing embryonic development. The expression of developmental genes relies on the combined activity of several cis-regulatory elements (CREs), such as enhancers and silencers, which can be located at long linear distances from the genes that they regulate and that interact with them through establishment of chromatin loops. Mutations affecting their activity or interaction with their target genes can lead to developmental disorders and are thought to have importantly contributed to the evolution of the animal body plan. The income of next-generation-sequencing approaches has allowed identifying over a million of sequences with putative regulatory potential in the human genome. Characterizing their function and establishing gene-CREs maps is essential to decode the logic governing developmental gene expression and is one of the major challenges of the post-genomic era. Chromatin 3D organization plays an essential role in determining how CREs specifically contact their target genes while avoiding deleterious off-target interactions. Our understanding of these aspects has greatly advanced with the income of chromatin conformation capture techniques and fluorescence microscopy approaches to visualize the organization of DNA elements in the nucleus. Here we will summarize relevant aspects of how the interplay between CRE activity and chromatin 3D organization regulates developmental gene expression and how it relates to pathological conditions and the evolution of animal body plan.
Collapse
Affiliation(s)
| | | | - Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
22
|
Blayney JW, Francis H, Rampasekova A, Camellato B, Mitchell L, Stolper R, Cornell L, Babbs C, Boeke JD, Higgs DR, Kassouf M. Super-enhancers include classical enhancers and facilitators to fully activate gene expression. Cell 2023; 186:5826-5839.e18. [PMID: 38101409 PMCID: PMC10858684 DOI: 10.1016/j.cell.2023.11.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 07/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.
Collapse
Affiliation(s)
- Joseph W Blayney
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Helena Francis
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Alexandra Rampasekova
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Brendan Camellato
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Leslie Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Rosa Stolper
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Lucy Cornell
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Chinese Academy of Medical Sciences Oxford Institute, Oxford OX3 7BN, UK.
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
23
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
24
|
Mielczarek O, Rogers CH, Zhan Y, Matheson LS, Stubbington MJT, Schoenfelder S, Bolland DJ, Javierre BM, Wingett SW, Várnai C, Segonds-Pichon A, Conn SJ, Krueger F, Andrews S, Fraser P, Giorgetti L, Corcoran AE. Intra- and interchromosomal contact mapping reveals the Igh locus has extensive conformational heterogeneity and interacts with B-lineage genes. Cell Rep 2023; 42:113074. [PMID: 37676766 PMCID: PMC10548092 DOI: 10.1016/j.celrep.2023.113074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.
Collapse
Affiliation(s)
- Olga Mielczarek
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Carolyn H Rogers
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Louise S Matheson
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Stefan Schoenfelder
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Biola M Javierre
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Steven W Wingett
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anne Segonds-Pichon
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
25
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
26
|
Li D, Zhao XY, Zhou S, Hu Q, Wu F, Lee HY. Multidimensional profiling reveals GATA1-modulated stage-specific chromatin states and functional associations during human erythropoiesis. Nucleic Acids Res 2023; 51:6634-6653. [PMID: 37254808 PMCID: PMC10359633 DOI: 10.1093/nar/gkad468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 06/01/2023] Open
Abstract
Mammalian erythroid development can be divided into three stages: hematopoietic stem and progenitor cell (HSPC), erythroid progenitor (Ery-Pro), and erythroid precursor (Ery-Pre). However, the mechanisms by which the 3D genome changes to establish the stage-specific transcription programs that are critical for erythropoiesis remain unclear. Here, we analyze the chromatin landscape at multiple levels in defined populations from primary human erythroid culture. While compartments and topologically associating domains remain largely unchanged, ∼50% of H3K27Ac-marked enhancers are dynamic in HSPC versus Ery-Pre. The enhancer anchors of enhancer-promoter loops are enriched for occupancy of respective stage-specific transcription factors (TFs), indicating these TFs orchestrate the enhancer connectome rewiring. The master TF of erythropoiesis, GATA1, is found to occupy most erythroid gene promoters at the Ery-Pro stage, and mediate conspicuous local rewiring through acquiring binding at the distal regions in Ery-Pre, promoting productive erythroid transcription output. Knocking out GATA1 binding sites precisely abrogates local rewiring and corresponding gene expression. Interestingly, knocking down GATA1 can transiently revert the cell state to an earlier stage and prolong the window of progenitor state. This study reveals mechanistic insights underlying chromatin rearrangements during development by integrating multidimensional chromatin landscape analyses to associate with transcription output and cellular states.
Collapse
Affiliation(s)
- Dong Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin-Ying Zhao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Hu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fan Wu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hsiang-Ying Lee
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100871, China
| |
Collapse
|
27
|
Ramasamy S, Aljahani A, Karpinska MA, Cao TBN, Velychko T, Cruz JN, Lidschreiber M, Oudelaar AM. The Mediator complex regulates enhancer-promoter interactions. Nat Struct Mol Biol 2023:10.1038/s41594-023-01027-2. [PMID: 37430065 DOI: 10.1038/s41594-023-01027-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/30/2023] [Indexed: 07/12/2023]
Abstract
Enhancer-mediated gene activation generally requires physical proximity between enhancers and their target gene promoters. However, the molecular mechanisms by which interactions between enhancers and promoters are formed are not well understood. Here, we investigate the function of the Mediator complex in the regulation of enhancer-promoter interactions, by combining rapid protein depletion and high-resolution MNase-based chromosome conformation capture approaches. We show that depletion of Mediator leads to reduced enhancer-promoter interaction frequencies, which are associated with a strong decrease in gene expression. In addition, we find increased interactions between CTCF-binding sites upon Mediator depletion. These changes in chromatin architecture are associated with a redistribution of the Cohesin complex on chromatin and a reduction in Cohesin occupancy at enhancers. Together, our results indicate that the Mediator and Cohesin complexes contribute to enhancer-promoter interactions and provide insights into the molecular mechanisms by which communication between enhancers and promoters is regulated.
Collapse
Affiliation(s)
- Shyam Ramasamy
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Abrar Aljahani
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Magdalena A Karpinska
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - T B Ngoc Cao
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Taras Velychko
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - J Neos Cruz
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - A Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
28
|
Liu Z, Chen Y, Xia Q, Liu M, Xu H, Chi Y, Deng Y, Xing D. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 2023; 380:1070-1076. [PMID: 37289875 DOI: 10.1126/science.adg3797] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Much progress has been made recently in single-cell chromosome conformation capture technologies. However, a method that allows simultaneous profiling of chromatin architecture and gene expression has not been reported. Here, we developed an assay named "Hi-C and RNA-seq employed simultaneously" (HiRES) and performed it on thousands of single cells from developing mouse embryos. Single-cell three-dimensional genome structures, despite being heavily determined by the cell cycle and developmental stages, gradually diverged in a cell type-specific manner as development progressed. By comparing the pseudotemporal dynamics of chromatin interactions with gene expression, we found a widespread chromatin rewiring that occurred before transcription activation. Our results demonstrate that the establishment of specific chromatin interactions is tightly related to transcriptional control and cell functions during lineage specification.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yujie Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Menghan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Heming Xu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yi Chi
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Yujing Deng
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| |
Collapse
|
29
|
Goel VY, Huseyin MK, Hansen AS. Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat Genet 2023; 55:1048-1056. [PMID: 37157000 PMCID: PMC10424778 DOI: 10.1038/s41588-023-01391-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Although enhancers are central regulators of mammalian gene expression, the mechanisms underlying enhancer-promoter (E-P) interactions remain unclear. Chromosome conformation capture (3C) methods effectively capture large-scale three-dimensional (3D) genome structure but struggle to achieve the depth necessary to resolve fine-scale E-P interactions. Here, we develop Region Capture Micro-C (RCMC) by combining micrococcal nuclease (MNase)-based 3C with a tiling region-capture approach and generate the deepest 3D genome maps reported with only modest sequencing. By applying RCMC in mouse embryonic stem cells and reaching the genome-wide equivalent of ~317 billion unique contacts, RCMC reveals previously unresolvable patterns of highly nested and focal 3D interactions, which we term microcompartments. Microcompartments frequently connect enhancers and promoters, and although loss of loop extrusion and inhibition of transcription disrupts some microcompartments, most are largely unaffected. We therefore propose that many E-P interactions form through a compartmentalization mechanism, which may partially explain why acute cohesin depletion only modestly affects global gene expression.
Collapse
Affiliation(s)
- Viraat Y Goel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Miles K Huseyin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
30
|
Hamley JC, Li H, Denny N, Downes D, Davies JOJ. Determining chromatin architecture with Micro Capture-C. Nat Protoc 2023; 18:1687-1711. [PMID: 36991220 DOI: 10.1038/s41596-023-00817-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/11/2023] [Indexed: 03/30/2023]
Abstract
Micro Capture-C (MCC) is a chromatin conformation capture (3C) method for visualizing reproducible three-dimensional contacts of specified regions of the genome at base pair resolution. These methods are an established family of techniques that use proximity ligation to assay the topology of chromatin. MCC can generate data at substantially higher resolution than previous techniques through multiple refinements of the 3C method. Using a sequence agnostic nuclease, the maintenance of cellular integrity and full sequencing of the ligation junctions, MCC achieves subnucleosomal levels of resolution, which can be used to reveal transcription factor binding sites analogous to DNAse I footprinting. Gene dense regions, close-range enhancer-promoter contacts, individual enhancers within super-enhancers and multiple other types of loci or regulatory regions that were previously challenging to assay with conventional 3C techniques, are readily observed using MCC. MCC requires training in common molecular biology techniques and bioinformatics to perform the experiment and analyze the data. The protocol can be expected to be completed in a 3 week timeframe for experienced molecular biologists.
Collapse
Affiliation(s)
- Joseph C Hamley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hangpeng Li
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas Denny
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Damien Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, Genomic Medicine and Cell and Gene Therapy Themes, Oxford, UK.
- National Institute of Health Research Blood and Transplant Research Unit, Oxford, UK.
| |
Collapse
|
31
|
May D, Yun S, Gonzalez DG, Park S, Chen Y, Lathrop E, Cai B, Xin T, Zhao H, Wang S, Gonzalez LE, Cockburn K, Greco V. Live imaging reveals chromatin compaction transitions and dynamic transcriptional bursting during stem cell differentiation in vivo. eLife 2023; 12:83444. [PMID: 36880644 PMCID: PMC10027315 DOI: 10.7554/elife.83444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/06/2023] [Indexed: 03/08/2023] Open
Abstract
Stem cell differentiation requires dramatic changes in gene expression and global remodeling of chromatin architecture. How and when chromatin remodels relative to the transcriptional, behavioral, and morphological changes during differentiation remain unclear, particularly in an intact tissue context. Here, we develop a quantitative pipeline which leverages fluorescently-tagged histones and longitudinal imaging to track large-scale chromatin compaction changes within individual cells in a live mouse. Applying this pipeline to epidermal stem cells, we reveal that cell-to-cell chromatin compaction heterogeneity within the stem cell compartment emerges independent of cell cycle status, and instead is reflective of differentiation status. Chromatin compaction state gradually transitions over days as differentiating cells exit the stem cell compartment. Moreover, establishing live imaging of Keratin-10 (K10) nascent RNA, which marks the onset of stem cell differentiation, we find that Keratin-10 transcription is highly dynamic and largely precedes the global chromatin compaction changes associated with differentiation. Together, these analyses reveal that stem cell differentiation involves dynamic transcriptional states and gradual chromatin rearrangement.
Collapse
Affiliation(s)
- Dennis May
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Sangwon Yun
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - David G Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Sangbum Park
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, East Lansing, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, United States
| | - Yanbo Chen
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Biao Cai
- Department of Biostatistics, Yale University School of Public Health, New Haven, United States
| | - Tianchi Xin
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Department of Biostatistics, Yale University School of Public Health, New Haven, United States
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Deparment of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Lauren E Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, United States
| | - Katie Cockburn
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Department of Biochemistry and Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, United States
- Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
32
|
Vermunt MW, Luan J, Zhang Z, Thrasher AJ, Huang A, Saari MS, Khandros E, Beagrie RA, Zhang S, Vemulamada P, Brilleman M, Lee K, Yano JA, Giardine BM, Keller CA, Hardison RC, Blobel GA. Gene silencing dynamics are modulated by transiently active regulatory elements. Mol Cell 2023; 83:715-730.e6. [PMID: 36868189 PMCID: PMC10719944 DOI: 10.1016/j.molcel.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Josephine Thrasher
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert A Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pranay Vemulamada
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matilda Brilleman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Yano
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Davidson C, Wordsworth BP, Cohen CJ, Knight JC, Vecellio M. Chromosome conformation capture approaches to investigate 3D genome architecture in Ankylosing Spondylitis. Front Genet 2023; 14:1129207. [PMID: 36760998 PMCID: PMC9905691 DOI: 10.3389/fgene.2023.1129207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Ankylosing Spondylitis (AS) is a chronic inflammatory arthritis of the spine exhibiting a strong genetic background. The mechanistic and functional understanding of the AS-associated genomic loci, identified with Genome Wide Association Studies (GWAS), remains challenging. Chromosome conformation capture (3C) and derivatives are recent techniques which are of great help in elucidating the spatial genome organization and of enormous support in uncover a mechanistic explanation for disease-associated genetic variants. The perturbation of three-dimensional (3D) genome hierarchy may lead to a plethora of human diseases, including rheumatological disorders. Here we illustrate the latest approaches and related findings on the field of genome organization, highlighting how the instability of 3D genome conformation may be among the causes of rheumatological disease phenotypes. We suggest a new perspective on the inclusive potential of a 3C approach to inform GWAS results in rheumatic diseases. 3D genome organization may ultimately lead to a more precise and comprehensive functional interpretation of AS association, which is the starting point for emerging and more specific therapies.
Collapse
Affiliation(s)
- Connor Davidson
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - B. Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Carla J. Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Julian C. Knight
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
- Centro Ricerche Fondazione Italiana Ricerca Sull’Artrite (FIRA), Fondazione Pisana x la Scienza ONLUS, San Giuliano Terme, Italy
| |
Collapse
|
34
|
Tomás-Daza L, Rovirosa L, López-Martí P, Nieto-Aliseda A, Serra F, Planas-Riverola A, Molina O, McDonald R, Ghevaert C, Cuatrecasas E, Costa D, Camós M, Bueno C, Menéndez P, Valencia A, Javierre BM. Low input capture Hi-C (liCHi-C) identifies promoter-enhancer interactions at high-resolution. Nat Commun 2023; 14:268. [PMID: 36650138 PMCID: PMC9845235 DOI: 10.1038/s41467-023-35911-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Long-range interactions between regulatory elements and promoters are key in gene transcriptional control; however, their study requires large amounts of starting material, which is not compatible with clinical scenarios nor the study of rare cell populations. Here we introduce low input capture Hi-C (liCHi-C) as a cost-effective, flexible method to map and robustly compare promoter interactomes at high resolution. As proof of its broad applicability, we implement liCHi-C to study normal and malignant human hematopoietic hierarchy in clinical samples. We demonstrate that the dynamic promoter architecture identifies developmental trajectories and orchestrates transcriptional transitions during cell-state commitment. Moreover, liCHi-C enables the identification of disease-relevant cell types, genes and pathways potentially deregulated by non-coding alterations at distal regulatory elements. Finally, we show that liCHi-C can be harnessed to uncover genome-wide structural variants, resolve their breakpoints and infer their pathogenic effects. Collectively, our optimized liCHi-C method expands the study of 3D chromatin organization to unique, low-abundance cell populations, and offers an opportunity to uncover factors and regulatory networks involved in disease pathogenesis.
Collapse
Affiliation(s)
- Laureano Tomás-Daza
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
| | - Llorenç Rovirosa
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Paula López-Martí
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
| | | | - François Serra
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | | | - Oscar Molina
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | | | - Cedric Ghevaert
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Esther Cuatrecasas
- Pediatric Institute of Rare Diseases, Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
| | - Dolors Costa
- Hospital Clinic, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
- Cancer Network Biomedical Research Center, Barcelona, Spain
| | - Mireia Camós
- Sant Joan de Déu Research Institute, Esplugues de Llobregat, Barcelona, Spain
- Sant Joan de Déu Hospital, Esplugues de Llobregat, Barcelona, Spain
- Center for Biomedical Research in the Rare Diseases Network (CIBERER), Carlos III Health Institute, Madrid, Spain
| | - Clara Bueno
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain.
- Institute for Health Science Research Germans Trias i Pujol, Badalona, Barcelona, Spain.
| |
Collapse
|
35
|
Jeziorska DM, Tunnacliffe EAJ, Brown JM, Ayyub H, Sloane-Stanley J, Sharpe JA, Lagerholm BC, Babbs C, Smith AJH, Buckle VJ, Higgs DR. On-microscope staging of live cells reveals changes in the dynamics of transcriptional bursting during differentiation. Nat Commun 2022; 13:6641. [PMID: 36333299 PMCID: PMC9636426 DOI: 10.1038/s41467-022-33977-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Determining the mechanisms by which genes are switched on and off during development is a key aim of current biomedical research. Gene transcription has been widely observed to occur in a discontinuous fashion, with short bursts of activity interspersed with periods of inactivity. It is currently not known if or how this dynamic behaviour changes as mammalian cells differentiate. To investigate this, using an on-microscope analysis, we monitored mouse α-globin transcription in live cells throughout erythropoiesis. We find that changes in the overall levels of α-globin transcription are most closely associated with changes in the fraction of time a gene spends in the active transcriptional state. We identify differences in the patterns of transcriptional bursting throughout differentiation, with maximal transcriptional activity occurring in the mid-phase of differentiation. Early in differentiation, we observe increased fluctuation in transcriptional activity whereas at the peak of gene expression, in early erythroblasts, transcription is relatively stable. Later during differentiation as α-globin expression declines, we again observe more variability in transcription within individual cells. We propose that the observed changes in transcriptional behaviour may reflect changes in the stability of active transcriptional compartments as gene expression is regulated during differentiation.
Collapse
Affiliation(s)
- D M Jeziorska
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nucleome Therapeutics Ltd., BioEscalator, The Innovation Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - E A J Tunnacliffe
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J M Brown
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - H Ayyub
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J Sloane-Stanley
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - J A Sharpe
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - B C Lagerholm
- Wolfson Imaging Centre, MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- The Kennedy Institute Of Rheumatology, University of Oxford, Old Road Campus, Oxford, OX3 7FY, UK
| | - C Babbs
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - A J H Smith
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - V J Buckle
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - D R Higgs
- MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK.
| |
Collapse
|
36
|
Downes DJ, Hughes JR. Natural and Experimental Rewiring of Gene Regulatory Regions. Annu Rev Genomics Hum Genet 2022; 23:73-97. [PMID: 35472292 DOI: 10.1146/annurev-genom-112921-010715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The successful development and ongoing functioning of complex organisms depend on the faithful execution of the genetic code. A critical step in this process is the correct spatial and temporal expression of genes. The highly orchestrated transcription of genes is controlled primarily by cis-regulatory elements: promoters, enhancers, and insulators. The medical importance of this key biological process can be seen by the frequency with which mutations and inherited variants that alter cis-regulatory elements lead to monogenic and complex diseases and cancer. Here, we provide an overview of the methods available to characterize and perturb gene regulatory circuits. We then highlight mechanisms through which regulatory rewiring contributes to disease, and conclude with a perspective on how our understanding of gene regulation can be used to improve human health.
Collapse
Affiliation(s)
- Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
37
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
38
|
Socolovsky M. The role of specialized cell cycles during erythroid lineage development: insights from single-cell RNA sequencing. Int J Hematol 2022; 116:163-173. [PMID: 35759181 DOI: 10.1007/s12185-022-03406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
Early erythroid progenitors known as CFU-e undergo multiple self-renewal cell cycles. The CFU-e developmental stage ends with the onset of erythroid terminal differentiation (ETD). The transition from CFU-e to ETD is a critical cell fate decision that determines erythropoietic rate. Here we review recent insights into the regulation of this transition, garnered from flow cytometric and single-cell RNA sequencing studies. We find that the CFU-e/ETD transition is a rapid S phase-dependent transcriptional switch. It takes place during an S phase that is much shorter than in preceding or subsequent cycles, as a result of globally faster replication forks. Furthermore, it is preceded by cycles in which G1 becomes gradually shorter. These dramatic cell cycle and S phase remodeling events are directly linked to regulation of the CFU-e/ETD switch. Moreover, regulators of erythropoietic rate exert their effects by modulating cell cycle duration and S phase speed. Glucocorticoids increase erythropoietic rate by inducing the CDK inhibitor p57KIP2, which slows replication forks, inhibiting the CFU-e/ETD switch. Conversely, erythropoietin promotes induction of ETD by shortening the cycle. S phase shortening was reported during cell fate decisions in non-erythroid lineages, suggesting a fundamentally new developmental role for cell cycle speed.
Collapse
Affiliation(s)
- Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
39
|
Deforzh E, Uhlmann EJ, Das E, Galitsyna A, Arora R, Saravanan H, Rabinovsky R, Wirawan AD, Teplyuk NM, El Fatimy R, Perumalla S, Jairam A, Wei Z, Mirny L, Krichevsky AM. Promoter and enhancer RNAs regulate chromatin reorganization and activation of miR-10b/HOXD locus, and neoplastic transformation in glioma. Mol Cell 2022; 82:1894-1908.e5. [PMID: 35390275 PMCID: PMC9271318 DOI: 10.1016/j.molcel.2022.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023]
Abstract
miR-10b is silenced in normal neuroglial cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting role. We demonstrate that the entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-10b promoter and another with the remote enhancer. Knockdown of either lncRNA in glioma cells alters CTCF and cohesin binding, abolishes chromatin looping, inhibits the expression of all genes within HOXD locus, and leads to glioma cell death. Conversely, in cortical astrocytes, enhancer activation is sufficient for HOXD/miR-10b locus reorganization, gene derepression, and neoplastic cell transformation. LINC01116 RNA is essential for this process. Our results demonstrate the interplay of two lncRNAs in the chromatin folding and concordant regulation of miR-10b and multiple HOXD genes normally silenced in astrocytes and triggering the neoplastic glial transformation.
Collapse
Affiliation(s)
- Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eashita Das
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandra Galitsyna
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Ramil Arora
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harini Saravanan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya D Wirawan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sucika Perumalla
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anirudh Jairam
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Brown JM, De Ornellas S, Parisi E, Schermelleh L, Buckle VJ. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure. Nat Protoc 2022; 17:1306-1331. [PMID: 35379945 DOI: 10.1038/s41596-022-00685-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/10/2022] [Indexed: 11/09/2022]
Abstract
DNA fluorescence in situ hybridization (FISH) has been a central technique in advancing our understanding of how chromatin is organized within the nucleus. With the increasing resolution offered by super-resolution microscopy, the optimal maintenance of chromatin structure within the nucleus is essential for accuracy in measurements and interpretation of data. However, standard 3D-FISH requires potentially destructive heat denaturation in the presence of chaotropic agents such as formamide to allow access to the DNA strands for labeled FISH probes. To avoid the need to heat-denature, we developed Resolution After Single-strand Exonuclease Resection (RASER)-FISH, which uses exonuclease digestion to generate single-stranded target DNA for efficient probe binding over a 2 d process. Furthermore, RASER-FISH is easily combined with immunostaining of nuclear proteins or the detection of RNAs. Here, we provide detailed procedures for RASER-FISH in mammalian cultured cells to detect single loci, chromatin tracks and topologically associating domains with conventional and super-resolution 3D structured illumination microscopy. Moreover, we provide a validation and characterization of our method, demonstrating excellent preservation of chromatin structure and nuclear integrity, together with improved hybridization efficiency, compared with classic 3D-FISH protocols.
Collapse
Affiliation(s)
- Jill M Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Sara De Ornellas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Eva Parisi
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
- School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Lothar Schermelleh
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, Oxford University, Oxford, UK
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
41
|
Aljahani A, Hua P, Karpinska MA, Quililan K, Davies JOJ, Oudelaar AM. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Nat Commun 2022; 13:2139. [PMID: 35440598 PMCID: PMC9019034 DOI: 10.1038/s41467-022-29696-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Enhancers and promoters predominantly interact within large-scale topologically associating domains (TADs), which are formed by loop extrusion mediated by cohesin and CTCF. However, it is unclear whether complex chromatin structures exist at sub-kilobase-scale and to what extent fine-scale regulatory interactions depend on loop extrusion. To address these questions, we present an MNase-based chromosome conformation capture (3C) approach, which has enabled us to generate the most detailed local interaction data to date (20 bp resolution) and precisely investigate the effects of cohesin and CTCF depletion on chromatin architecture. Our data reveal that cis-regulatory elements have distinct internal nano-scale structures, within which local insulation is dependent on CTCF, but which are independent of cohesin. In contrast, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.
Collapse
Affiliation(s)
- Abrar Aljahani
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | - Kimberly Quililan
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
42
|
Herrmann JC, Beagrie RA, Hughes JR. Making connections: enhancers in cellular differentiation. Trends Genet 2022; 38:395-408. [PMID: 34753603 DOI: 10.1016/j.tig.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023]
Abstract
Deciphering the process by which hundreds of distinct cell types emerge from a single zygote to form a complex multicellular organism remains one of the greatest challenges in biological research. Enhancers are known to be central to cell type-specific gene expression, yet many questions regarding how these genomic elements interact both temporally and spatially with other cis- and trans-acting factors to control transcriptional activity during differentiation and development remain unanswered. Here, we review our current understanding of the role of enhancers and their interactions in this context and highlight recent progress achieved with experimental methods of unprecedented resolution.
Collapse
Affiliation(s)
- Jennifer C Herrmann
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Wells M, Steiner L. Epigenetic and Transcriptional Control of Erythropoiesis. Front Genet 2022; 13:805265. [PMID: 35330735 PMCID: PMC8940284 DOI: 10.3389/fgene.2022.805265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Erythropoiesis is a process of enormous magnitude, with the average person generating two to three million red cells every second. Erythroid progenitors start as large cells with large nuclei, and over the course of three to four cell divisions they undergo a dramatic decrease in cell size accompanied by profound nuclear condensation, which culminates in enucleation. As maturing erythroblasts are undergoing these dramatic phenotypic changes, they accumulate hemoglobin and express high levels of other erythroid-specific genes, while silencing much of the non-erythroid transcriptome. These phenotypic and gene expression changes are associated with distinct changes in the chromatin landscape, and require close coordination between transcription factors and epigenetic regulators, as well as precise regulation of RNA polymerase II activity. Disruption of these processes are associated with inherited anemias and myelodysplastic syndromes. Here, we review the epigenetic mechanisms that govern terminal erythroid maturation, and their role in human disease.
Collapse
Affiliation(s)
- Maeve Wells
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| |
Collapse
|
44
|
Wei X, Xiang Y, Peters DT, Marius C, Sun T, Shan R, Ou J, Lin X, Yue F, Li W, Southerland KW, Diao Y. HiCAR is a robust and sensitive method to analyze open-chromatin-associated genome organization. Mol Cell 2022; 82:1225-1238.e6. [PMID: 35196517 PMCID: PMC8934281 DOI: 10.1016/j.molcel.2022.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
The long-range interactions of cis-regulatory elements (cREs) play a central role in gene regulation. cREs can be characterized as accessible chromatin sequences. However, it remains technically challenging to comprehensively identify their spatial interactions. Here, we report a new method HiCAR (Hi-C on accessible regulatory DNA), which utilizes Tn5 transposase and chromatin proximity ligation, for the analysis of open-chromatin-anchored interactions with low-input cells. By applying HiCAR in human embryonic stem cells and lymphoblastoid cells, we demonstrate that HiCAR identifies high-resolution chromatin contacts with an efficiency comparable with that of in situ Hi-C over all distance ranges. Interestingly, we found that the "poised" gene promoters exhibit silencer-like function to repress the expression of distal genes via promoter-promoter interactions. Lastly, we applied HiCAR to 30,000 primary human muscle stem cells and demonstrated that HiCAR is capable of analyzing chromatin accessibility and looping using low-input primary cells and clinical samples.
Collapse
Affiliation(s)
- Xiaolin Wei
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Derek T Peters
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Choiselle Marius
- The Cell and Molecular Biology Program, Duke University, Durham, NC 27710, USA
| | - Tongyu Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Ruocheng Shan
- Center for Genetic Medicine Research, Center for Cancer and Immunology Research at Children's National Medical Center, Washington, DC 20010, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wei Li
- Center for Genetic Medicine Research, Center for Cancer and Immunology Research at Children's National Medical Center, Washington, DC 20010, USA
| | - Kevin W Southerland
- Department of Surgery, Division of Vascular and Endovascular Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA; Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Owens DDG, Anselmi G, Oudelaar AM, Downes DJ, Cavallo A, Harman JR, Schwessinger R, Bucakci A, Greder L, de Ornellas S, Jeziorska D, Telenius J, Hughes JR, de Bruijn MFTR. Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development. Nat Commun 2022; 13:773. [PMID: 35140205 PMCID: PMC8828719 DOI: 10.1038/s41467-022-28376-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Damien J Downes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cavallo
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara de Ornellas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Physical and Theoretical Chemistry Building, Department of Chemistry, University of Oxford, Oxford, UK
| | - Danuta Jeziorska
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Downes DJ, Smith AL, Karpinska MA, Velychko T, Rue-Albrecht K, Sims D, Milne TA, Davies JOJ, Oudelaar AM, Hughes JR. Capture-C: a modular and flexible approach for high-resolution chromosome conformation capture. Nat Protoc 2022; 17:445-475. [PMID: 35121852 PMCID: PMC7613269 DOI: 10.1038/s41596-021-00651-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022]
Abstract
Chromosome conformation capture (3C) methods measure the spatial proximity between DNA elements in the cell nucleus. Many methods have been developed to sample 3C material, including the Capture-C family of protocols. Capture-C methods use oligonucleotides to enrich for interactions of interest from sequencing-ready 3C libraries. This approach is modular and has been adapted and optimized to work for sampling of disperse DNA elements (NuTi Capture-C), including from low cell inputs (LI Capture-C), as well as to generate Hi-C like maps for specific regions of interest (Tiled-C) and to interrogate multiway interactions (Tri-C). We present the design, experimental protocol and analysis pipeline for NuTi Capture-C in addition to the variations for generation of LI Capture-C, Tiled-C and Tri-C data. The entire procedure can be performed in 3 weeks and requires standard molecular biology skills and equipment, access to a next-generation sequencing platform, and basic bioinformatic skills. Implemented with other sequencing technologies, these methods can be used to identify regulatory interactions and to compare the structural organization of the genome in different cell types and genetic models.
Collapse
Affiliation(s)
- Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Taras Velychko
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kevin Rue-Albrecht
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Sims
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Haematology Theme, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
47
|
Sood V, Misteli T. The stochastic nature of genome organization and function. Curr Opin Genet Dev 2022; 72:45-52. [PMID: 34808408 PMCID: PMC9014486 DOI: 10.1016/j.gde.2021.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 02/03/2023]
Abstract
Genomes have complex three-dimensional structures. High-resolution population-based biochemical studies over the last decade have painted a mostly static picture of the genome characterized by universal organizational features, such as chromatin domains and compartments. Yet, when analyzed at the single cell level, these architectural elements are highly variable. The heterogeneity in genome organization is in line with the inherent stochasticity of transcription that shows high variation between individual cells. We highlight recent findings on single-cell variability in genome organization and describe a framework for how the stochastic nature of chromatin organization may relate to transcription dynamics.
Collapse
Affiliation(s)
- Varun Sood
- National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
48
|
Jablonski KP, Carron L, Mozziconacci J, Forné T, Hütt MT, Lesne A. Contribution of 3D genome topological domains to genetic risk of cancers: a genome-wide computational study. Hum Genomics 2022; 16:2. [PMID: 35016721 PMCID: PMC8753905 DOI: 10.1186/s40246-022-00375-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/02/2022] [Indexed: 01/31/2023] Open
Abstract
Background Genome-wide association studies have identified statistical associations between various diseases, including cancers, and a large number of single-nucleotide polymorphisms (SNPs). However, they provide no direct explanation of the mechanisms underlying the association. Based on the recent discovery that changes in three-dimensional genome organization may have functional consequences on gene regulation favoring diseases, we investigated systematically the genome-wide distribution of disease-associated SNPs with respect to a specific feature of 3D genome organization: topologically associating domains (TADs) and their borders. Results For each of 449 diseases, we tested whether the associated SNPs are present in TAD borders more often than observed by chance, where chance (i.e., the null model in statistical terms) corresponds to the same number of pointwise loci drawn at random either in the entire genome, or in the entire set of disease-associated SNPs listed in the GWAS catalog. Our analysis shows that a fraction of diseases displays such a preferential localization of their risk loci. Moreover, cancers are relatively more frequent among these diseases, and this predominance is generally enhanced when considering only intergenic SNPs. The structure of SNP-based diseasome networks confirms that localization of risk loci in TAD borders differs between cancers and non-cancer diseases. Furthermore, different TAD border enrichments are observed in embryonic stem cells and differentiated cells, consistent with changes in topological domains along embryogenesis and delineating their contribution to disease risk. Conclusions Our results suggest that, for certain diseases, part of the genetic risk lies in a local genetic variation affecting the genome partitioning in topologically insulated domains. Investigating this possible contribution to genetic risk is particularly relevant in cancers. This study thus opens a way of interpreting genome-wide association studies, by distinguishing two types of disease-associated SNPs: one with an effect on an individual gene, the other acting in interplay with 3D genome organization. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00375-2.
Collapse
Affiliation(s)
- Kim Philipp Jablonski
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, 4058, Basel, Switzerland
| | - Leopold Carron
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France.,Laboratory of Computational and Quantitative Biology, LCQB, Sorbonne Université, Paris, France
| | - Julien Mozziconacci
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France.,Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Forné
- Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Univ. Montpellier, Montpellier, France
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.
| | - Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS, Univ. Montpellier, Montpellier, France.
| |
Collapse
|
49
|
Abstract
Tri-C is a chromosome conformation capture (3C) approach that can efficiently identify multiway chromatin interactions with viewpoints of interest. As opposed to pair-wise interactions identified in methods such as Hi-C, 4C, and Capture-C, the detection of multiway interactions allows researchers to investigate how multiple cis-regulatory elements interact together in higher-order structures in single nuclei and address questions regarding structural cooperation between these elements. Here, we describe the procedure for designing and performing a Tri-C experiment.
Collapse
Affiliation(s)
- A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Damien J Downes
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Georgolopoulos G, Psatha N, Iwata M, Nishida A, Som T, Yiangou M, Stamatoyannopoulos JA, Vierstra J. Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation. Nat Commun 2021; 12:6790. [PMID: 34815405 PMCID: PMC8611072 DOI: 10.1038/s41467-021-27159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
Lineage commitment and differentiation is driven by the concerted action of master transcriptional regulators at their target chromatin sites. Multiple efforts have characterized the key transcription factors (TFs) that determine the various hematopoietic lineages. However, the temporal interactions between individual TFs and their chromatin targets during differentiation and how these interactions dictate lineage commitment remains poorly understood. Here we perform dense, daily, temporal profiling of chromatin accessibility (DNase I-seq) and gene expression changes (total RNA-seq) along ex vivo human erythropoiesis to comprehensively define developmentally regulated DNase I hypersensitive sites (DHSs) and transcripts. We link both distal DHSs to their target gene promoters and individual TFs to their target DHSs, revealing that the regulatory landscape is organized in distinct sequential regulatory modules that regulate lineage restriction and maturation. Finally, direct comparison of transcriptional dynamics (bulk and single-cell) and lineage potential between erythropoiesis and megakaryopoiesis uncovers differential fate commitment dynamics between the two lineages as they exit the stem and progenitor stage. Collectively, these data provide insights into the temporally regulated synergy of the cis- and the trans-regulatory components underlying hematopoietic lineage commitment and differentiation.
Collapse
Affiliation(s)
- Grigorios Georgolopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA.
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Mineo Iwata
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Andrew Nishida
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Tannishtha Som
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Vierstra
- Altius Institute for Biomedical Sciences, Seattle, WA, USA.
| |
Collapse
|