1
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
2
|
Elfar G, Aning O, Ngai T, Yeo P, Chan J, Sim S, Goh L, Yuan J, Phua C, Yeo J, Mak S, Goh B, Chow PH, Tam W, Ho Y, Cheok C. p53-dependent crosstalk between DNA replication integrity and redox metabolism mediated through a NRF2-PARP1 axis. Nucleic Acids Res 2024; 52:12351-12377. [PMID: 39315696 PMCID: PMC11551750 DOI: 10.1093/nar/gkae811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Mechanisms underlying p53-mediated protection of the replicating genome remain elusive, despite the quintessential role of p53 in maintaining genomic stability. Here, we uncover an unexpected function of p53 in curbing replication stress by limiting PARP1 activity and preventing the unscheduled degradation of deprotected stalled forks. We searched for p53-dependent factors and elucidated RRM2B as a prime factor. Deficiency in p53/RRM2B results in the activation of an NRF2 antioxidant transcriptional program, with a concomitant elevation in basal PARylation in cells. Dissecting the consequences of p53/RRM2B loss revealed a crosstalk between redox metabolism and genome integrity that is negotiated through a hitherto undescribed NRF2-PARP1 axis, and pinpoint G6PD as a primary oxidative stress-induced NRF2 target and activator of basal PARylation. This study elucidates how loss of p53 could be destabilizing for the replicating genome and, importantly, describes an unanticipated crosstalk between redox metabolism, PARP1 and p53 tumor suppressor pathway that is broadly relevant in cancers and can be leveraged therapeutically.
Collapse
Affiliation(s)
- Gamal Ahmed Elfar
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Obed Aning
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Tsz Wai Ngai
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Pearlyn Yeo
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Joel Wai Kit Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shang Hong Sim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Leonard Goh
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Ju Yuan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joanna Zhen Zhen Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
- Surgery Academic ClinicalProgramme, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chit Fang Cheok
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| |
Collapse
|
3
|
Akita M, Girvan P, Spirek M, Novacek J, Rueda D, Prokop Z, Krejci L. Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA. Nucleic Acids Res 2024; 52:11738-11752. [PMID: 39268578 PMCID: PMC11514458 DOI: 10.1093/nar/gkae770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.
Collapse
Affiliation(s)
- Masaki Akita
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Paul Girvan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Mario Spirek
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Cryo-Electron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, Czech Republic
| | - David Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Witham M, Hengel S. The role of RAD51 regulators and variants in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome. NAR MOLECULAR MEDICINE 2024; 1:ugae010. [PMID: 39359934 PMCID: PMC11443433 DOI: 10.1093/narmme/ugae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The study of RAD51 regulators in female reproductive diseases has novel biomarker potential and implications for therapeutic advancement. Regulators of RAD51 play important roles in maintaining genome integrity and variations in these genes have been identified in female reproductive diseases including primary ovarian insufficiency (POI), endometriosis, and polycystic ovary syndrome (PCOS). RAD51 modulators change RAD51 activity in homologous recombination, replication stress, and template switching pathways. However, molecular implications of these proteins in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome have been understudied. For each reproductive disease, we provide its definition, current diagnostic and therapeutic treatment strategies, and associated genetic variations. Variants were discovered in RAD51, and regulators including DMC1, RAD51B, SWS1, SPIDR, XRCC2 and BRCA2 linked with POI. Endometriosis is associated with variants in XRCC3, BRCA1 and CSB genes. Variants in BRCA1 were associated with PCOS. Our analysis identified novel biomarkers for POI (DMC1 and RAD51B) and PCOS (BRCA1). Further biochemical and cellular analyses of RAD51 regulator functions in reproductive disorders will advance our understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Maggie Witham
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sarah R Hengel
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
7
|
Dixit S, Nagraj T, Bhattacharya D, Saxena S, Sahoo S, Chittela RK, Somyajit K, Nagaraju G. RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes. Cell Rep 2024; 43:114594. [PMID: 39116203 DOI: 10.1016/j.celrep.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.
Collapse
Affiliation(s)
- Suruchi Dixit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Tarun Nagraj
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | | | - Sneha Saxena
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Satyaranjan Sahoo
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kumar Somyajit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India; Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
| | - Ganesh Nagaraju
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
8
|
Bedir M, Outwin E, Colnaghi R, Bassett L, Abramowicz I, O'Driscoll M. A novel role for the peptidyl-prolyl cis-trans isomerase Cyclophilin A in DNA-repair following replication fork stalling via the MRE11-RAD50-NBS1 complex. EMBO Rep 2024; 25:3432-3455. [PMID: 38943005 PMCID: PMC11315929 DOI: 10.1038/s44319-024-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024] Open
Abstract
Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.
Collapse
Affiliation(s)
- Marisa Bedir
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lydia Bassett
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Iga Abramowicz
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
9
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
10
|
Uhrig ME, Sharma N, Maxwell P, Selemenakis P, Mazin AV, Wiese C. Disparate requirements for RAD54L in replication fork reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550704. [PMID: 37546955 PMCID: PMC10402051 DOI: 10.1101/2023.07.26.550704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
RAD54L is a DNA motor protein with multiple roles in homologous recombination DNA repair (HR). In vitro , RAD54L was shown to also catalyze the reversal and restoration of model replication forks. In cells, however, little is known about how RAD54L may regulate the dynamics of DNA replication. Here, we show that RAD54L restrains the progression of replication forks and functions as a fork remodeler in human cells. Analogous to HLTF, SMARCAL1, and FBH1, and consistent with a role in fork reversal, RAD54L decelerates fork progression in response to replication stress and suppresses the formation of replication-associated ssDNA gaps. Interestingly, loss of RAD54L prevents nascent strand DNA degradation in both BRCA1/2- and 53BP1-deficient cells, suggesting that RAD54L functions in both pathways of RAD51-mediated replication fork reversal. In the HLTF/SMARCAL1 pathway, RAD54L is critical, but its ability to catalyze branch migration is dispensable, indicative of its function downstream of HLTF/SMARCAL1. Conversely, in the FBH1 pathway, branch migration activity of RAD54L is essential, and FBH1 engagement is dependent on its concerted action with RAD54L. Collectively, our results reveal disparate requirements for RAD54L in two distinct RAD51-mediated fork reversal pathways, positing its potential as a future therapeutic target.
Collapse
|
11
|
Balakrishnan S, Adolph M, Tsai MS, Akizuki T, Gallagher K, Cortez D, Chazin WJ. Structure of RADX and mechanism for regulation of RAD51 nucleofilaments. Proc Natl Acad Sci U S A 2024; 121:e2316491121. [PMID: 38466836 PMCID: PMC10962997 DOI: 10.1073/pnas.2316491121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed single strand DNA (ssDNA). To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX (RPA-related RAD51-antagonist on the X chromosome) is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here, we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration-dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (cryo-EM) from maps in the 2 to 4 Å range. The structure reveals the molecular basis for RADX oligomerization and the coupled multi-valent binding of ssDNA binding. The interaction of RADX with RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the end of RAD51 filaments.
Collapse
Affiliation(s)
- Swati Balakrishnan
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - Madison Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - Miaw-Sheue Tsai
- Biological Systems and Bioengineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Tae Akizuki
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - Kaitlyn Gallagher
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
| | - Walter J. Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37237
- Department of Chemistry, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
12
|
Muñoz S, Blanco-Romero E, González-Acosta D, Rodriguez-Acebes S, Megías D, Lopes M, Méndez J. RAD51 restricts DNA over-replication from re-activated origins. EMBO J 2024; 43:1043-1064. [PMID: 38360996 PMCID: PMC10942984 DOI: 10.1038/s44318-024-00038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation.
Collapse
Affiliation(s)
- Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Elena Blanco-Romero
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel González-Acosta
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Sara Rodriguez-Acebes
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Advanced Optical Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
13
|
Chen J, Wu M, Yang Y, Ruan C, Luo Y, Song L, Wu T, Huang J, Yang B, Liu T. TFIP11 promotes replication fork reversal to preserve genome stability. Nat Commun 2024; 15:1262. [PMID: 38341452 PMCID: PMC10858868 DOI: 10.1038/s41467-024-45684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.
Collapse
Affiliation(s)
- Junliang Chen
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, China
| | - Mingjie Wu
- The Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Chunyan Ruan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lizhi Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Liu
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
14
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Peng TW, Ma QF, Li J, Wang X, Zhang CH, Ma J, Li JY, Wang W, Zhu CL, Liu XH. HBV promotes its replication by up-regulating RAD51C gene expression. Sci Rep 2024; 14:2607. [PMID: 38297111 PMCID: PMC10831117 DOI: 10.1038/s41598-024-53047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/27/2024] [Indexed: 02/02/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), pegylated-interferon-α(PEG-IFNα) and long-term nucleos(t)ide analogs (NUCs) are mainly drugs used to treat HBV infection, but the effectiveness is unsatisfactory in different populations, the exploration of novel therapeutic approaches is necessary. RAD51C is associated with DNA damage repair and plays an important role in the development and progression of tumors. Early cDNA microarray results showed that RAD51C expression was significantly increased in HBV-infected HCC cells, however, the relationship between HBV infection and abnormal expression of RAD51C has not been reported. Therefore, we conducted RT-PCR, western blot, Co-immunoprecipitation(Co-IP), and immunofluorescence(IF) to detect HBV-RAD51C interaction in RAD51C overexpression or interfering HCC cells. Our results showed that RAD51C and HBV X protein(HBX) produced a direct interaction in the nucleus, the HBV infection of HCC cells promoted RAD51C expression, and the increased expression of RAD51C promoted HBV replication. This indicated that RAD51C is closely related to the occurrence and development of HCC caused by HBV infection, and may bring a breakthrough in the the prevention and treatment study of HCC.
Collapse
Affiliation(s)
- Ting-Wei Peng
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Qing-Feng Ma
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jie Li
- China Medical Tribune, Beijing, 100009, China
| | - Xue Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Cong-Hui Zhang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China
| | - Junwen Ma
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jun-Yi Li
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Wei Wang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, 430034, China.
| | - Cheng-Liang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, 200135, China.
| |
Collapse
|
16
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Nickoloff JA, Jaiswal AS, Sharma N, Williamson EA, Tran MT, Arris D, Yang M, Hromas R. Cellular Responses to Widespread DNA Replication Stress. Int J Mol Sci 2023; 24:16903. [PMID: 38069223 PMCID: PMC10707325 DOI: 10.3390/ijms242316903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Aruna S. Jaiswal
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Elizabeth A. Williamson
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Manh T. Tran
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Dominic Arris
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Ming Yang
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| |
Collapse
|
18
|
Palumbieri MD, Merigliano C, González-Acosta D, Kuster D, Krietsch J, Stoy H, von Känel T, Ulferts S, Welter B, Frey J, Doerdelmann C, Sanchi A, Grosse R, Chiolo I, Lopes M. Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity. Nat Commun 2023; 14:7819. [PMID: 38016948 PMCID: PMC10684888 DOI: 10.1038/s41467-023-43183-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.
Collapse
Affiliation(s)
| | - Chiara Merigliano
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA
| | | | - Danina Kuster
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Department of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark
| | - Thomas von Känel
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Welter
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Joël Frey
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Cyril Doerdelmann
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA.
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Guh CL, Lei KH, Chen YA, Jiang YZ, Chang HY, Liaw H, Li HW, Yen HY, Chi P. RAD51 paralogs synergize with RAD51 to protect reversed forks from cellular nucleases. Nucleic Acids Res 2023; 51:11717-11731. [PMID: 37843130 PMCID: PMC10681713 DOI: 10.1093/nar/gkad856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023] Open
Abstract
Fork reversal is a conserved mechanism to prevent stalled replication forks from collapsing. Formation and protection of reversed forks are two crucial steps in ensuring fork integrity and stability. Five RAD51 paralogs, namely, RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, which share sequence and structural similarity to the recombinase RAD51, play poorly defined mechanistic roles in these processes. Here, using purified BCDX2 (RAD51BCD-XRCC2) and CX3 (RAD51C-XRCC3) complexes and in vitro reconstituted biochemical systems, we mechanistically dissect their functions in forming and protecting reversed forks. We show that both RAD51 paralog complexes lack fork reversal activities. Whereas CX3 exhibits modest fork protection activity, BCDX2 significantly synergizes with RAD51 to protect DNA against attack by the nucleases MRE11 and EXO1. DNA protection is contingent upon the ability of RAD51 to form a functional nucleoprotein filament on DNA. Collectively, our results provide evidence for a hitherto unknown function of RAD51 paralogs in synergizing with RAD51 nucleoprotein filament to prevent degradation of stressed replication forks.
Collapse
Affiliation(s)
- Chia-Lun Guh
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yi-An Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Zhen Jiang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hao-Yen Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yung Yen
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Liu W, Polaczek P, Roubal I, Meng Y, Choe WC, Caron MC, Sedgeman C, Xi Y, Liu C, Wu Q, Zheng L, Masson JY, Shen B, Campbell J. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 2023; 51:9144-9165. [PMID: 37526271 PMCID: PMC10516637 DOI: 10.1093/nar/gkad624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.
Collapse
Affiliation(s)
- Wenpeng Liu
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivan Roubal
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Won-chae Choe
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Carl A Sedgeman
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Xi
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiong Wu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Balakrishnan S, Adolph M, Tsai MS, Gallagher K, Cortez D, Chazin WJ. Structure of RADX and mechanism for regulation of RAD51 nucleofilaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558089. [PMID: 37786681 PMCID: PMC10541619 DOI: 10.1101/2023.09.19.558089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed ssDNA. To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (EM) from maps in the 2-3 Å range. The structure reveals the molecular basis for RADX oligomerization and binding of ssDNA binding. The binding of RADX to RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the growing end of RAD51 filaments.
Collapse
Affiliation(s)
- Swati Balakrishnan
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Madison Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Bioengineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kaitlyn Gallagher
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Walter J. Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Lead contact
| |
Collapse
|
22
|
Goldtzvik Y, Sen N, Lam SD, Orengo C. Protein diversification through post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol 2023; 81:102640. [PMID: 37354790 DOI: 10.1016/j.sbi.2023.102640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Proteins provide the basis for cellular function. Having multiple versions of the same protein within a single organism provides a way of regulating its activity or developing novel functions. Post-translational modifications of proteins, by means of adding/removing chemical groups to amino acids, allow for a well-regulated and controlled way of generating functionally distinct protein species. Alternative splicing is another method with which organisms possibly generate new isoforms. Additionally, gene duplication events throughout evolution generate multiple paralogs of the same genes, resulting in multiple versions of the same protein within an organism. In this review, we discuss recent advancements in the study of these three methods of protein diversification and provide illustrative examples of how they affect protein structure and function.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, United Kingdom. https://twitter.com/@NeeladriSen
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
23
|
Longo MA, Roy S, Chen Y, Tomaszowski KH, Arvai AS, Pepper JT, Boisvert RA, Kunnimalaiyaan S, Keshvani C, Schild D, Bacolla A, Williams GJ, Tainer JA, Schlacher K. RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles. Nat Commun 2023; 14:4445. [PMID: 37488098 PMCID: PMC10366140 DOI: 10.1038/s41467-023-40096-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5' RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.
Collapse
Affiliation(s)
- Michael A Longo
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sunetra Roy
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Chen
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew S Arvai
- The Department of Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jordan T Pepper
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Boisvert
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caezanne Keshvani
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Albino Bacolla
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Gareth J Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Greenhough LA, Liang CC, Belan O, Kunzelmann S, Maslen S, Rodrigo-Brenni MC, Anand R, Skehel M, Boulton SJ, West SC. Structure and function of the RAD51B-RAD51C-RAD51D-XRCC2 tumour suppressor. Nature 2023; 619:650-657. [PMID: 37344587 PMCID: PMC7614784 DOI: 10.1038/s41586-023-06179-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
Homologous recombination is a fundamental process of life. It is required for the protection and restart of broken replication forks, the repair of chromosome breaks and the exchange of genetic material during meiosis. Individuals with mutations in key recombination genes, such as BRCA2 (also known as FANCD1), or the RAD51 paralogues RAD51B, RAD51C (also known as FANCO), RAD51D, XRCC2 (also known as FANCU) and XRCC3, are predisposed to breast, ovarian and prostate cancers1-10 and the cancer-prone syndrome Fanconi anaemia11-13. The BRCA2 tumour suppressor protein-the product of BRCA2-is well characterized, but the cellular functions of the RAD51 paralogues remain unclear. Genetic knockouts display growth defects, reduced RAD51 focus formation, spontaneous chromosome abnormalities, sensitivity to PARP inhibitors and replication fork defects14,15, but the precise molecular roles of RAD51 paralogues in fork stability, DNA repair and cancer avoidance remain unknown. Here we used cryo-electron microscopy, AlphaFold2 modelling and structural proteomics to determine the structure of the RAD51B-RAD51C-RAD51D-XRCC2 complex (BCDX2), revealing that RAD51C-RAD51D-XRCC2 mimics three RAD51 protomers aligned within a nucleoprotein filament, whereas RAD51B is highly dynamic. Biochemical and single-molecule analyses showed that BCDX2 stimulates the nucleation and extension of RAD51 filaments-which are essential for recombinational DNA repair-in reactions that depend on the coupled ATPase activities of RAD51B and RAD51C. Our studies demonstrate that BCDX2 orchestrates RAD51 assembly on single stranded DNA for replication fork protection and double strand break repair, in reactions that are critical for tumour avoidance.
Collapse
Affiliation(s)
| | | | - Ondrej Belan
- The Francis Crick Institute, London, UK
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zemet R, Du H, Gambin T, Lupski JR, Liu P, Stankiewicz P. SNV/indel hypermutator phenotype in biallelic RAD51C variant: Fanconi anemia. Hum Genet 2023; 142:721-733. [PMID: 37031326 PMCID: PMC10996436 DOI: 10.1007/s00439-023-02550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
We previously reported a fetus with Fanconi anemia (FA), complementation group O due to compound heterozygous variants involving RAD51C. Interestingly, the trio exome sequencing analysis also detected eight apparent de novo mosaic variants with variant allele fraction (VAF) ranging between 11.5 and 37%. Here, using whole genome sequencing and a 'home-brew' variant filtering pipeline and DeepMosaic module, we investigated the number and signature of de novo heterozygous and mosaic variants and the hypothesis of a rare phenomenon of hypermutation. Eight-hundred-thirty apparent de novo SNVs and 21 de novo indels had VAFs below 37.41% and were considered postzygotic somatic mosaic variants. The VAFs showed a bimodal distribution, with one component having an average VAF of 25% (range: 18.7-37.41%) (n = 446), representing potential postzygotic first mitotic events, and the other component with an average VAF of 12.5% (range 9.55-18.69%) (n = 384), describing potential second mitotic events. No increased rate of CNV formation was observed. The mutational pattern analysis for somatic single base substitution showed SBS40, SBS5, and SBS3 as the top recognized signatures. SBS3 is a known signature associated with homologous recombination-based DNA damage repair error. Our data demonstrate that biallelic RAD51C variants show evidence for defective genomic DNA damage repair and thereby result in a hypermutator phenotype with the accumulation of postzygotic de novo mutations, at least in the prenatal period. This 'genome hypermutator phenomenon' might contribute to the observed hematological manifestations and the predisposition to tumors in patients with FA. We propose that other FA groups should be investigated for genome-wide de novo variants.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Baylor Genetics, Houston, TX, USA.
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Uchida C, Niida H, Sakai S, Iijima K, Kitagawa K, Ohhata T, Shiotani B, Kitagawa M. p130RB2 positively contributes to ATR activation in response to replication stress via the RPA32-ETAA1 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119484. [PMID: 37201767 DOI: 10.1016/j.bbamcr.2023.119484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/20/2023]
Abstract
Ataxia-telangiectasia mutated and Rad3-related (ATR) kinase is a crucial regulator of the cell cycle checkpoint and activated in response to DNA replication stress by two independent pathways via RPA32-ETAA1 and TopBP1. However, the precise activation mechanism of ATR by the RPA32-ETAA1 pathway remains unclear. Here, we show that p130RB2, a member of the retinoblastoma protein family, participates in the pathway under hydroxyurea-induced DNA replication stress. p130RB2 binds to ETAA1, but not TopBP1, and depletion of p130RB2 inhibits the RPA32-ETAA1 interaction under replication stress. Moreover, p130RB2 depletion reduces ATR activation accompanied by phosphorylation of its targets RPA32, Chk1, and ATR itself. It also causes improper re-progression of S phase with retaining single-stranded DNA after cancelation of the stress, which leads to an increase in the anaphase bridge phenotype and a decrease in cell survival. Importantly, restoration of p130RB2 rescued the disrupted phenotypes of p130RB2 knockdown cells. These results suggest positive involvement of p130RB2 in the RPA32-ETAA1-ATR axis and proper re-progression of the cell cycle to maintain genome integrity.
Collapse
Affiliation(s)
- Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenta Iijima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kyoko Kitagawa
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
27
|
Thomas M, Dubacq C, Rabut E, Lopez BS, Guirouilh-Barbat J. Noncanonical Roles of RAD51. Cells 2023; 12:cells12081169. [PMID: 37190078 DOI: 10.3390/cells12081169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.
Collapse
Affiliation(s)
- Mélissa Thomas
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Caroline Dubacq
- Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, INSERM, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Elise Rabut
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Bernard S Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| |
Collapse
|
28
|
Palumbieri MD, Merigliano C, Acosta DG, von Känel T, Welter B, Stoy H, Krietsch J, Ulferts S, Sanchi A, Grosse R, Chiolo I, Lopes M. Replication fork plasticity upon replication stress requires rapid nuclear actin polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534097. [PMID: 36993227 PMCID: PMC10055433 DOI: 10.1101/2023.03.24.534097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase, rapidly extending in number and thickness upon genotoxic treatments, and taking frequent contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork plasticity is linked to reduced recruitment of RAD51 and SMARCAL1 to nascent DNA. Conversely, PRIMPOL gains access to replicating chromatin, promoting unrestrained and discontinuous DNA synthesis, which is associated with increased chromosomal instability and decreased cellular resistance to replication stress. Hence, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.
Collapse
|
29
|
Zemet R, Du H, Gambin T, Lupski JR, Liu P, Stankiewicz P. SNV/indel hypermutator phenotype in biallelic RAD51C variant - Fanconi anemia. RESEARCH SQUARE 2023:rs.3.rs-2628288. [PMID: 36909564 PMCID: PMC10002829 DOI: 10.21203/rs.3.rs-2628288/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
We previously reported a fetus with Fanconi anemia (FA), complementation group O due to compound heterozygous variants involving RAD51C . Interestingly, the trio exome sequencing analysis also detected eight apparent de novo mosaic variants with variant allele fraction (VAF) ranging between 11.5%-37%. Here, using whole genome sequencing and a 'home-brew' variant filtering pipeline and DeepMosaic module, we investigated the number and signature of de novo heterozygous and mosaic variants and the rare phenomenon of hypermutation. Eight-hundred-thirty apparent dnSNVs and 21 de novo indels had VAFs below 37.41% and were considered postzygotic somatic mosaic variants. The VAFs showed a bimodal distribution, with one component with an average VAF of 25% (range: 18.7-37.41%) (n=446), representing potential postzygotic first mitotic events, and the other component with an average VAF of 12.5% (range: 9.55-18.69%) (n=384), describing potential second mitotic events. No increased rate of CNV formation was observed. The mutational pattern analysis for somatic single base substitution showed SBS40, SBS5, and SBS3 as the top recognized signatures. SBS3 is a known signature associated with homologous recombination-based DNA damage repair error. Our data demonstrate that biallelic RAD51C variants show evidence for defective genomic DNA damage repair and thereby result in a hypermutator phenotype with the accumulation of postzygotic de novo mutations, at least in the prenatal period. This 'genome hypermutator phenomenon' might contribute to the observed hematological manifestations and the predisposition to tumors in patients with FA, and pregnancy loss in general. We propose that other FA groups should be investigated for genome-wide de novo variants.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Baylor Genetics, Houston, TX
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
30
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
31
|
Franca MM, Condezo YB, Elzaiat M, Felipe-Medina N, Sánchez-Sáez F, Muñoz S, Sainz-Urruela R, Martín-Hervás MR, García-Valiente R, Sánchez-Martín MA, Astudillo A, Mendez J, Llano E, Veitia RA, Mendonca BB, Pendás AM. A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death Differ 2022; 29:2347-2361. [PMID: 35624308 PMCID: PMC9751091 DOI: 10.1038/s41418-022-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023] Open
Abstract
Primary ovarian insufficiency (POI) causes female infertility by abolishing normal ovarian function. Although its genetic etiology has been extensively investigated, most POI cases remain unexplained. Using whole-exome sequencing, we identified a homozygous variant in RAD51B -(c.92delT) in two sisters with POI. In vitro studies revealed that this variant leads to translation reinitiation at methionine 64. Here, we show that this is a pathogenic hypomorphic variant in a mouse model. Rad51bc.92delT/c.92delT mice exhibited meiotic DNA repair defects due to RAD51 and HSF2BP/BMRE1 accumulation in the chromosome axes leading to a reduction in the number of crossovers. Interestingly, the interaction of RAD51B-c.92delT with RAD51C and with its newly identified interactors RAD51 and HELQ was abrogated or diminished. Repair of mitomycin-C-induced chromosomal aberrations was impaired in RAD51B/Rad51b-c.92delT human and mouse somatic cells in vitro and in explanted mouse bone marrow cells. Accordingly, Rad51b-c.92delT variant reduced replication fork progression of patient-derived lymphoblastoid cell lines and pluripotent reprogramming efficiency of primary mouse embryonic fibroblasts. Finally, Rad51bc.92delT/c.92delT mice displayed increased incidence of pituitary gland hyperplasia. These results provide new mechanistic insights into the role of RAD51B not only in meiosis but in the maintenance of somatic genome stability.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
- Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Maëva Elzaiat
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - M Rosario Martín-Hervás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Rodrigo García-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel A Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca, Spain
| | | | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Université Paris-Saclay and Institut François Jacob, Comissariat à l'Energie Atomique, Gif-sur-Yvette, France.
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil.
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| |
Collapse
|
32
|
Faria J, Briggs EM, Black JA, McCulloch R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol 2022; 70:102209. [PMID: 36215868 DOI: 10.1016/j.mib.2022.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Survival of the African trypanosome within its mammalian hosts, and hence transmission between hosts, relies upon antigenic variation, where stochastic changes in the composition of their protective variant-surface glycoprotein (VSG) coat thwart effective removal of the pathogen by adaptive immunity. Antigenic variation has evolved remarkable mechanistic complexity in Trypanosoma brucei, with switching of the VSG coat executed by either transcriptional or recombination reactions. In the former, a single T. brucei cell selectively transcribes one telomeric VSG transcription site, termed the expression site (ES), from a pool of around 15. Silencing of the active ES and activation of one previously silent ES can lead to a co-ordinated VSG coat switch. Outside the ESs, the T. brucei genome contains an enormous archive of silent VSG genes and pseudogenes, which can be recombined into the ES to execute a coat switch. Most such recombination involves gene conversion, including copying of a complete VSG and more complex reactions where novel 'mosaic' VSGs are formed as patchworks of sequences from several silent (pseudo)genes. Understanding of the cellular machinery that directs transcriptional and recombination VSG switching is growing rapidly and the emerging picture is of the use of proteins, complexes and pathways that are not limited to trypanosomes, but are shared across the wider grouping of kinetoplastids and beyond, suggesting co-option of widely used, core cellular reactions. We will review what is known about the machinery of antigenic variation and discuss if there remains the possibility of trypanosome adaptations, or even trypanosome-specific machineries, that might offer opportunities to impair this crucial parasite-survival process.
Collapse
Affiliation(s)
- Joana Faria
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom.
| | - Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
33
|
RAD51 paralogs: Expanding roles in replication stress responses and repair. Curr Opin Pharmacol 2022; 67:102313. [PMID: 36343481 DOI: 10.1016/j.coph.2022.102313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Mammalian RAD51 paralogs are essential for cell survival and are critical for RAD51-mediated repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the molecular mechanism by which RAD51 paralogs participate in HR is largely unclear. Germline mutations in RAD51 paralogs are associated with breast and ovarian cancers and Fanconi anemia-like disorder, underscoring the crucial roles of RAD51 paralogs in genome maintenance and tumor suppression. Despite their discovery over three decades ago, the essential functions of RAD51 paralogs in cell survival and genome stability remain obscure. Recent studies unravel DSB repair independent functions of RAD51 paralogs in replication stress responses. Here, we highlight the recent findings that uncovered the novel functions of RAD51 paralogs in replication fork progression, its stability, and restart and discuss RAD51 paralogs as a potential therapeutic target for cancer treatment.
Collapse
|
34
|
Systematic proximal mapping of the classical RAD51 paralogs unravel functionally and clinically relevant interactors for genome stability. PLoS Genet 2022; 18:e1010495. [DOI: 10.1371/journal.pgen.1010495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.
Collapse
|
35
|
Association between XRCC3 p.Thr241Met polymorphism and risk of glioma: A systematic review and meta-analysis. PLoS One 2022; 17:e0276313. [PMID: 36264998 PMCID: PMC9584405 DOI: 10.1371/journal.pone.0276313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/04/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The XRCC3 p.Thr241Met (rs861539) polymorphism has been extensively studied for its association with glioma risk, but results remain conflicting. Therefore, we performed a systematic review and meta-analysis to resolve this inconsistency. METHODS Studies published up to June 10, 2022, were searched in PubMed, Web of Science, Scopus, VIP, Wanfang, and China National Knowledge Infrastructure databases and screened for eligibility. Then, the combined odds ratio (OR) of the included studies was estimated based on five genetic models, i.e., homozygous (Met/Met vs. Thr/Thr), heterozygous (Thr/Met vs. Thr/Thr), dominant (Thr/Met + Met/Met vs. Thr/Thr), recessive (Met/Met vs. Thr/Thr + Thr/Met) and allele (Met vs. Thr). The study protocol was preregistered at PROSPERO (registration number: CRD42021235704). RESULTS Overall, our meta-analysis of 14 eligible studies involving 12,905 subjects showed that the p.Thr241Met polymorphism was significantly associated with increased glioma risk in both homozygous and recessive models (homozygous, OR = 1.381, 95% CI = 1.081-1.764, P = 0.010; recessive, OR = 1.305, 95% CI = 1.140-1.493, P<0.001). Subgroup analyses by ethnicity also revealed a statistically significant association under the two aforementioned genetic models, but only in the Asian population and not in Caucasians (P>0.05). CONCLUSION We demonstrated that the XRCC3 p.Thr241Met polymorphism is associated with an increased risk of glioma only in the homozygous and recessive models.
Collapse
|
36
|
ASPM promotes ATR-CHK1 activation and stabilizes stalled replication forks in response to replication stress. Proc Natl Acad Sci U S A 2022; 119:e2203783119. [PMID: 36161901 PMCID: PMC9546549 DOI: 10.1073/pnas.2203783119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
ASPM (encoded by MCPH5) is a frequently mutated protein, and such mutations occur in >40% of cases of primary microcephaly (MCPH). Here, we characterize a function of ASPM in DNA replication and the replication stress response. ASPM serves as a scaffold to load stimulators required for ATR-CHK1 checkpoint signaling upon replication stress, which protects stalled replication forks from degradation. ASPM deficiency leads to genomic instability and the sensitization of cancer cells to replication stressors. ASPM is a protein encoded by primary microcephaly 5 (MCPH5) and is responsible for ensuring spindle position during mitosis and the symmetrical division of neural stem cells. We recently reported that ASPM promotes homologous recombination (HR) repair of DNA double strand breaks. However, its potential role in DNA replication and replication stress response remains elusive. Interestingly, we found that ASPM is dispensable for DNA replication under unperturbed conditions. However, ASPM is enriched at stalled replication forks in a RAD17-dependent manner in response to replication stress and promotes RAD9 and TopBP1 loading onto chromatin, facilitating ATR-CHK1 activation. ASPM depletion results in failed fork restart and nuclease MRE11-mediated nascent DNA degradation at the stalled replication fork. The overall consequence is chromosome instability and the sensitization of cancer cells to replication stressors. These data support a role for ASPM in loading RAD17-RAD9/TopBP1 onto chromatin to activate the ATR-CHK1 checkpoint and ultimately ensure genome stability.
Collapse
|
37
|
Prakash R, Rawal Y, Sullivan MR, Grundy MK, Bret H, Mihalevic MJ, Rein HL, Baird JM, Darrah K, Zhang F, Wang R, Traina TA, Radke MR, Kaufmann SH, Swisher EM, Guérois R, Modesti M, Sung P, Jasin M, Bernstein KA. Homologous recombination-deficient mutation cluster in tumor suppressor RAD51C identified by comprehensive analysis of cancer variants. Proc Natl Acad Sci U S A 2022; 119:e2202727119. [PMID: 36099300 PMCID: PMC9499524 DOI: 10.1073/pnas.2202727119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/09/2022] [Indexed: 01/05/2023] Open
Abstract
Mutations in homologous recombination (HR) genes, including BRCA1, BRCA2, and the RAD51 paralog RAD51C, predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, ∼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs. A cluster of mutations was identified in and around the Walker A box that led to impairments in HR, interactions with three other RAD51 paralogs, binding to single-stranded DNA, and ATP hydrolysis. We generated structural models of the two RAD51 paralog complexes containing RAD51C, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3. Together with our functional and biochemical analyses, the structural models predict ATP binding at the interface of RAD51C interactions with other RAD51 paralogs, similar to interactions between monomers in RAD51 filaments, and explain the failure of RAD51C variants in binding multiple paralogs. Ovarian cancer patients with variants in this cluster showed exceptionally long survival, which may be relevant to the reversion potential of the variants. This comprehensive analysis provides a framework for RAD51C variant classification. Importantly, it also provides insight into the functioning of the RAD51 paralog complexes.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yashpal Rawal
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Meghan R. Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - McKenzie K. Grundy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Hélène Bret
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198 France
| | - Michael J. Mihalevic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Hayley L. Rein
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jared M. Baird
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kristie Darrah
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Fang Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tiffany A. Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Marc R. Radke
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Scott H. Kaufmann
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Elizabeth M. Swisher
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198 France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, 13273 France
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kara A. Bernstein
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
38
|
Feu S, Unzueta F, Ercilla A, Pérez-Venteo A, Jaumot M, Agell N. RAD51 is a druggable target that sustains replication fork progression upon DNA replication stress. PLoS One 2022; 17:e0266645. [PMID: 35969531 PMCID: PMC9377619 DOI: 10.1371/journal.pone.0266645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Solving the problems that replication forks encounter when synthesizing DNA is essential to prevent genomic instability. Besides their role in DNA repair in the G2 phase, several homologous recombination proteins, specifically RAD51, have prominent roles in the S phase. Using different cellular models, RAD51 has been shown not only to be present at ongoing and arrested replication forks but also to be involved in nascent DNA protection and replication fork restart. Through pharmacological inhibition, here we study the specific role of RAD51 in the S phase. RAD51 inhibition in non-transformed cell lines did not have a significant effect on replication fork progression under non-perturbed conditions, but when the same cells were subjected to replication stress, RAD51 became necessary to maintain replication fork progression. Notably, the inhibition or depletion of RAD51 did not compromise fork integrity when subjected to hydroxyurea treatment. RAD51 inhibition also did not decrease the ability to restart, but rather compromised fork progression during reinitiation. In agreement with the presence of basal replication stress in human colorectal cancer cells, RAD51 inhibition reduced replication fork speed in these cells and increased γH2Ax foci under control conditions. These alterations could have resulted from the reduced association of DNA polymerase α to chromatin, as observed when inhibiting RAD51. It may be possible to exploit the differential dependence of non-transformed cells versus colorectal cancer cells on RAD51 activity under basal conditions to design new therapies that specifically target cancer cells.
Collapse
Affiliation(s)
- Sonia Feu
- Dept. Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fernando Unzueta
- Dept. Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amaia Ercilla
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Montserrat Jaumot
- Dept. Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Neus Agell
- Dept. Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- * E-mail:
| |
Collapse
|
39
|
Zimmermann M, Bernier C, Kaiser B, Fournier S, Li L, Desjardins J, Skeldon A, Rimkunas V, Veloso A, Young JTF, Roulston A, Zinda M. Guiding ATR and PARP inhibitor combinationswith chemogenomic screens. Cell Rep 2022; 40:111081. [PMID: 35830811 DOI: 10.1016/j.celrep.2022.111081] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022] Open
Abstract
Combinations of ataxia telangiectasia- and Rad3-related kinase inhibitors (ATRis) and poly(ADP-ribose) polymerase inhibitors (PARPis) synergistically kill tumor cells through modulation of complementary DNA repair pathways, but their tolerability is limited by hematological toxicities. To address this, we performed a genome-wide CRISPR-Cas9 screen to identify genetic alterations that hypersensitize cells to a combination of the ATRi RP-3500 with PARPi, including deficiency in RNase H2, RAD51 paralog mutations, or the "alternative lengthening of telomeres" telomere maintenance mechanism. We show that RP-3500 and PARPi combinations kill cells carrying these genetic alterations at doses sub-therapeutic as single agents. We also demonstrate the mechanism of combination hypersensitivity in RNase H2-deficient cells, where we observe an irreversible replication catastrophe, allowing us to design a highly efficacious and tolerable in vivo dosing schedule. We present a comprehensive dataset to inform development of ATRi and PARPi combinations and an experimental framework applicable to other drug combination strategies.
Collapse
Affiliation(s)
- Michal Zimmermann
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada.
| | - Cynthia Bernier
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Beatrice Kaiser
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Sara Fournier
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Li Li
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Jessica Desjardins
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Alexander Skeldon
- Ventus Therapeutics, 7150 Rue Frederick-Banting, St-Laurent, QC H4S 2A1, Canada
| | - Victoria Rimkunas
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| | - Artur Veloso
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| | - Jordan T F Young
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Anne Roulston
- Repare Therapeutics, 7171 Rue Frederick-Banting, St-Laurent, QC H4S 1Z9, Canada
| | - Michael Zinda
- Repare Therapeutics, 101 Main Street, Suite 1650, Cambridge, MA 02142, USA
| |
Collapse
|
40
|
Halder S, Ranjha L, Taglialatela A, Ciccia A, Cejka P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res 2022; 50:8008-8022. [PMID: 35801922 PMCID: PMC9371921 DOI: 10.1093/nar/gkac583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
SMARCAL1, ZRANB3 and HLTF are required for the remodeling of replication forks upon stress to promote genome stability. RAD51, along with the RAD51 paralog complex, were also found to have recombination-independent functions in fork reversal, yet the underlying mechanisms remained unclear. Using reconstituted reactions, we build upon previous data to show that SMARCAL1, ZRANB3 and HLTF have unequal biochemical capacities, explaining why they have non-redundant functions. SMARCAL1 uniquely anneals RPA-coated ssDNA, which depends on its direct interaction with RPA, but not on ATP. SMARCAL1, along with ZRANB3, but not HLTF efficiently employ ATPase driven translocase activity to rezip RPA-covered bubbled DNA, which was proposed to mimic elements of fork reversal. In contrast, ZRANB3 and HLTF but not SMARCAL1 are efficient in branch migration that occurs downstream in fork remodeling. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B–RAD51C–RAD51D–XRCC2 (BCDX2), directly stimulate the motor-driven activities of SMARCAL1 and ZRANB3 but not HLTF, and the interplay is underpinned by physical interactions. Our data provide a possible mechanism explaining previous cellular experiments implicating RAD51 and BCDX2 in fork reversal.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
41
|
Ding L, Luo Y, Tian T, Chen X, Yang Y, Bu M, Han J, Yang B, Yan H, Liu T, Wu M, Zhang G, Xu Y, Zhu S, Huen MSY, Mao G, Huang J. RNF4 controls the extent of replication fork reversal to preserve genome stability. Nucleic Acids Res 2022; 50:5672-5687. [PMID: 35640614 PMCID: PMC9177969 DOI: 10.1093/nar/gkac447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/14/2022] Open
Abstract
Replication fork reversal occurs via a two-step process that entails reversal initiation and reversal extension. DNA topoisomerase IIalpha (TOP2A) facilitates extensive fork reversal, on one hand through resolving the topological stress generated by the initial reversal, on the other hand via its role in recruiting the SUMO-targeted DNA translocase PICH to stalled forks in a manner that is dependent on its SUMOylation by the SUMO E3 ligase ZATT. However, how TOP2A activities at stalled forks are precisely regulated remains poorly understood. Here we show that, upon replication stress, the SUMO-targeted ubiquitin E3 ligase RNF4 accumulates at stalled forks and targets SUMOylated TOP2A for ubiquitination and degradation. Downregulation of RNF4 resulted in aberrant activation of the ZATT–TOP2A–PICH complex at stalled forks, which in turn led to excessive reversal and elevated frequencies of fork collapse. These results uncover a previously unidentified regulatory mechanism that regulates TOP2A activities at stalled forks and thus the extent of fork reversal.
Collapse
Affiliation(s)
- Linli Ding
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tian Tian
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, Guangdong, China
| | - Xu Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Min Bu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinhua Han
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City of College, Hangzhou 310015, Zhejiang, China
| | - Ting Liu
- Department of Cell Biology, and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Mengjie Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Guofei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yipeng Xu
- Department of Urology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310058, Zhejiang, China
| | - Shaoxing Zhu
- Department of Urology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310058, Zhejiang, China
| | - Michael S Y Huen
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, Zhejiang, China
| | - Jun Huang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
42
|
Zhang J, Chen M, Pang Y, Cheng M, Huang B, Xu S, Liu M, Lian H, Zhong C. Flap endonuclease 1 and DNA-PKcs synergistically participate in stabilizing replication fork to encounter replication stress in glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:140. [PMID: 35414100 PMCID: PMC9006432 DOI: 10.1186/s13046-022-02334-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
Background Selectively utilizing alternative mechanisms to repair damaged DNA in essential factors deficient cancer facilitates tumor genetic evolution and contributes to treatment resistance. Synthetic lethality strategies provide a novel scenario to anticancer therapy with DNA repair protein mutation, such as glioma with DNA-PKcs-deficiency, a core factor crucial for non-homologous end joining (NHEJ) mediated DNA damage repair. Nevertheless, the clinical significance and molecular mechanisms of synthetic lethality function by interfering tumor DNA replication remain largely unexplored. Methods Cancer clinic treatment resistance-related replication core factors were identified through bioinformatics analysis and RNA-sequencing and verified in clinical specimens by immunoblotting and in situ Proximity Ligation Analysis (PLA). Then, in vitro and in vivo experiments, including visible single molecular tracking system were performed to determine functional roles, the molecular mechanisms and clinical significance of synthetic lethality on glioma tumors. Results Hyperactive DNA replication and regulator Flap endonuclease 1 (FEN1) provides high efficiency DNA double strand breaks (DSB) repair abilities preventing replication forks collapse during DNA replication which facilitate adaptation to selective pressures. DNA-PKcs deficient glioma cells are highly dependent on FEN1/BRCA1/RAD51 to survival and counteract replication stress. FEN1 protects perturbed forks from erroneous over-resection by MRE11 through regulating of BRCA1-RAD51 and WRN helicase, uncovering an essential genetic interaction between FEN1 and DNA-PKcs in mitigating replication-stress induced tumor genomic instability. Therapeutically, genetic depletion or molecular inhibition of FEN1 and DNA-PKcs perturb glioma progression. Conclusions Our findings highlight an unanticipated synthetic interaction between FEN1/BRCA1/RAD51 and DNA-PKcs when dysfunction leads to incompatible with cell survival under conditions of interrupted replication progression by disrupting addictive alternative tumor evolution and demonstrate the applicability of combined FEN1 and DNA-PKcs targeting in the treatment of glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02334-0.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China. .,Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Mu Chen
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Meng Cheng
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Bingsong Huang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Siyi Xu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hao Lian
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
43
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. Nucleases and Co-Factors in DNA Replication Stress Responses. DNA 2022; 2:68-85. [PMID: 36203968 PMCID: PMC9534323 DOI: 10.3390/dna2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
44
|
O’Sullivan Coyne G, Karlovich C, Wilsker D, Voth AR, Parchment RE, Chen AP, Doroshow JH. PARP Inhibitor Applicability: Detailed Assays for Homologous Recombination Repair Pathway Components. Onco Targets Ther 2022; 15:165-180. [PMID: 35237050 PMCID: PMC8885121 DOI: 10.2147/ott.s278092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have been in clinical use since 2014 for certain patients with germline BRCA1/2 mutations, but as evidence and approvals for their use in a wider range of patients grow, the question of how best to identify patients who would benefit from PARPi becomes ever more complex. Here, we discuss the development and current state of approved selection testing for PARPi therapy and the ongoing efforts to define a broader range of homologous recombination repair deficiencies that are susceptible to PARP inhibition.
Collapse
Affiliation(s)
- Geraldine O’Sullivan Coyne
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Karlovich
- Leidos Biomedical Research Inc, Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E Parchment
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alice P Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Feng W, Qi Z, Dong Z, Liu W, Xu M, Gao M, Liu S. LncRNA MT1DP promotes cadmium-induced DNA replication stress by inhibiting chromatin recruitment of SMARCAL1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151078. [PMID: 34715232 DOI: 10.1016/j.scitotenv.2021.151078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a well-known carcinogenic metal and widespread environmental pollutant. The effect of Cd-induced carcinogenesis is partly due to accumulated DNA damage and chromosomal aberrations, but the exact mechanisms underlying the genotoxicity of Cd have not been clearly understood. Here, we found that one long non-coding RNA MT1DP is participated in Cd-induced DNA damage and replication stress. Through analyzing the residents from Cd-contaminated area in Southern China, we found that blood DNA repair genes are down-regulated in individuals with high urine Cd values compared to those with low urine Cd values, which contrast to the blood MT1DP levels. Through in vitro experiments, we found that MT1DP promotes Cd-induced DNA damage response, genome instability and replication fork stalling. Mechanically, upon Cd treatment, ATR is activated to enhance HIF-1α expression, which in turn promotes the transcription level of MT1DP. Subsequently MT1DP is recruited on the chromatin and binds to SMARCAL1 to competitive inhibit latter's interaction with RPA complexes, finally leading to increased replication stress and DNA damage. In summary, this study provides clear evidence for the role of epigenetic regulation on the genotoxic effect of Cd, and MT1DP-mediated replication stress may represent a novel mechanism for Cd-induced carcinogenesis.
Collapse
Affiliation(s)
- Wenya Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijuan Qi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Lappin KM, Barros EM, Jhujh SS, Irwin GW, McMillan H, Liberante FG, Latimer C, LaBonte MJ, Mills KI, Harkin DP, Stewart GS, Savage KI. CANCER-ASSOCIATED SF3B1 MUTATIONS CONFER A BRCA-LIKE CELLULAR PHENOTYPE AND SYNTHETIC LETHALITY TO PARP INHIBITORS. Cancer Res 2022; 82:819-830. [DOI: 10.1158/0008-5472.can-21-1843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
|
47
|
Liu W. Single Molecular Resolution to Monitor DNA Replication Fork Dynamics upon Stress by DNA Fiber Assay. Bio Protoc 2021; 11:e4269. [PMID: 35087928 PMCID: PMC8720530 DOI: 10.21769/bioprotoc.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 07/07/2024] Open
Abstract
DNA replication always encounters numerous endogenous and exogenous stresses during the cell cycle. Measuring the cell responses to stress has primarily relied on cell survival and incorporation of radioactive dNTPs, which is limited in resolution. A higher resolution is required to monitor how replication and repair respond to these stresses. This protocol describes a procedure to monitor the length of new synthesized DNA in a single molecular resolution called DNA fiber assay. The fiber assay relies on labeling of nascent DNA with the nucleoside analog 5-Chloro-2'-deoxyuridine (CldU) and 5-Iodo-2'-deoxyuridine (IdU). We can visualize the labeled nascent DNA in single molecular resolution by immunostaining. By measuring labeled DNA length, the assay permits interrogation of replication speed at given conditions, end processing at the reversed fork, and fork restart after repair.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| |
Collapse
|
48
|
Boni J, Idani A, Roca C, Feliubadaló L, Tomiak E, Weber E, Foulkes WD, Orthwein A, El Haffaf Z, Lazaro C, Rivera B. A decade of RAD51C and RAD51D germline variants in cancer. Hum Mutat 2021; 43:285-298. [PMID: 34923718 DOI: 10.1002/humu.24319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
Defects in DNA repair genes have been extensively associated with cancer susceptibility. Germline pathogenic variants (GPV) in genes involved in homologous recombination repair pathways predispose to cancers arising mainly in the breast and ovary, but also other tissues. The RAD51 paralogs RAD51C and RAD51D were included in this group 10 years ago when germline variants were associated with non-BRCA1/2 familial ovarian cancer. Here, we have reviewed the landscape of RAD51C and RAD51D germline variants in cancer reported in the literature during the last decade, integrating this list with variants identified by in-house patient screening. A comprehensive catalog of 341 variants that have been classified applying ACMG/AMP criteria has been generated pinpointing the existence of recurrent variants in both genes. Recurrent variants have been extensively discussed compiling data on population frequencies and functional characterization if available, highlighting variants that have not been fully characterized yet to properly establish their pathogenicity. Finally, we have complemented this data with relevant information regarding the conservation of mutated residues among RAD51 paralogs and modeling of putative hotspot areas, which contributes to generating an exhaustive update on these two cancer predisposition genes.
Collapse
Affiliation(s)
- Jacopo Boni
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Aida Idani
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Carla Roca
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Tomiak
- Department of Genetics, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Evan Weber
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Quebec, Montreal, Canada
| | - William D Foulkes
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Quebec, Montreal, Canada.,Gerald Bronfman Department of Oncology, McGill University Montreal, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University Montreal, Montreal, Quebec, Canada.,Cancer Research Axis, Lady Davis Institute, Jewish General Hospital, Quebec, Montreal, Canada
| | - Alexandre Orthwein
- Gerald Bronfman Department of Oncology, McGill University Montreal, Montreal, Quebec, Canada.,Cancer Research Axis, Lady Davis Institute, Jewish General Hospital, Quebec, Montreal, Canada
| | - Zaki El Haffaf
- Division of Genetics, Department of Medicine, Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Quebec, Montreal, Canada
| | - Conxi Lazaro
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Barbara Rivera
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Gerald Bronfman Department of Oncology, McGill University Montreal, Montreal, Quebec, Canada.,Cancer Research Axis, Lady Davis Institute, Jewish General Hospital, Quebec, Montreal, Canada
| |
Collapse
|
49
|
Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes (Basel) 2021; 12:genes12121960. [PMID: 34946909 PMCID: PMC8701046 DOI: 10.3390/genes12121960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Accurate and complete genome replication is a fundamental cellular process for the proper transfer of genetic material to cell progenies, normal cell growth, and genome stability. However, a plethora of extrinsic and intrinsic factors challenge individual DNA replication forks and cause replication stress (RS), a hallmark of cancer. When challenged by RS, cells deploy an extensive range of mechanisms to safeguard replicating genomes and limit the burden of DNA damage. Prominent among those is homologous recombination (HR). Although fundamental to cell division, evidence suggests that cancer cells exploit and manipulate these RS responses to fuel their evolution and gain resistance to therapeutic interventions. In this review, we focused on recent insights into HR-mediated protection of stress-induced DNA replication intermediates, particularly the repair and protection of daughter strand gaps (DSGs) that arise from discontinuous replication across a damaged DNA template. Besides mechanistic underpinnings of this process, which markedly differ depending on the extent and duration of RS, we highlight the pathophysiological scenarios where DSG repair is naturally silenced. Finally, we discuss how such pathophysiological events fuel rampant mutagenesis, promoting cancer evolution, but also manifest in adaptative responses that can be targeted for cancer therapy.
Collapse
|
50
|
Futagawa M, Yamamoto H, Kochi M, Urakawa Y, Sogawa R, Kato F, Okazawa-Sakai M, Ennishi D, Shinozaki K, Inoue H, Yanai H, Hirasawa A. Retroperitoneal leiomyosarcoma in a female patient with a germline splicing variant RAD51D c.904-2A > T: a case report. Hered Cancer Clin Pract 2021; 19:48. [PMID: 34838098 PMCID: PMC8627011 DOI: 10.1186/s13053-021-00205-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background RAD51D (RAD51 paralog D) is an intermediate cancer susceptibility gene for primary ovarian cancer, including fallopian tube and peritoneal carcinomas and breast cancer. Although gynecological non-epithelial tumors such as uterine sarcomas are associated with genomic instability, including BRCA impairment, there is no clear evidence of the relationship between RAD51D variants and the risk of sarcoma development. Case presentation A Japanese woman in her 50s underwent multiple surgical resections and several regimens of chemotherapy for tumors that originated in the retroperitoneum and recurred in the peritoneum over a clinical course of approximately 4 years. The peritoneal tumor was histologically diagnosed as a leiomyosarcoma and was genetically identified to show a splice variant of RAD51D c.904-2A > T [NM_002878] through tumor profiling performed as a part of cancer precision medicine. The confirmatory genetic test performed after genetic counseling revealed that the RAD51D splicing variant detected in her tumor was of germline origin. In silico analyses supported the possible pathogenicity of the detected splice variant of RAD51D with a predicted attenuation in mRNA transcription and truncated protein production due to frameshifting, which was attributed to a single-nucleotide alteration in the splicing acceptor site at the 3′-end of intron 9 of RAD51D. Considering her unfavorable clinical outcome, which showed a highly aggressive phenotype of leiomyosarcoma with altered RAD51D, this case provided novel evidence for the relationship of a RAD51D splicing variant with malignant tumor development or progression. We report the findings of this rare case with possible involvement of the germline variant of RAD51D c.904-2A > T as a potential predisposing factor for malignant tumors, including leiomyosarcoma. Conclusions We present the findings of a case of leiomyosarcoma in the peritoneum of a female patient with a novel germline splicing variant of RAD51D as potential evidence for the pathogenicity of the variant and its involvement in the risk of sarcoma etiology and/or development. To the best of our knowledge, this is the first case report describing a leiomyosarcoma carrying a germline RAD51D splicing variant and elucidating its pathogenicity on the basis of computational prediction of the impairment of normal transcription and the presumed loss of functional protein production. Supplementary Information The online version contains supplementary material available at 10.1186/s13053-021-00205-x.
Collapse
Affiliation(s)
- Mashu Futagawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Hideki Yamamoto
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan. .,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan.
| | - Mariko Kochi
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yusaku Urakawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Reimi Sogawa
- Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Fumino Kato
- Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Mika Okazawa-Sakai
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsunori Shinozaki
- Division of Clinical Oncology, Hiroshima Prefecture Hospital, Hiroshima, Japan
| | - Hirofumi Inoue
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|