1
|
da Silva JEH, Bernardino HS, de Oliveira IL, Camata JJ. A survey of the methodological process of modeling, inference, and evaluation of gene regulatory networks using scRNA-Seq data. Biosystems 2025; 253:105464. [PMID: 40409400 DOI: 10.1016/j.biosystems.2025.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/20/2025] [Accepted: 04/17/2025] [Indexed: 05/25/2025]
Abstract
The advent of scRNA-Seq sequencing technology has provided unprecedented resolutions in the analysis of gene regulatory networks (GRNs) at the single-cell level. However, new technical and methodological challenges also emerged. Factors such as the large number of zeros reported in expression levels, the biological variation due to the stochastic nature of gene expression, environmental niche, and effects created by the cell cycle make it difficult to correctly interpret the data obtained in the sequencing stage. On the other hand, the development of methods for the inference of GRNs, specifically using scRNA-Seq technology, proved to be of similar quality to random predictors. The lack of adequate pre-processing of gene expression data, including selection steps for subsets of genes of interest, smoothing, and discretization of gene expression, in addition to the different ways of modeling networks and network motifs, are factors that affect the performance of inference approaches. Finally, the lack of knowledge about the ground-truth network and the non-standardization of appropriate metrics to measure the quality of inferred networks make the process of comparing performance between algorithms a major problem, given the unbalanced nature of the data and the interpretation bias caused by the chosen metric. This article brings these issues to light, aiming to show how these factors influence both the inference process and the performance evaluation of inferred networks, through comparative computational experiments and provides suggestions for a more robust methodological process for researchers dealing with inference of GRNs.
Collapse
Affiliation(s)
- José Eduardo H da Silva
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil.
| | - Heder S Bernardino
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| | - Itamar L de Oliveira
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| | - José J Camata
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| |
Collapse
|
2
|
Gao Z, Su Y, Tang J, Jin H, Ding Y, Cao RF, Wei PJ, Zheng CH. AttentionGRN: a functional and directed graph transformer for gene regulatory network reconstruction from scRNA-seq data. Brief Bioinform 2025; 26:bbaf118. [PMID: 40116659 PMCID: PMC11926986 DOI: 10.1093/bib/bbaf118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/23/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) enables the reconstruction of cell type-specific gene regulatory networks (GRNs), offering detailed insights into gene regulation at high resolution. While graph neural networks have become widely used for GRN inference, their message-passing mechanisms are often limited by issues such as over-smoothing and over-squashing, which hinder the preservation of essential network structure. To address these challenges, we propose a novel graph transformer-based model, AttentionGRN, which leverages soft encoding to enhance model expressiveness and improve the accuracy of GRN inference from scRNA-seq data. Furthermore, the GRN-oriented message aggregation strategies are designed to capture both the directed network structure information and functional information inherent in GRNs. Specifically, we design directed structure encoding to facilitate the learning of directed network topologies and employ functional gene sampling to capture key functional modules and global network structure. Our extensive experiments, conducted on 88 datasets across two distinct tasks, demonstrate that AttentionGRN consistently outperforms existing methods. Furthermore, AttentionGRN has been successfully applied to reconstruct cell type-specific GRNs for human mature hepatocytes, revealing novel hub genes and previously unidentified transcription factor-target gene regulatory associations.
Collapse
Affiliation(s)
- Zhen Gao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Yansen Su
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Jin Tang
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Huaiwan Jin
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Yun Ding
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Rui-Fen Cao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Pi-Jing Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Chun-Hou Zheng
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| |
Collapse
|
3
|
Yin H, Duo H, Li S, Qin D, Xie L, Xiao Y, Sun J, Tao J, Zhang X, Li Y, Zou Y, Yang Q, Yang X, Hao Y, Li B. Unlocking biological insights from differentially expressed genes: Concepts, methods, and future perspectives. J Adv Res 2024:S2090-1232(24)00560-5. [PMID: 39647635 DOI: 10.1016/j.jare.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Identifying differentially expressed genes (DEGs) is a core task of transcriptome analysis, as DEGs can reveal the molecular mechanisms underlying biological processes. However, interpreting the biological significance of large DEG lists is challenging. Currently, gene ontology, pathway enrichment and protein-protein interaction analysis are common strategies employed by biologists. Additionally, emerging analytical strategies/approaches (such as network module analysis, knowledge graph, drug repurposing, cell marker discovery, trajectory analysis, and cell communication analysis) have been proposed. Despite these advances, comprehensive guidelines for systematically and thoroughly mining the biological information within DEGs remain lacking. AIM OF REVIEW This review aims to provide an overview of essential concepts and methodologies for the biological interpretation of DEGs, enhancing the contextual understanding. It also addresses the current limitations and future perspectives of these approaches, highlighting their broad applications in deciphering the molecular mechanism of complex diseases and phenotypes. To assist users in extracting insights from extensive datasets, especially various DEG lists, we developed DEGMiner (https://www.ciblab.net/DEGMiner/), which integrates over 300 easily accessible databases and tools. KEY SCIENTIFIC CONCEPTS OF REVIEW This review offers strong support and guidance for exploring DEGs, and also will accelerate the discovery of hidden biological insights within genomes.
Collapse
Affiliation(s)
- Huachun Yin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China; Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, PR China; Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing 400038, PR China
| | - Hongrui Duo
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, PR China
| | - Dan Qin
- Department of Biology, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Lingling Xie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yingxue Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Jing Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Jingxin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiaoxi Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yinghong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Yue Zou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xian Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
4
|
Wang Y, Zheng P, Cheng YC, Wang Z, Aravkin A. WENDY: Covariance dynamics based gene regulatory network inference. Math Biosci 2024; 377:109284. [PMID: 39168402 DOI: 10.1016/j.mbs.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. For a widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
Collapse
Affiliation(s)
- Yue Wang
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, 10027, NY, USA.
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, Seattle, 98195, WA, USA; Department of Health Metrics Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Yu-Chen Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, 10065, NY, USA
| | - Aleksandr Aravkin
- Department of Applied Mathematics, University of Washington, Seattle, 98195, WA, USA
| |
Collapse
|
5
|
Emadi M, Boroujeni FZ, Pirgazi J. Improved Fuzzy Cognitive Maps for Gene Regulatory Networks Inference Based on Time Series Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1816-1829. [PMID: 38963747 DOI: 10.1109/tcbb.2024.3423383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Microarray data provide lots of information regarding gene expression levels. Due to the large amount of such data, their analysis requires sufficient computational methods for identifying and analyzing gene regulation networks; however, researchers in this field are faced with numerous challenges such as consideration for too many genes and at the same time, the limited number of samples and their noisy nature of the data. In this paper, a hybrid method base on fuzzy cognitive map and compressed sensing is used to identify interactions between genes. For this purpose, in inference of the gene regulation network, the Ensemble Kalman filtered compressed sensing is used to learn the fuzzy cognitive map. Using the Ensemble Kalman filter and compressed sensing, the fuzzy cognitive map will be robust against noise. The proposed algorithm is evaluated using several metrics and compared with several well know methods such as LASSOFCM, KFRegular, CMI2NI. The experimental results show that the proposed method outperforms methods proposed in recent years in terms of SSmean, Data Error and accuracy.
Collapse
|
6
|
Unger Avila P, Padvitski T, Leote AC, Chen H, Saez-Rodriguez J, Kann M, Beyer A. Gene regulatory networks in disease and ageing. Nat Rev Nephrol 2024; 20:616-633. [PMID: 38867109 DOI: 10.1038/s41581-024-00849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
The precise control of gene expression is required for the maintenance of cellular homeostasis and proper cellular function, and the declining control of gene expression with age is considered a major contributor to age-associated changes in cellular physiology and disease. The coordination of gene expression can be represented through models of the molecular interactions that govern gene expression levels, so-called gene regulatory networks. Gene regulatory networks can represent interactions that occur through signal transduction, those that involve regulatory transcription factors, or statistical models of gene-gene relationships based on the premise that certain sets of genes tend to be coexpressed across a range of conditions and cell types. Advances in experimental and computational technologies have enabled the inference of these networks on an unprecedented scale and at unprecedented precision. Here, we delineate different types of gene regulatory networks and their cell-biological interpretation. We describe methods for inferring such networks from large-scale, multi-omics datasets and present applications that have aided our understanding of cellular ageing and disease mechanisms.
Collapse
Affiliation(s)
- Paula Unger Avila
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tsimafei Padvitski
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana Carolina Leote
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - He Chen
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Martin Kann
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Arici MK, Tuncbag N. Unveiling hidden connections in omics data via pyPARAGON: an integrative hybrid approach for disease network construction. Brief Bioinform 2024; 25:bbae399. [PMID: 39163205 PMCID: PMC11334722 DOI: 10.1093/bib/bbae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Network inference or reconstruction algorithms play an integral role in successfully analyzing and identifying causal relationships between omics hits for detecting dysregulated and altered signaling components in various contexts, encompassing disease states and drug perturbations. However, accurate representation of signaling networks and identification of context-specific interactions within sparse omics datasets in complex interactomes pose significant challenges in integrative approaches. To address these challenges, we present pyPARAGON (PAgeRAnk-flux on Graphlet-guided network for multi-Omic data integratioN), a novel tool that combines network propagation with graphlets. pyPARAGON enhances accuracy and minimizes the inclusion of nonspecific interactions in signaling networks by utilizing network rather than relying on pairwise connections among proteins. Through comprehensive evaluations on benchmark signaling pathways, we demonstrate that pyPARAGON outperforms state-of-the-art approaches in node propagation and edge inference. Furthermore, pyPARAGON exhibits promising performance in discovering cancer driver networks. Notably, we demonstrate its utility in network-based stratification of patient tumors by integrating phosphoproteomic data from 105 breast cancer tumors with the interactome and demonstrating tumor-specific signaling pathways. Overall, pyPARAGON is a novel tool for analyzing and integrating multi-omic data in the context of signaling networks. pyPARAGON is available at https://github.com/netlab-ku/pyPARAGON.
Collapse
Affiliation(s)
- Muslum Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara 06800, Turkey
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul 34450, Turkey
- School of Medicine, Koc University, Istanbul 34450, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
8
|
Loers JU, Vermeirssen V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief Bioinform 2024; 25:bbae382. [PMID: 39207727 PMCID: PMC11359808 DOI: 10.1093/bib/bbae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Eukaryotic gene regulation is a combinatorial, dynamic, and quantitative process that plays a vital role in development and disease and can be modeled at a systems level in gene regulatory networks (GRNs). The wealth of multi-omics data measured on the same samples and even on the same cells has lifted the field of GRN inference to the next stage. Combinations of (single-cell) transcriptomics and chromatin accessibility allow the prediction of fine-grained regulatory programs that go beyond mere correlation of transcription factor and target gene expression, with enhancer GRNs (eGRNs) modeling molecular interactions between transcription factors, regulatory elements, and target genes. In this review, we highlight the key components for successful (e)GRN inference from (sc)RNA-seq and (sc)ATAC-seq data exemplified by state-of-the-art methods as well as open challenges and future developments. Moreover, we address preprocessing strategies, metacell generation and computational omics pairing, transcription factor binding site detection, and linear and three-dimensional approaches to identify chromatin interactions as well as dynamic and causal eGRN inference. We believe that the integration of transcriptomics together with epigenomics data at a single-cell level is the new standard for mechanistic network inference, and that it can be further advanced with integrating additional omics layers and spatiotemporal data, as well as with shifting the focus towards more quantitative and causal modeling strategies.
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Roy S, Sheikh SZ, Furey TS. CoVar: A generalizable machine learning approach to identify the coordinated regulators driving variational gene expression. PLoS Comput Biol 2024; 20:e1012016. [PMID: 38630807 PMCID: PMC11057768 DOI: 10.1371/journal.pcbi.1012016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/29/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Network inference is used to model transcriptional, signaling, and metabolic interactions among genes, proteins, and metabolites that identify biological pathways influencing disease pathogenesis. Advances in machine learning (ML)-based inference models exhibit the predictive capabilities of capturing latent patterns in genomic data. Such models are emerging as an alternative to the statistical models identifying causative factors driving complex diseases. We present CoVar, an ML-based framework that builds upon the properties of existing inference models, to find the central genes driving perturbed gene expression across biological states. Unlike differentially expressed genes (DEGs) that capture changes in individual gene expression across conditions, CoVar focuses on identifying variational genes that undergo changes in their expression network interaction profiles, providing insights into changes in the regulatory dynamics, such as in disease pathogenesis. Subsequently, it finds core genes from among the nearest neighbors of these variational genes, which are central to the variational activity and influence the coordinated regulatory processes underlying the observed changes in gene expression. Through the analysis of simulated as well as yeast expression data perturbed by the deletion of the mitochondrial genome, we show that CoVar captures the intrinsic variationality and modularity in the expression data, identifying key driver genes not found through existing differential analysis methodologies.
Collapse
Affiliation(s)
- Satyaki Roy
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shehzad Z. Sheikh
- Departments of Medicine and Genetics, Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Terrence S. Furey
- Departments of Genetics and Biology, Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
10
|
Ishikawa M, Sugino S, Masuda Y, Tarumoto Y, Seto Y, Taniyama N, Wagai F, Yamauchi Y, Kojima Y, Kiryu H, Yusa K, Eiraku M, Mochizuki A. RENGE infers gene regulatory networks using time-series single-cell RNA-seq data with CRISPR perturbations. Commun Biol 2023; 6:1290. [PMID: 38155269 PMCID: PMC10754834 DOI: 10.1038/s42003-023-05594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Single-cell RNA-seq analysis coupled with CRISPR-based perturbation has enabled the inference of gene regulatory networks with causal relationships. However, a snapshot of single-cell CRISPR data may not lead to an accurate inference, since a gene knockout can influence multi-layered downstream over time. Here, we developed RENGE, a computational method that infers gene regulatory networks using a time-series single-cell CRISPR dataset. RENGE models the propagation process of the effects elicited by a gene knockout on its regulatory network. It can distinguish between direct and indirect regulations, which allows for the inference of regulations by genes that are not knocked out. RENGE therefore outperforms current methods in the accuracy of inferring gene regulatory networks. When used on a dataset we derived from human-induced pluripotent stem cells, RENGE yielded a network consistent with multiple databases and literature. Accurate inference of gene regulatory networks by RENGE would enable the identification of key factors for various biological systems.
Collapse
Affiliation(s)
- Masato Ishikawa
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| | - Seiichi Sugino
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshie Masuda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yusuke Tarumoto
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yusuke Seto
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Nobuko Taniyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Fumi Wagai
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuhei Yamauchi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiro Kojima
- Laboratory of Computational Life Science, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kosuke Yusa
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8507, Japan
| | - Atsushi Mochizuki
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
11
|
Groves SM, Quaranta V. Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1225736. [PMID: 37731743 PMCID: PMC10507267 DOI: 10.3389/fnetp.2023.1225736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Phenotypic plasticity of cancer cells can lead to complex cell state dynamics during tumor progression and acquired resistance. Highly plastic stem-like states may be inherently drug-resistant. Moreover, cell state dynamics in response to therapy allow a tumor to evade treatment. In both scenarios, quantifying plasticity is essential for identifying high-plasticity states or elucidating transition paths between states. Currently, methods to quantify plasticity tend to focus on 1) quantification of quasi-potential based on the underlying gene regulatory network dynamics of the system; or 2) inference of cell potency based on trajectory inference or lineage tracing in single-cell dynamics. Here, we explore both of these approaches and associated computational tools. We then discuss implications of each approach to plasticity metrics, and relevance to cancer treatment strategies.
Collapse
Affiliation(s)
- Sarah M. Groves
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Vito Quaranta
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Marku M, Pancaldi V. From time-series transcriptomics to gene regulatory networks: A review on inference methods. PLoS Comput Biol 2023; 19:e1011254. [PMID: 37561790 PMCID: PMC10414591 DOI: 10.1371/journal.pcbi.1011254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference problem remains of broad scientific interest. The abstract representation of biological systems through gene regulatory networks represents a powerful method to study such systems, encoding different amounts and types of information. In this review, we summarize the different types of inference algorithms specifically based on time-series transcriptomics, giving an overview of the main applications of gene regulatory networks in computational biology. This review is intended to give an updated reference of regulatory networks inference tools to biologists and researchers new to the topic and guide them in selecting the appropriate inference method that best fits their questions, aims, and experimental data.
Collapse
Affiliation(s)
- Malvina Marku
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| |
Collapse
|
13
|
Souto-Maior C, Serrano Negron YL, Harbison ST. Nonlinear expression patterns and multiple shifts in gene network interactions underlie robust phenotypic change in Drosophila melanogaster selected for night sleep duration. PLoS Comput Biol 2023; 19:e1011389. [PMID: 37561813 PMCID: PMC10443883 DOI: 10.1371/journal.pcbi.1011389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/22/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
All but the simplest phenotypes are believed to result from interactions between two or more genes forming complex networks of gene regulation. Sleep is a complex trait known to depend on the system of feedback loops of the circadian clock, and on many other genes; however, the main components regulating the phenotype and how they interact remain an unsolved puzzle. Genomic and transcriptomic data may well provide part of the answer, but a full account requires a suitable quantitative framework. Here we conducted an artificial selection experiment for sleep duration with RNA-seq data acquired each generation. The phenotypic results are robust across replicates and previous experiments, and the transcription data provides a high-resolution, time-course data set for the evolution of sleep-related gene expression. In addition to a Hierarchical Generalized Linear Model analysis of differential expression that accounts for experimental replicates we develop a flexible Gaussian Process model that estimates interactions between genes. 145 gene pairs are found to have interactions that are different from controls. Our method appears to be not only more specific than standard correlation metrics but also more sensitive, finding correlations not significant by other methods. Statistical predictions were compared to experimental data from public databases on gene interactions. Mutations of candidate genes implicated by our results affected night sleep, and gene expression profiles largely met predicted gene-gene interactions.
Collapse
Affiliation(s)
- Caetano Souto-Maior
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Yazmin L. Serrano Negron
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Susan T. Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
14
|
Hasnain A, Balakrishnan S, Joshy DM, Smith J, Haase SB, Yeung E. Learning perturbation-inducible cell states from observability analysis of transcriptome dynamics. Nat Commun 2023; 14:3148. [PMID: 37253722 PMCID: PMC10229592 DOI: 10.1038/s41467-023-37897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/21/2023] [Indexed: 06/01/2023] Open
Abstract
A major challenge in biotechnology and biomanufacturing is the identification of a set of biomarkers for perturbations and metabolites of interest. Here, we develop a data-driven, transcriptome-wide approach to rank perturbation-inducible genes from time-series RNA sequencing data for the discovery of analyte-responsive promoters. This provides a set of biomarkers that act as a proxy for the transcriptional state referred to as cell state. We construct low-dimensional models of gene expression dynamics and rank genes by their ability to capture the perturbation-specific cell state using a novel observability analysis. Using this ranking, we extract 15 analyte-responsive promoters for the organophosphate malathion in the underutilized host organism Pseudomonas fluorescens SBW25. We develop synthetic genetic reporters from each analyte-responsive promoter and characterize their response to malathion. Furthermore, we enhance malathion reporting through the aggregation of the response of individual reporters with a synthetic consortium approach, and we exemplify the library's ability to be useful outside the lab by detecting malathion in the environment. The engineered host cell, a living malathion sensor, can be optimized for use in environmental diagnostics while the developed machine learning tool can be applied to discover perturbation-inducible gene expression systems in the compendium of host organisms.
Collapse
Affiliation(s)
- Aqib Hasnain
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Shara Balakrishnan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Dennis M Joshy
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jen Smith
- California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Enoch Yeung
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
15
|
Li L, Sun L, Chen G, Wong CW, Ching WK, Liu ZP. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data. Bioinformatics 2023; 39:btad256. [PMID: 37079737 PMCID: PMC10172039 DOI: 10.1093/bioinformatics/btad256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
MOTIVATION From a systematic perspective, it is crucial to infer and analyze gene regulatory network (GRN) from high-throughput single-cell RNA sequencing data. However, most existing GRN inference methods mainly focus on the network topology, only few of them consider how to explicitly describe the updated logic rules of regulation in GRNs to obtain their dynamics. Moreover, some inference methods also fail to deal with the over-fitting problem caused by the noise in time series data. RESULTS In this article, we propose a novel embedded Boolean threshold network method called LogBTF, which effectively infers GRN by integrating regularized logistic regression and Boolean threshold function. First, the continuous gene expression values are converted into Boolean values and the elastic net regression model is adopted to fit the binarized time series data. Then, the estimated regression coefficients are applied to represent the unknown Boolean threshold function of the candidate Boolean threshold network as the dynamical equations. To overcome the multi-collinearity and over-fitting problems, a new and effective approach is designed to optimize the network topology by adding a perturbation design matrix to the input data and thereafter setting sufficiently small elements of the output coefficient vector to zeros. In addition, the cross-validation procedure is implemented into the Boolean threshold network model framework to strengthen the inference capability. Finally, extensive experiments on one simulated Boolean value dataset, dozens of simulation datasets, and three real single-cell RNA sequencing datasets demonstrate that the LogBTF method can infer GRNs from time series data more accurately than some other alternative methods for GRN inference. AVAILABILITY AND IMPLEMENTATION The source data and code are available at https://github.com/zpliulab/LogBTF.
Collapse
Affiliation(s)
- Lingyu Li
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Liangjie Sun
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Guangyi Chen
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Chi-Wing Wong
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Wai-Ki Ching
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
16
|
Okano Y, Kase Y, Okano H. A set-theoretic definition of cell types with an algebraic structure on gene regulatory networks and application in annotation of RNA-seq data. Stem Cell Reports 2022; 18:113-130. [PMID: 36400029 PMCID: PMC9859932 DOI: 10.1016/j.stemcr.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
The emergence of single-cell RNA sequencing (RNA-seq) has radically changed the observation of cellular diversity. Although annotations of RNA-seq data require preserved properties among cells of an identity, annotations using conventional methods have not been able to capture universal characters of a cell type. Analysis of expression levels cannot be accurately annotated for cells because differences in transcription do not necessarily explain biological characteristics in terms of cellular functions and because the data themselves do not inform about the correct mapping between cell types and genes. Hence, in this study, we developed a new representation of cellular identities that can be compared over different datasets while preserving nontrivial biological semantics. To generalize the notion of cell types, we developed a new framework to manage cellular identities in terms of set theory. We provided further insights into cells by installing mathematical descriptions of cell biology. We also performed experiments that could correspond to practical applications in annotations of RNA-seq data.
Collapse
Affiliation(s)
- Yuji Okano
- Department of Physiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
17
|
Seçilmiş D, Hillerton T, Tjärnberg A, Nelander S, Nordling TEM, Sonnhammer ELL. Knowledge of the perturbation design is essential for accurate gene regulatory network inference. Sci Rep 2022; 12:16531. [PMID: 36192495 PMCID: PMC9529923 DOI: 10.1038/s41598-022-19005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
The gene regulatory network (GRN) of a cell executes genetic programs in response to environmental and internal cues. Two distinct classes of methods are used to infer regulatory interactions from gene expression: those that only use observed changes in gene expression, and those that use both the observed changes and the perturbation design, i.e. the targets used to cause the changes in gene expression. Considering that the GRN by definition converts input cues to changes in gene expression, it may be conjectured that the latter methods would yield more accurate inferences but this has not previously been investigated. To address this question, we evaluated a number of popular GRN inference methods that either use the perturbation design or not. For the evaluation we used targeted perturbation knockdown gene expression datasets with varying noise levels generated by two different packages, GeneNetWeaver and GeneSpider. The accuracy was evaluated on each dataset using a variety of measures. The results show that on all datasets, methods using the perturbation design matrix consistently and significantly outperform methods not using it. This was also found to be the case on a smaller experimental dataset from E. coli. Targeted gene perturbations combined with inference methods that use the perturbation design are indispensable for accurate GRN inference.
Collapse
Affiliation(s)
- Deniz Seçilmiş
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121, Solna, Sweden
| | - Thomas Hillerton
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121, Solna, Sweden
| | - Andreas Tjärnberg
- Center for Developmental Genetics, New York University, New York, USA
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
- Department of Applied Physics and Electronics, Umeå University, 90187, Umeå, Sweden
| | - Erik L L Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121, Solna, Sweden.
| |
Collapse
|
18
|
Pušnik Ž, Mraz M, Zimic N, Moškon M. Review and assessment of Boolean approaches for inference of gene regulatory networks. Heliyon 2022; 8:e10222. [PMID: 36033302 PMCID: PMC9403406 DOI: 10.1016/j.heliyon.2022.e10222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 10/25/2022] Open
Abstract
Boolean descriptions of gene regulatory networks can provide an insight into interactions between genes. Boolean networks hold predictive power, are easy to understand, and can be used to simulate the observed networks in different scenarios. We review fundamental and state-of-the-art methods for inference of Boolean networks. We introduce a methodology for a straightforward evaluation of Boolean inference approaches based on the generation of evaluation datasets, application of selected inference methods, and evaluation of performance measures to guide the selection of the best method for a given inference problem. We demonstrate this procedure on inference methods REVEAL (REVerse Engineering ALgorithm), Best-Fit Extension, MIBNI (Mutual Information-based Boolean Network Inference), GABNI (Genetic Algorithm-based Boolean Network Inference) and ATEN (AND/OR Tree ENsemble algorithm), which infers Boolean descriptions of gene regulatory networks from discretised time series data. Boolean inference approaches tend to perform better in terms of dynamic accuracy, and slightly worse in terms of structural correctness. We believe that the proposed methodology and provided guidelines will help researchers to develop Boolean inference approaches with a good predictive capability while maintaining structural correctness and biological relevance.
Collapse
Affiliation(s)
- Žiga Pušnik
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia
| | - Miha Mraz
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia
| | - Nikolaj Zimic
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia
| | - Miha Moškon
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
19
|
Suriyalaksh M, Raimondi C, Mains A, Segonds-Pichon A, Mukhtar S, Murdoch S, Aldunate R, Krueger F, Guimerà R, Andrews S, Sales-Pardo M, Casanueva O. Gene regulatory network inference in long-lived C. elegans reveals modular properties that are predictive of novel aging genes. iScience 2022; 25:103663. [PMID: 35036864 PMCID: PMC8753122 DOI: 10.1016/j.isci.2021.103663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/09/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
We design a “wisdom-of-the-crowds” GRN inference pipeline and couple it to complex network analysis to understand the organizational principles governing gene regulation in long-lived glp-1/Notch Caenorhabditis elegans. The GRN has three layers (input, core, and output) and is topologically equivalent to bow-tie/hourglass structures prevalent among metabolic networks. To assess the functional importance of structural layers, we screened 80% of regulators and discovered 50 new aging genes, 86% with human orthologues. Genes essential for longevity—including ones involved in insulin-like signaling (ILS)—are at the core, indicating that GRN's structure is predictive of functionality. We used in vivo reporters and a novel functional network covering 5,497 genetic interactions to make mechanistic predictions. We used genetic epistasis to test some of these predictions, uncovering a novel transcriptional regulator, sup-37, that works alongside DAF-16/FOXO. We present a framework with predictive power that can accelerate discovery in C. elegans and potentially humans. Gene-regulatory inference provides global network of long-lived animals The large-scale topology of the network has an hourglass structure Membership to the core of the hourglass is a good predictor of functionality Discovered 50 novel aging genes, including sup-37, a DAF-16 dependent gene
Collapse
Affiliation(s)
| | | | - Abraham Mains
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | | | | | | | - Rebeca Aldunate
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Felix Krueger
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Roger Guimerà
- ICREA, Barcelona 08010, Catalonia, Spain.,Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | - Simon Andrews
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Marta Sales-Pardo
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | | |
Collapse
|
20
|
Chen CK. Inference of genetic regulatory networks with regulatory hubs using vector autoregressions and automatic relevance determination with model selections. Stat Appl Genet Mol Biol 2021; 20:121-143. [PMID: 34963205 DOI: 10.1515/sagmb-2020-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The inference of genetic regulatory networks (GRNs) reveals how genes interact with each other. A few genes can regulate many genes as targets to control cell functions. We present new methods based on the order-1 vector autoregression (VAR1) for inferring GRNs from gene expression time series. The methods use the automatic relevance determination (ARD) to incorporate the regulatory hub structure into the estimation of VAR1 in a Bayesian framework. Several sparse approximation schemes are applied to the estimated regression weights or VAR1 model to generate the sparse weighted adjacency matrices representing the inferred GRNs. We apply the proposed and several widespread reference methods to infer GRNs with up to 100 genes using simulated, DREAM4 in silico and experimental E. coli gene expression time series. We show that the proposed methods are efficient on simulated hub GRNs and scale-free GRNs using short time series simulated by VAR1s and outperform reference methods on small-scale DREAM4 in silico GRNs and E. coli GRNs. They can utilize the known major regulatory hubs to improve the performance on larger DREAM4 in silico GRNs and E. coli GRNs. The impact of nonlinear time series data on the performance of proposed methods is discussed.
Collapse
Affiliation(s)
- Chi-Kan Chen
- Department of Applied Mathematics, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City, Taiwan, ROC
| |
Collapse
|
21
|
Kashima M, Shida Y, Yamashiro T, Hirata H, Kurosaka H. Intracellular and Intercellular Gene Regulatory Network Inference From Time-Course Individual RNA-Seq. FRONTIERS IN BIOINFORMATICS 2021; 1:777299. [PMID: 36303726 PMCID: PMC9580923 DOI: 10.3389/fbinf.2021.777299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Gene regulatory network (GRN) inference is an effective approach to understand the molecular mechanisms underlying biological events. Generally, GRN inference mainly targets intracellular regulatory relationships such as transcription factors and their associated targets. In multicellular organisms, there are both intracellular and intercellular regulatory mechanisms. Thus, we hypothesize that GRNs inferred from time-course individual (whole embryo) RNA-Seq during development can reveal intercellular regulatory relationships (signaling pathways) underlying the development. Here, we conducted time-course bulk RNA-Seq of individual mouse embryos during early development, followed by pseudo-time analysis and GRN inference. The results demonstrated that GRN inference from RNA-Seq with pseudo-time can be applied for individual bulk RNA-Seq similar to scRNA-Seq. Validation using an experimental-source-based database showed that our approach could significantly infer GRN for all transcription factors in the database. Furthermore, the inferred ligand-related and receptor-related downstream genes were significantly overlapped. Thus, the inferred GRN based on whole organism could include intercellular regulatory relationships, which cannot be inferred from scRNA-Seq based only on gene expression data. Overall, inferring GRN from time-course bulk RNA-Seq is an effective approach to understand the regulatory relationships underlying biological events in multicellular organisms.
Collapse
Affiliation(s)
- Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Yuki Shida
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University, Suita, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University, Suita, Japan
| | - Hiromi Hirata
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University, Suita, Japan
| |
Collapse
|
22
|
Martinelli J, Dulong S, Li XM, Teboul M, Soliman S, Lévi F, Fages F, Ballesta A. Model learning to identify systemic regulators of the peripheral circadian clock. Bioinformatics 2021; 37:i401-i409. [PMID: 34252929 PMCID: PMC8557835 DOI: 10.1093/bioinformatics/btab297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Personalized medicine aims at providing patient-tailored therapeutics based on multi-type data toward improved treatment outcomes. Chronotherapy that consists in adapting drug administration to the patient's circadian rhythms may be improved by such approach. Recent clinical studies demonstrated large variability in patients' circadian coordination and optimal drug timing. Consequently, new eHealth platforms allow the monitoring of circadian biomarkers in individual patients through wearable technologies (rest-activity, body temperature), blood or salivary samples (melatonin, cortisol) and daily questionnaires (food intake, symptoms). A current clinical challenge involves designing a methodology predicting from circadian biomarkers the patient peripheral circadian clocks and associated optimal drug timing. The mammalian circadian timing system being largely conserved between mouse and humans yet with phase opposition, the study was developed using available mouse datasets. RESULTS We investigated at the molecular scale the influence of systemic regulators (e.g. temperature, hormones) on peripheral clocks, through a model learning approach involving systems biology models based on ordinary differential equations. Using as prior knowledge our existing circadian clock model, we derived an approximation for the action of systemic regulators on the expression of three core-clock genes: Bmal1, Per2 and Rev-Erbα. These time profiles were then fitted with a population of models, based on linear regression. Best models involved a modulation of either Bmal1 or Per2 transcription most likely by temperature or nutrient exposure cycles. This agreed with biological knowledge on temperature-dependent control of Per2 transcription. The strengths of systemic regulations were found to be significantly different according to mouse sex and genetic background. AVAILABILITY AND IMPLEMENTATION https://gitlab.inria.fr/julmarti/model-learning-mb21eccb. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Julien Martinelli
- INSERM UMR-S 900, Institut Curie, MINES ParisTech CBIO, PSL Research University, 92210 Saint-Cloud, France.,Lifeware Group, Inria Saclay Ile-de-France, Palaiseau 91120, France
| | - Sandrine Dulong
- UPR "Chronotherapy, Cancers and Transplantation", Paris-Saclay University, Faculty of Medicine Kremlin Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Xiao-Mei Li
- UPR "Chronotherapy, Cancers and Transplantation", Paris-Saclay University, Faculty of Medicine Kremlin Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Michèle Teboul
- Côte d'Azur University, CNRS, INSERM, iBV, Nice 06000, France
| | - Sylvain Soliman
- Lifeware Group, Inria Saclay Ile-de-France, Palaiseau 91120, France
| | - Francis Lévi
- UPR "Chronotherapy, Cancers and Transplantation", Paris-Saclay University, Faculty of Medicine Kremlin Bicêtre, Le Kremlin Bicêtre, 94270, France.,Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif 94800, France
| | - François Fages
- Lifeware Group, Inria Saclay Ile-de-France, Palaiseau 91120, France
| | - Annabelle Ballesta
- INSERM UMR-S 900, Institut Curie, MINES ParisTech CBIO, PSL Research University, 92210 Saint-Cloud, France
| |
Collapse
|
23
|
Vatsa D, Agarwal S. PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data. PLoS One 2021; 16:e0251666. [PMID: 33989333 PMCID: PMC8121333 DOI: 10.1371/journal.pone.0251666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
The inference of gene regulatory networks (GRNs) from expression data is a challenging problem in systems biology. The stochasticity or fluctuations in the biochemical processes that regulate the transcription process poses as one of the major challenges. In this paper, we propose a novel GRN inference approach, named the Probabilistic Extended Petri Net for Gene Regulatory Network (PEPN-GRN), for the inference of gene regulatory networks from noisy expression data. The proposed inference approach makes use of transition of discrete gene expression levels across adjacent time points as different evidence types that relate to the production or decay of genes. The paper examines three variants of the PEPN-GRN method, which mainly differ by the way the scores of network edges are computed using evidence types. The proposed method is evaluated on the benchmark DREAM4 in silico data sets and a real time series data set of E. coli from the DREAM5 challenge. The PEPN-GRN_v3 variant (the third variant of the PEPN-GRN approach) sought to learn the weights of evidence types in accordance with their contribution to the activation and inhibition gene regulation process. The learned weights help understand the time-shifted and inverted time-shifted relationship between regulator and target gene. Thus, PEPN-GRN_v3, along with the inference of network edges, also provides a functional understanding of the gene regulation process.
Collapse
Affiliation(s)
- Deepika Vatsa
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sumeet Agarwal
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- * E-mail: ,
| |
Collapse
|
24
|
He W, Tang J, Zou Q, Guo F. MMFGRN: a multi-source multi-model fusion method for gene regulatory network reconstruction. Brief Bioinform 2021; 22:6261916. [PMID: 33939795 DOI: 10.1093/bib/bbab166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 01/05/2023] Open
Abstract
Lots of biological processes are controlled by gene regulatory networks (GRNs), such as growth and differentiation of cells, occurrence and development of the diseases. Therefore, it is important to persistently concentrate on the research of GRN. The determination of the gene-gene relationships from gene expression data is a complex issue. Since it is difficult to efficiently obtain the regularity behind the gene-gene relationship by only relying on biochemical experimental methods, thus various computational methods have been used to construct GRNs, and some achievements have been made. In this paper, we propose a novel method MMFGRN (for "Multi-source Multi-model Fusion for Gene Regulatory Network reconstruction") to reconstruct the GRN. In order to make full use of the limited datasets and explore the potential regulatory relationships contained in different data types, we construct the MMFGRN model from three perspectives: single time series data model, single steady-data model and time series and steady-data joint model. And, we utilize the weighted fusion strategy to get the final global regulatory link ranking. Finally, MMFGRN model yields the best performance on the DREAM4 InSilico_Size10 data, outperforming other popular inference algorithms, with an overall area under receiver operating characteristic score of 0.909 and area under precision-recall (AUPR) curves score of 0.770 on the 10-gene network. Additionally, as the network scale increases, our method also has certain advantages with an overall AUPR score of 0.335 on the DREAM4 InSilico_Size100 data. These results demonstrate the good robustness of MMFGRN on different scales of networks. At the same time, the integration strategy proposed in this paper provides a new idea for the reconstruction of the biological network model without prior knowledge, which can help researchers to decipher the elusive mechanism of life.
Collapse
Affiliation(s)
| | | | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
25
|
Oh VKS, Li RW. Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data. Genes (Basel) 2021; 12:352. [PMID: 33673721 PMCID: PMC7997275 DOI: 10.3390/genes12030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Dynamic studies in time course experimental designs and clinical approaches have been widely used by the biomedical community. These applications are particularly relevant in stimuli-response models under environmental conditions, characterization of gradient biological processes in developmental biology, identification of therapeutic effects in clinical trials, disease progressive models, cell-cycle, and circadian periodicity. Despite their feasibility and popularity, sophisticated dynamic methods that are well validated in large-scale comparative studies, in terms of statistical and computational rigor, are less benchmarked, comparing to their static counterparts. To date, a number of novel methods in bulk RNA-Seq data have been developed for the various time-dependent stimuli, circadian rhythms, cell-lineage in differentiation, and disease progression. Here, we comprehensively review a key set of representative dynamic strategies and discuss current issues associated with the detection of dynamically changing genes. We also provide recommendations for future directions for studying non-periodical, periodical time course data, and meta-dynamic datasets.
Collapse
Affiliation(s)
- Vera-Khlara S. Oh
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
- Department of Computer Science and Statistics, College of Natural Sciences, Jeju National University, Jeju City 63243, Korea
| | - Robert W. Li
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| |
Collapse
|