1
|
Bisia AM, Xypolita ME, Bikoff EK, Robertson EJ, Costello I. Eomesodermin in conjunction with the BAF complex promotes expansion and invasion of the trophectoderm lineage. Nat Commun 2025; 16:5079. [PMID: 40450029 DOI: 10.1038/s41467-025-60417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
The T-box transcription factor (TF) Eomesodermin/Tbr2 (Eomes) is essential for maintenance of the trophectoderm (TE) lineage, but the molecular mechanisms underlying this critical role remain obscure. Here, we show in trophoblast stem cells (TSCs) that Eomes partners with several TE-specific TFs as well as chromatin remodellers, including Brg1 and other subunits of the BAF complex. Degron-mediated Eomes protein depletion results in genome-wide loss of chromatin accessibility at TSC-specific loci. These overlap with a subset of sites that lose accessibility following Brg1 inhibition, suggesting that Eomes acts as a "doorstop" controlling TSC chromatin accessibility. Eomes depletion also causes transcriptional misregulation of TSC maintenance and early differentiation markers. An additional subset of Eomes-dependent genes encode intercellular/matricellular interaction and cytoskeletal components, likely explaining the implantation defects of Eomes-null embryos. Thus, Eomes promotes TE lineage maintenance by sustaining trophectoderm-specific chromatin accessibility, while promoting the gene regulatory networks that modulate expansion and cell behaviour during implantation.
Collapse
Affiliation(s)
| | | | | | | | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Xypolita ME, Goolam M, Bikoff EK, Robertson EJ, Mould AW. The zinc-finger transcription factor Blimp1/Prdm1 is required for uterine remodelling and repair in the mouse. Nat Commun 2025; 16:1220. [PMID: 39890816 PMCID: PMC11785775 DOI: 10.1038/s41467-025-56511-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/17/2025] [Indexed: 02/03/2025] Open
Abstract
The zinc finger transcription factor Blimp1/PRDM1 regulates gene expression in diverse cell types. Its activity controls the maternal decidual response at early post-implantation stages of development. The present experiments demonstrate surprisingly that Blimp1 activity in the uterus is required for tissue remodelling at sites of embryonic failure. Moreover Blimp1 mutant females are refractory to RU486 induced decidual shedding. RNA-seq together with immunostaining experiments strongly suggest that the failure to up-regulate expression of the matrix metalloprotease Mmp10 in combination with insufficient suppression of BMP signalling, likely explain Blimp1-dependent phenotypic changes. In the post-partum uterus Blimp1 together with Mmp10 are highly upregulated at sites of tissue repair following placental detachment. Conditional Blimp1 removal significantly impairs the re-epithelization process and severely impacts involution of the endometrium and luminal epithelium. Overall these results identify Blimp1 as a master regulator of uterine tissue remodelling and repair.
Collapse
Affiliation(s)
- Maria-Eleni Xypolita
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Mubeen Goolam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Department of Human Biology and Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Elizabeth J Robertson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Arne W Mould
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
3
|
Rytkönen KT, Adossa N, Zúñiga Norman S, Lönnberg T, Poutanen M, Elo LL. Gene Regulatory Network Analysis of Decidual Stromal Cells and Natural Killer Cells. Reprod Sci 2024; 31:3159-3174. [PMID: 39090334 PMCID: PMC11438719 DOI: 10.1007/s43032-024-01653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Human reproductive success relies on the proper differentiation of the uterine endometrium to facilitate implantation, formation of the placenta, and pregnancy. This process involves two critical types of decidual uterine cells: endometrial/decidual stromal cells (dS) and uterine/decidual natural killer (dNK) cells. To better understand the transcription factors governing the in vivo functions of these cells, we analyzed single-cell transcriptomics data from first-trimester terminations of pregnancy, and for the first time conducted gene regulatory network analysis of dS and dNK cell subpopulations. Our analysis revealed stromal cell populations that corresponded to previously described in vitro decidualized cells and senescent decidual cells. We discovered new decidualization driving transcription factors of stromal cells for early pregnancy, including DDIT3 and BRF2, which regulate oxidative stress protection. For dNK cells, we identified transcription factors involved in the immunotolerant (dNK1) subpopulation, including IRX3 and RELB, which repress the NFKB pathway. In contrast, for the less immunotolerant (dNK3) population we predicted TBX21 (T-bet) and IRF2-mediated upregulation of the interferon pathway. To determine the clinical relevance of our findings, we tested the overrepresentation of the predicted transcription factors target genes among cell type-specific regulated genes from pregnancy disorders, such as recurrent pregnancy loss and preeclampsia. We observed that the predicted decidualized stromal and dNK1-specific transcription factor target genes were enriched with the genes downregulated in pregnancy disorders, whereas the predicted dNK3-specific targets were enriched with genes upregulated in pregnancy disorders. Our findings emphasize the importance of stress tolerance pathways in stromal cell decidualization and immunotolerance promoting regulators in dNK differentiation.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland.
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Nigatu Adossa
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
| | - Sebastián Zúñiga Norman
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Akaeda S, Aikawa S, Hirota Y. Spatial and molecular anatomy of the endometrium during embryo implantation: a current overview of key regulators of blastocyst invasion. FEBS J 2024; 291:4206-4221. [PMID: 38348632 DOI: 10.1111/febs.17077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 10/04/2024]
Abstract
Embryo implantation is composed of three steps: blastocyst apposition, adhesion/attachment and invasion. Blastocyst invasion has been studied less extensively than the other two events. Historically, studies conducted using electron microscopy have shown the removal of epithelial cells in the vicinity of the attached blastocysts in rodents, although the underlying mechanisms have remained unclear. Here, we describe recent studies using mice with uterine-specific gene deletion that demonstrated important roles for nuclear proteins such as progesterone receptor, hypoxia inducible factor and retinoblastoma in the regulation of embryo invasion. In these mouse models, the detachment of the endometrial luminal epithelium, decidualization in the stroma, and the activation of trophoblasts have been found to be important in ensuring embryo invasion. This review summarizes the molecular signaling associated with these cellular events, mainly evidenced by mouse models.
Collapse
Affiliation(s)
- Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
5
|
Aikawa S, Matsuo M, Akaeda S, Sugimoto Y, Arita M, Isobe Y, Sugiura Y, Taira S, Maeda R, Shimizu-Hirota R, Takeda N, Hiratsuka D, He X, Ishizawa C, Iida R, Fukui Y, Hiraoka T, Harada M, Wada-Hiraike O, Osuga Y, Hirota Y. Spatiotemporally distinct roles of cyclooxygenase-1 and cyclooxygenase-2 at fetomaternal interface in mice. JCI Insight 2024; 9:e181865. [PMID: 39377223 PMCID: PMC11466189 DOI: 10.1172/jci.insight.181865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024] Open
Abstract
Embryo implantation is crucial for ensuring a successful pregnancy outcome and subsequent child health. The intrauterine environment during the peri-implantation period shows drastic changes in gene expression and cellular metabolism in response to hormonal stimuli and reciprocal communication with embryos. Here, we performed spatial transcriptomic analysis to elucidate the mechanisms underlying embryo implantation. Transcriptome data revealed that lipid metabolism pathways, especially arachidonic acid-related (AA-related) ones, were enriched in the embryo-receptive luminal epithelia. Cyclooxygenases (COXs), rate-limiting enzymes involved in prostaglandin production by AA, were spatiotemporally regulated in the vicinity of embryos during implantation, but the role of each COX isozyme in the uterus for successful pregnancy was unclear. We established uterine-specific COX2-knockout (uKO) and COX1/uterine COX2-double-KO (COX1/COX2-DKO) mice. COX2 uKO caused deferred implantation with failed trophoblast invasion, resulting in subfertility with reduced pregnancy rates and litter sizes. COX1/COX2 DKO induced complete infertility, owing to abrogated embryo attachment. These results demonstrate that both isozymes have distinct roles during embryo implantation. Spatial transcriptome and lipidome analyses revealed unique profiles of prostaglandin synthesis by each COX isozyme and spatiotemporal expression patterns of downstream receptors throughout the endometrium. Our findings reveal previously unappreciated roles of COXs at the fetomaternal interface to establish early pregnancy.
Collapse
Affiliation(s)
- Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Yosuke Isobe
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Yuki Sugiura
- Division of Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Rae Maeda
- Division of Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daiki Hiratsuka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xueting He
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Ishizawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Iida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Zhao SJ, Hu XH, Lin XX, Zhang YJ, Wang J, Wang H, Gong GS, Mor G, Liao AH. IL-27/Blimp-1 axis regulates the differentiation and function of Tim-3+ Tregs during early pregnancy. JCI Insight 2024; 9:e179233. [PMID: 39171524 PMCID: PMC11343602 DOI: 10.1172/jci.insight.179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
Decidual regulatory T cells (Tregs) are essential for successful pregnancy outcome. A subset of Tregs, T cell immunoglobulin and mucin domain-containing protein 3-positive regulatory T cells (TregsTim-3+), plays a central role in the acceptance of the fetus during early stages of normal pregnancy. The molecular mechanism regulating the differentiation and function of TregsTim-3+ is unknown. Here, we investigated the role of the transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) on decidual TregTim-3+ differentiation. We demonstrated that Blimp-1 enhanced the coexpression of negative costimulatory molecules (Tim-3, T cell immunoreceptor with Ig and ITIM domains, and programmed cell death protein 1) on Tregs and improved their immunosuppressive functions, including increased IL-10 secretion, suppression of effector T cell proliferation, and promotion of macrophage polarization toward the M2 phenotype. Furthermore, we showed that IL-27 regulated the expression of Tim-3 and Blimp-1 through the STAT1 signaling pathway and that transfer of TregsBlimp-1+ into an abortion-prone mouse model effectively reduced embryo absorption rate. We postulated that abnormalities in the IL-27/Blimp-1 axis might be associated with recurrent pregnancy loss (RPL). These findings provided insights for developing more efficient immunotherapies for women with RPL.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Hui Hu
- Department of Obstetrics and Gynecology, First Clinical College Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wang P, Wen X, Li H, Lang P, Li S, Lei Y, Shu H, Gao L, Zhao D, Zeng J. Deciphering driver regulators of cell fate decisions from single-cell transcriptomics data with CEFCON. Nat Commun 2023; 14:8459. [PMID: 38123534 PMCID: PMC10733330 DOI: 10.1038/s41467-023-44103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Single-cell technologies enable the dynamic analyses of cell fate mapping. However, capturing the gene regulatory relationships and identifying the driver factors that control cell fate decisions are still challenging. We present CEFCON, a network-based framework that first uses a graph neural network with attention mechanism to infer a cell-lineage-specific gene regulatory network (GRN) from single-cell RNA-sequencing data, and then models cell fate dynamics through network control theory to identify driver regulators and the associated gene modules, revealing their critical biological processes related to cell states. Extensive benchmarking tests consistently demonstrated the superiority of CEFCON in GRN construction, driver regulator identification, and gene module identification over baseline methods. When applied to the mouse hematopoietic stem cell differentiation data, CEFCON successfully identified driver regulators for three developmental lineages, which offered useful insights into their differentiation from a network control perspective. Overall, CEFCON provides a valuable tool for studying the underlying mechanisms of cell fate decisions from single-cell RNA-seq data.
Collapse
Affiliation(s)
- Peizhuo Wang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
- School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
| | - Xiao Wen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Han Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Peng Lang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Shuya Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
- School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China
| | - Yipin Lei
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Hantao Shu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, 710071, Xi'an, Shaanxi Province, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
- School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Zheng L, Chopra A, Weiner J, Beule D, Dommisch H, Schaefer AS. miRNAs from Inflamed Gingiva Link Gene Signaling to Increased MET Expression. J Dent Res 2023; 102:1488-1497. [PMID: 37822091 PMCID: PMC10683346 DOI: 10.1177/00220345231197984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Several array-based microRNA (miRNA) expression studies independently showed increased expression of miRNAs hsa-miR-130a-3p, -142-3p, -144-3p, -144-5p, -223-3p, -17-5p, and -30e-5p in gingiva affected by periodontal inflammation. We aimed to determine direct target genes and signaling pathways regulated by these miRNAs to identify processes relevant to gingival inflammatory responses and tissue homeostasis. We transfected miRNA mimics (mirVana) for each of the 7 miRNAs separately into human primary gingival fibroblasts cultured from 3 different donors. Following RNA sequencing, differential gene expression and second-generation gene set enrichment analyses were performed. miRNA inhibition and upregulation was validated at the transcript and protein levels using quantitative reverse transcriptase polymerase chain reaction, Western blotting, and reporter gene assays. All 7 miRNAs significantly increased expression of the gene MET proto-oncogene, receptor tyrosine kinase (MET). Expression of known periodontitis risk genes CPEB1, ABCA1, and ATP6V1C1 was significantly repressed by hsa-miR-130a-3p, -144-3p, and -144-5p, respectively. The genes WASL, ENPP5, ARL6IP1, and IDH1 showed the most significant and strongest downregulation after hsa-miR-142-3p, -17-5p, -223-3p, and -30e-5p transfection, respectively. The most significantly regulated gene set of each miRNA related to cell cycle (hsa-miRNA-144-3p and -5p [Padj = 4 × 10-40 and Padj = 4 × 10-6], -miR-17-5p [Padj = 9.5 × 10-23], -miR-30e-5p [Padj = 8.2 × 10-18], -miR-130a-3p [Padj = 5 × 10-15]), integrin cell surface interaction (-miR-223-3p [Padj = 2.4 × 10-7]), and interferon signaling (-miR-142-3p [Padj = 5 × 10-11]). At the end of acute inflammation, gingival miRNAs bring together complex regulatory networks that lead to increased expression of the gene MET. This underscores the importance of mesenchymal cell migration and invasion during gingival tissue remodeling and proliferation in restoring periodontal tissue homeostasis after active inflammation. MET, a receptor of the mitogenic hepatocyte growth factor fibroblast secreted, is a core gene of this process.
Collapse
Affiliation(s)
- L. Zheng
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A. Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J. Weiner
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - D. Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - H. Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A. S. Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Bisia AM, Costello I, Xypolita ME, Harland LTG, Kurbel PJ, Bikoff EK, Robertson EJ. A degron-based approach to manipulate Eomes functions in the context of the developing mouse embryo. Proc Natl Acad Sci U S A 2023; 120:e2311946120. [PMID: 37871215 PMCID: PMC10622880 DOI: 10.1073/pnas.2311946120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
The T-box transcription factor Eomesodermin (Eomes), also known as Tbr2, plays essential roles in the early mouse embryo. Loss-of-function mutant embryos arrest at implantation due to Eomes requirements in the trophectoderm cell lineage. Slightly later, expression in the visceral endoderm promotes anterior visceral endoderm formation and anterior-posterior axis specification. Early induction in the epiblast beginning at day 6 is necessary for nascent mesoderm to undergo epithelial to mesenchymal transition (EMT). Eomes acts in a temporally and spatially restricted manner to sequentially specify the yolk sac haemogenic endothelium, cardiac mesoderm, definitive endoderm, and axial mesoderm progenitors during gastrulation. Little is known about the underlying molecular mechanisms governing Eomes actions during the formation of these distinct progenitor cell populations. Here, we introduced a degron-tag and mCherry reporter sequence into the Eomes locus. Our experiments analyzing homozygously tagged embryonic stem cells and embryos demonstrate that the degron-tagged Eomes protein is fully functional. dTAG (degradation fusion tag) treatment in vitro results in rapid protein degradation and recapitulates the Eomes-null phenotype. However in utero administration of dTAG resulted in variable and lineage-specific degradation, likely reflecting diverse cell type-specific Eomes expression dynamics. Finally, we demonstrate that Eomes protein rapidly recovers following dTAG wash-out in vitro. The ability to temporally manipulate Eomes protein expression in combination with cell marking by the mCherry-reporter offers a powerful tool for dissecting Eomes-dependent functional roles in these diverse cell types in the early embryo.
Collapse
Affiliation(s)
- Alexandra M. Bisia
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Maria-Eleni Xypolita
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Luke T. G. Harland
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Philipp J. Kurbel
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| |
Collapse
|
10
|
Zhou W, Geng H, Huang Y, Shi S, Wang Z, Wang D. Mechanism of BLIMP1/TRIM66/COX2 in human decidua participates in parturition†. Biol Reprod 2023; 109:507-519. [PMID: 37515773 DOI: 10.1093/biolre/ioad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
The mechanism underlying the initiation of parturition remains unclear. Cyclooxygenase 2 and prostaglandins in decidual membrane tissue play an important role in the "parturition cascade." With the advancement of gestation, the expression of the transcriptional suppressor B lymphocyte-induced maturation protein 1 in the decidual membrane gradually decreases. Through chromatin immunoprecipitation sequencing, we found that B lymphocyte-induced maturation protein 1 has a binding site in the distal intergenic of PTGS2(COX2). Tripartite motif-containing protein 66 is a chromatin-binding protein that usually performs transcriptional regulatory functions by "reading" histone modification sites in chromatin. In this study, tripartite motif-containing protein 66 exhibits the same trend of expression as B lymphocyte-induced maturation protein 1 in the decidua during gestation. Moreover, the co-immunoprecipitation assay revealed that tripartite motif-containing protein 66 combined with B lymphocyte-induced maturation protein 1. This finding indicated that tripartite motif-containing protein 66 formed a transcription complex with B lymphocyte-induced maturation protein 1, which coregulated the expression of COX2. In animal experiments, we injected si-Blimp1 adenoviruses (si-Blimp1), Blimp1 overexpression plasmid (Blimp1-OE), and Trim66 overexpression plasmid (Trim66-OE) through the tail vein of mice. The results showed that B lymphocyte-induced maturation protein 1 and tripartite motif-containing protein 66 affected the initiation of parturition in mice. Therefore, the present evidence suggests that B lymphocyte-induced maturation protein 1 and tripartite motif-containing protein 66 partially participate in the initiation of labor, which may provide a new perspective for exploring the mechanism of term labor.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huizhen Geng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihong Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaole Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Amel A, Rossouw S, Goolam M. Gastruloids: A Novel System for Disease Modelling and Drug Testing. Stem Cell Rev Rep 2023; 19:104-113. [PMID: 36308705 DOI: 10.1007/s12015-022-10462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
By virtue of its inaccessible nature, mammalian implantation stage development has remained one of the most enigmatic and hard to investigate periods of embryogenesis. Derived from pluripotent stem cells, gastruloids recapitulate key aspects of gastrula-stage embryos and have emerged as a powerful in vitro tool to study the architectural features of early post-implantation embryos. While the majority of the work in this emerging field has focused on the use of gastruloids to model embryogenesis, their tractable nature and suitability for high-throughput scaling, has presented an unprecedented opportunity to investigate both developmental and environmental aberrations to the embryo as they occur in vitro. This review summarises the recent developments in the use of gastruloids to model congenital anomalies, their usage in teratogenicity testing, and the current limitations of this emerging field.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa. .,UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
12
|
How do pre-pregnancy endometrial macrophages contribute to pregnancy? J Reprod Immunol 2022; 154:103736. [PMID: 36113384 DOI: 10.1016/j.jri.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Macrophages are professional phagocytes with a wide distribution in all tissues throughout the body. Macrophages play a crucial role in homeostasis and numerous physiological processes beyond innate and adaptive immunity, including cellular debris removal, metabolic regulation, tissue repair, and tissue remodeling. Uterine macrophages are a heterogeneous and highly plastic subset of immune cells regulated by the local microenvironment and, in addition to their anti-inflammatory and anti-infective functions, support the establishment and maintenance of pregnancy. Comprehensive reviews have summarized the role of decidual macrophages during pregnancy. However, the distribution of macrophages in the endometrium prior to pregnancy, their functional remodeling, and the knock-on effects on subsequent pregnancies have not been elucidated. In this review, we focus on 1) how the phenotypes of endometrial macrophages and their interactions with other endometrial cells indicate or contribute to the subsequent pregnancy, 2) the adaptive switching of endometrial macrophages during the initial establishment of pregnancy, 3) and the pregnancy complications and pregnancy-related disorders associated with endometrial macrophages.
Collapse
|
13
|
Lin YK, Zhu P, Wang WS, Sun K. Serum amyloid A, a host-derived DAMP in pregnancy? Front Immunol 2022; 13:978929. [PMID: 35990700 PMCID: PMC9390978 DOI: 10.3389/fimmu.2022.978929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serum amyloid A (SAA) is one of the acute phase proteins released primarily from the liver in response to infection, inflammation and trauma. Emerging evidence indicates that SAA may function as a host-derived damage-associated molecular pattern (DAMP) protein to sense danger signals in pregnancy. The plasma SAA levels in maternal circulation are significantly increased in normal parturition, particularly in postpartum, as well as in gestational disorders such as premature preterm rupture of membranes, pre-eclampsia, gestational diabetes, and recurrent spontaneous abortion. It is likely that SAA acts as a non-specific DAMP molecule in response to inflammation and trauma experienced under these conditions. Notably, SAA can also be synthesized locally in virtually all gestational tissues. Within these gestational tissues, under the induction by bacterial products, pro-inflammatory cytokines and stress hormone glucocorticoids, SAA may exert tissue-specific effects as a toll-like receptor 4 (TLR4)-sensed DAMP molecule. SAA may promote parturition through stimulation of inflammatory reactions via induction of pro-inflammatory cytokines, chemokines, adhesion molecules and prostaglandins in the uterus, fetal membranes and placenta. In the fetal membranes, SAA may also facilitate membrane rupture through induction of matrix metalloproteases (MMPs)- and autophagy-mediated collagen breakdown and attenuation of lysyl oxidase-mediated collagen cross-linking. SAA synthesized in extravillous trophoblasts may promote their invasiveness into the endometrium in placentation. Here, we summarized the current understanding of SAA in pregnancy with an aim to stimulate in-depth investigation of SAA in pregnancy, which may help better understand how inflammation is initiated in gestational tissues in both normal and abnormal pregnancies.
Collapse
Affiliation(s)
- Yi-kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ping Zhu
- Department of Obstetrics and Gynecology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Wang-sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- *Correspondence: Kang Sun,
| |
Collapse
|
14
|
Sung DC, Chen X, Chen M, Yang J, Schultz S, Babu A, Xu Y, Gao S, Keller TCS, Mericko-Ishizuka P, Lee M, Yang Y, Scallan JP, Kahn ML. VE-cadherin enables trophoblast endovascular invasion and spiral artery remodeling during placental development. eLife 2022; 11:e77241. [PMID: 35486098 PMCID: PMC9106330 DOI: 10.7554/elife.77241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
During formation of the mammalian placenta, trophoblasts invade the maternal decidua and remodel spiral arteries to bring maternal blood into the placenta. This process, known as endovascular invasion, is thought to involve the adoption of functional characteristics of vascular endothelial cells (ECs) by trophoblasts. The genetic and molecular basis of endovascular invasion remains poorly defined, however, and whether trophoblasts utilize specialized endothelial proteins in an analogous manner to create vascular channels remains untested. Vascular endothelial (VE-)cadherin is a homotypic adhesion protein that is expressed selectively by ECs in which it enables formation of tight vessels and regulation of EC junctions. VE-cadherin is also expressed in invasive trophoblasts and is a prime candidate for a molecular mechanism of endovascular invasion by those cells. Here, we show that VE-cadherin is required for trophoblast migration and endovascular invasion into the maternal decidua in the mouse. VE-cadherin deficiency results in loss of spiral artery remodeling that leads to decreased flow of maternal blood into the placenta, fetal growth restriction, and death. These studies identify a non-endothelial role for VE-cadherin in trophoblasts during placental development and suggest that endothelial proteins may play functionally unique roles in trophoblasts that do not simply mimic those in ECs.
Collapse
Affiliation(s)
- Derek C Sung
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaowen Chen
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mei Chen
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jisheng Yang
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Susan Schultz
- Department of Radiology, Hospital of the University of PennsylvaniaPhiladelphiaUnited States
| | - Apoorva Babu
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yitian Xu
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Siqi Gao
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - TC Stevenson Keller
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Michelle Lee
- University Laboratory Animal Resources, University of PennsylvaniaPhiladelphiaUnited States
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South FloridaTampaUnited States
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South FloridaTampaUnited States
| | - Mark L Kahn
- Cardiovascular Institute, Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
15
|
Wang H, Morrison CA, Ghosh N, Tea JS, Call GB, Treisman JE. The Blimp-1 transcription factor acts in non-neuronal cells to regulate terminal differentiation of the Drosophila eye. Development 2022; 149:dev200217. [PMID: 35297965 PMCID: PMC8995086 DOI: 10.1242/dev.200217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/07/2022] [Indexed: 09/10/2023]
Abstract
The formation of a functional organ such as the eye requires specification of the correct cell types and their terminal differentiation into cells with the appropriate morphologies and functions. Here, we show that the zinc-finger transcription factor Blimp-1 acts in secondary and tertiary pigment cells in the Drosophila retina to promote the formation of a bi-convex corneal lens with normal refractive power, and in cone cells to enable complete extension of the photoreceptor rhabdomeres. Blimp-1 expression depends on the hormone ecdysone, and loss of ecdysone signaling causes similar differentiation defects. Timely termination of Blimp-1 expression is also important, as its overexpression in the eye has deleterious effects. Our transcriptomic analysis revealed that Blimp-1 regulates the expression of many structural and secreted proteins in the retina. Blimp-1 may function in part by repressing another transcription factor; Slow border cells is highly upregulated in the absence of Blimp-1, and its overexpression reproduces many of the effects of removing Blimp-1. This work provides insight into the transcriptional networks and cellular interactions that produce the structures necessary for visual function.
Collapse
Affiliation(s)
- Hongsu Wang
- Skirball Institutefor Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Carolyn A. Morrison
- Skirball Institutefor Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Neha Ghosh
- Skirball Institutefor Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Joy S. Tea
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gerald B. Call
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Jessica E. Treisman
- Skirball Institutefor Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
16
|
Nadeau S, Martins GA. Conserved and Unique Functions of Blimp1 in Immune Cells. Front Immunol 2022; 12:805260. [PMID: 35154079 PMCID: PMC8829541 DOI: 10.3389/fimmu.2021.805260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
B-lymphocyte-induced maturation protein-1 (Blimp1), is an evolutionarily conserved transcriptional regulator originally described as a repressor of gene transcription. Blimp1 crucially regulates embryonic development and terminal differentiation in numerous cell lineages, including immune cells. Initial investigations of Blimp1’s role in immunity established its non-redundant role in lymphocytic terminal effector differentiation and function. In B cells, Blimp1 drives plasmablast formation and antibody secretion, whereas in T cells, Blimp1 regulates functional differentiation, including cytokine gene expression. These studies established Blimp1 as an essential transcriptional regulator that promotes efficient and controlled adaptive immunity. Recent studies have also demonstrated important roles for Blimp1 in innate immune cells, specifically myeloid cells, and Blimp1 has been established as an intrinsic regulator of dendritic cell maturation and T cell priming. Emerging studies have determined both conserved and unique functions of Blimp1 in different immune cell subsets, including the unique direct activation of the igh gene transcription in B cells and a conserved antagonism with BCL6 in B cells, T cells, and myeloid cells. Moreover, polymorphisms associated with the gene encoding Blimp1 (PRDM1) have been linked to numerous chronic inflammatory conditions in humans. Blimp1 has been shown to regulate target gene expression by either competing with other transcription factors for binding to the target loci, and/or by recruiting various chromatin-modifying co-factors that promote suppressive chromatin structure, such as histone de-acetylases and methyl-transferases. Further, Blimp1 function has been shown to be essentially dose and context-dependent, which adds to Blimp1’s versatility as a regulator of gene expression. Here, we review Blimp1’s complex roles in immunity and highlight specific gaps in the understanding of the biology of this transcriptional regulator, with a major focus on aspects that could foster the description and understanding of novel pathways regulated by Blimp1 in the immune system.
Collapse
Affiliation(s)
- Samantha Nadeau
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| | - Gislâine A Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Medicine, Gastroenterology Division, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| |
Collapse
|
17
|
Kim SH, Baek M, Park S, Shin S, Lee JS, Lee GM. Improving the secretory capacity of CHO producer cells: The effect of controlled Blimp1 expression, a master transcription factor for plasma cells. Metab Eng 2021; 69:73-86. [PMID: 34775077 DOI: 10.1016/j.ymben.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 01/23/2023]
Abstract
With the advent of novel therapeutic proteins with complex structures, cellular bottlenecks in secretory pathways have hampered the high-yield production of difficult-to-express (DTE) proteins in CHO cells. To mitigate their limited secretory capacity, recombinant CHO (rCHO) cells were engineered to express Blimp1, a master regulator orchestrating B cell differentiation into professional secretory plasma cells, using the streamlined CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform. The expression of Blimp1α or Blimp1β in rCHO cells producing DTE recombinant human bone morphogenetic protein-4 (rhBMP-4) increased specific rhBMP-4 productivity (qrhBMP-4). However, since Blimp1α expression suppressed cell growth more significantly than Blimp1β expression, only Blimp1β expression enhanced rhBMP-4 yield. In serum-free suspension culture, Blimp1β expression significantly increased the rhBMP-4 concentration (>3-fold) and qrhBMP-4 (>4-fold) without significant increase in hBMP-4 transcript levels. In addition, Blimp1β expression facilitated mature rhBMP-4 secretion by active proteolytic cleavage in the secretory pathway. Transcriptomic profiling (RNA-seq) revealed global changes in gene expression patterns that promote protein processing in secretory organelles. In-depth integrative analysis of the current RNA-seq data, public epigenome/RNA-seq data, and in silico analysis identified 45 potential key regulators of Blimp1 that are consistently up- or down-regulated in Blimp1β expressing rCHO cells and plasma cells. Blimp1β expression also enhanced the production of easy-to-express monoclonal antibodies (mAbs) and modulated the expression of key regulators in rCHO cells producing mAb. Taken together, the results show that controlled expression of Blimp1β improves the production capacity of rCHO cells by regulating secretory machinery and suggest new opportunities for engineering promising targets that are resting in CHO cells.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Minhye Baek
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Sungje Park
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
18
|
Dhakal P, Fitzgerald HC, Kelleher AM, Liu H, Spencer TE. Uterine glands impact embryo survival and stromal cell decidualization in mice. FASEB J 2021; 35:e21938. [PMID: 34547143 DOI: 10.1096/fj.202101170rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Uterine glands are essential for the establishment of pregnancy and have critical roles in endometrial receptivity to blastocyst implantation, stromal cell decidualization, and placentation. Uterine gland dysfunction is considered a major contributing factor to pregnancy loss, however our understanding of how glands impact embryo survival and stromal cell decidualization is incomplete. Forkhead box A2 (FOXA2) is expressed only in the glandular epithelium and regulates its development and function. Mice with a conditional deletion of FOXA2 in the uterus are infertile due to defective embryo implantation arising from a lack of leukemia inhibitory factor (LIF), a critical factor of uterine gland origin. Here, a glandless FOXA2-deficient mouse model, coupled with LIF repletion to rescue the implantation defect, was used to investigate the roles of uterine glands in embryo survival and decidualization. Studies found that embryo survival and decidualization were compromised in glandless FOXA2-deficient mice on gestational day 6.5, resulting in abrupt pregnancy loss by day 7.5. These findings strongly support the hypothesis that uterine glands secrete factors other than LIF that impact embryo survival and stromal cell decidualization for pregnancy success.
Collapse
Affiliation(s)
- Pramod Dhakal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Andrew M Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.,Division of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.,Division of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
19
|
Du G, Oatley MJ, Law NC, Robbins C, Wu X, Oatley JM. Proper timing of a quiescence period in precursor prospermatogonia is required for stem cell pool establishment in the male germline. Development 2021; 148:261737. [PMID: 33929507 DOI: 10.1242/dev.194571] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/30/2021] [Indexed: 11/20/2022]
Abstract
The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.
Collapse
Affiliation(s)
- Guihua Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Melissa J Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Nathan C Law
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Colton Robbins
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
20
|
Mitra A, Raicu AM, Hickey SL, Pile LA, Arnosti DN. Soft repression: Subtle transcriptional regulation with global impact. Bioessays 2020; 43:e2000231. [PMID: 33215731 PMCID: PMC9068271 DOI: 10.1002/bies.202000231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Pleiotropically acting eukaryotic corepressors such as retinoblastoma and SIN3 have been found to physically interact with many widely expressed “housekeeping” genes. Evidence suggests that their roles at these loci are not to provide binary on/off switches, as is observed at many highly cell-type specific genes, but rather to serve as governors, directly modulating expression within certain bounds, while not shutting down gene expression. This sort of regulation is challenging to study, as the differential expression levels can be small. We hypothesize that depending on context, corepressors mediate “soft repression,” attenuating expression in a less dramatic but physiologically appropriate manner. Emerging data indicate that such regulation is a pervasive characteristic of most eukaryotic systems, and may reflect the mechanistic differences between repressor action at promoter and enhancer locations. Soft repression may represent an essential component of the cybernetic systems underlying metabolic adaptations, enabling modest but critical adjustments on a continual basis.
Collapse
Affiliation(s)
- Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie L Hickey
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|