1
|
Xiang Q, Guo F, Li D, Xu F, Zhou W. Low-background CRISPR/Cas12a sensing system with circular CRISPR RNA for amplified fluorescent detection of antibody in human serum. Talanta 2025; 288:127730. [PMID: 39961250 DOI: 10.1016/j.talanta.2025.127730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Regular monitoring of serum antibody levels is crucial for preventing interference with therapeutic effectiveness and reducing the risk of toxicity. To address this, a CRISPR/Cas12a sensing system with circular CRISPR RNAs (CcrRNAs) is described for highly sensitive detection of anti-digoxin (Anti-Dig) antibodies in human serum. In this work, the topology structure of CcrRNAs effectively suppresses the function of linear crRNAs (LcrRNAs), making them unable to regulate the cis-/trans-cleavage activity of the Cas12a system. Therefore, a low-background is obtained in the absence of targets. The target Anti-Dig antibodies trigger the assembly of the complete multicomponent nucleic acid enzyme (MNAzyme) with active enzyme activity, which can transform CcrRNAs into LcrRNAs. The LcrRNAs further recover the trans-cleavage activity of the CRISPR/Cas12a system, which can degrade single-stranded reporter DNA to generate a significantly enhanced fluorescent signal. This method enables sensitive detection of Anti-Dig antibodies as low as 15 pM within 60 min and exhibits a linear detection range of 25 pM-50 nM. It also exhibits excellent selectivity against non-target antibodies and has been successfully validated in diluted serum samples, achieving a recovery rate ranging from 96.16 % to 103.08 %. This novel CRISPR/Cas12a sensing system with CcrRNA represents a powerful and efficient tool for detecting low-abundance biomarkers in complex biological samples.
Collapse
Affiliation(s)
- Qian Xiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Daxiu Li
- College Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Fengfeng Xu
- Organization Department of the Communist Party of China, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Wenjiao Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
2
|
Perez AR, Mavrothalassitis O, Chen JS, Hellman J, Gropper MA. CRISPR: fundamental principles and implications for anaesthesia. Br J Anaesth 2025; 134:839-852. [PMID: 39855935 PMCID: PMC11867086 DOI: 10.1016/j.bja.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based medical therapies are increasingly gaining regulatory approval worldwide. Consequently, patients receiving CRISPR therapy will come under the care of anaesthesiologists. An understanding of CRISPR, its technological implementations, and the characteristics of patients likely to receive this therapy will be essential to caring for this patient population. However, the role of CRISPR in anaesthesiology extends beyond simply caring for patients with prior CRISPR therapy. CRISPR has multiple direct potential applications in anaesthesia, particularly for managing chronic pain and critical illness. Additionally, given the unique skills anaesthesiologists possess, CRISPR potentially allows new roles for anaesthesiologists in the field of oncology. Consequently, CRISPR technology could enable new domains of anaesthetic practice. This review provides a primer on CRISPR for anaesthesiologists and an overview on how the technology could impact the field.
Collapse
Affiliation(s)
- Alexendar R Perez
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Silico Therapeutics, Inc., San Jose, CA, USA.
| | - Orestes Mavrothalassitis
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | | | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Gropper
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Allen A, Cooper BH, Singh J, Rohs R, Qin PZ. PAM-adjacent DNA flexibility tunes CRISPR-Cas12a off-target binding. Sci Rep 2025; 15:4930. [PMID: 39929897 PMCID: PMC11811290 DOI: 10.1038/s41598-025-87565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Cas12a is a class 2 type V CRISPR-associated nuclease that uses an effector complex comprised of a single protein activated by a CRISPR-encoded small RNA to cleave double-stranded DNA at specific sites. Cas12a processes unique features as compared to other CRISPR effector nucleases such as Cas9, and has been demonstrated as an effective tool for manipulating complex genomes. Prior studies have indicated that DNA flexibility at the region adjacent to the protospacer-adjacent-motif (PAM) contributes to Cas12a target recognition. Here, we adapted a SELEX-seq approach to further examine the connection between PAM-adjacent DNA flexibility and off-target binding by Cas12a. A DNA library containing DNA-DNA mismatches at PAM + 1 to + 6 positions was generated and subjected to binding in vitro with FnCas12a in the absence of pairing between the RNA guide and DNA target. The bound and unbound populations were sequenced to determine the propensity for off-target binding for each of the individual sequences. Analyzing the position and nucleotide dependency of the DNA-DNA mismatches showed that PAM-dependent Cas12a off-target binding requires unpairing of the protospacer at PAM + 1 and increases with unpairing at PAM + 2 and + 3. This revealed that PAM-adjacent DNA flexibility can tune Cas12a off-target binding. The work adds support to the notion that physical properties of the DNA modulate Cas12a target discrimination, and has implications on Cas12a-based applications.
Collapse
Affiliation(s)
- Aleique Allen
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
| | - Brendon H Cooper
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Beckman Coulter, 1584 Enterprise Blvd, West Sacramento, CA, 95691, USA
| | - Jaideep Singh
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
| | - Remo Rohs
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Lee H, Rho WY, Kim YH, Chang H, Jun BH. CRISPR-Cas9 Gene Therapy: Non-Viral Delivery and Stimuli-Responsive Nanoformulations. Molecules 2025; 30:542. [PMID: 39942646 PMCID: PMC11820414 DOI: 10.3390/molecules30030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The CRISPR-Cas9 technology, one of the groundbreaking genome editing methods for addressing genetic disorders, has emerged as a powerful, precise, and efficient tool. However, its clinical translation remains hindered by challenges in delivery efficiency and targeting specificity. This review provides a comprehensive analysis of the structural features, advantages, and potential applications of various non-viral and stimuli-responsive systems, examining recent progress to emphasize the potential to address these limitations and advance CRISPR-Cas9 therapeutics. We describe how recent reports emphasize that nonviral vectors, including lipid-based nanoparticles, extracellular vesicles, polymeric nanoparticles, gold nanoparticles, and mesoporous silica nanoparticles, can offer diverse advantages to enhance stability, cellular uptake, and biocompatibility, based on their structures and physio-chemical stability. We also summarize recent progress on stimuli-responsive nanoformulations, a type of non-viral vector, to introduce precision and control in CRISPR-Cas9 delivery. Stimuli-responsive nanoformulations are designed to respond to pH, redox states, and external triggers, facilitate controlled and targeted delivery, and minimize off-target effects. The insights in our review suggest future challenges for clinical applications of gene therapy technologies and highlight the potential of delivery systems to enhance CRISPR-Cas9's clinical efficacy, positioning them as pivotal tools for future gene-editing therapies.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si 24341, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| |
Collapse
|
5
|
Lei T, Wang Y, Zhang Y, Yang Y, Cao J, Huang J, Chen J, Chen H, Zhang J, Wang L, Xu X, Gale RP, Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024; 38:2517-2543. [PMID: 39455854 PMCID: PMC11588664 DOI: 10.1038/s41375-024-02444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Chimeric Antigen Receptor (CAR)-T-cell therapy has revolutionized cancer immune therapy. However, challenges remain including increasing efficacy, reducing adverse events and increasing accessibility. Use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology can effectively perform various functions such as precise integration, multi-gene editing, and genome-wide functional regulation. Additionally, CRISPR screening using large-scale guide RNA (gRNA) genetic perturbation provides an unbiased approach to understanding mechanisms underlying anti-cancer efficacy of CAR T-cells. Several emerging CRISPR tools with high specificity, controllability and efficiency are useful to modify CAR T-cells and identify new targets. In this review we summarize potential uses of the CRISPR system to improve results of CAR T-cells therapy including optimizing efficacy and safety and, developing universal CAR T-cells. We discuss challenges facing CRISPR gene editing and propose solutions highlighting future research directions in CAR T-cell therapy.
Collapse
Affiliation(s)
- Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yazhuo Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiaying Cao
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiansong Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiali Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Huajing Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Luzheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
6
|
Kim LJY, Kundu B, Moretti P, Lozano AM, Rahimpour S. Advancements in surgical treatments for Huntington disease: From pallidotomy to experimental therapies. Neurotherapeutics 2024; 21:e00452. [PMID: 39304438 PMCID: PMC11585891 DOI: 10.1016/j.neurot.2024.e00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic movements, behavioral changes, and cognitive impairment. The pathogenesis of this process is a consequence of mutant protein toxicity in striatal and cortical neurons. Thus far, neurosurgical management of HD has largely been limited to symptomatic relief of motor symptoms using ablative and stimulation techniques. These interventions, however, do not modify the progressive course of the disease. More recently, disease-modifying experimental therapeutic strategies have emerged targeting intrastriatal infusion of neurotrophic factors, cell transplantation, HTT gene silencing, and delivery of intrabodies. Herein we review therapies requiring neurosurgical intervention, including those targeting symptom management and more recent disease-modifying agents, with a focus on safety, efficacy, and surgical considerations.
Collapse
Affiliation(s)
- Leo J Y Kim
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Paolo Moretti
- Department of Neurology, University of Utah, Salt Lake City, UT, USA; Department of Neurology, George E. Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Andres M Lozano
- Division of Neurosurgery and Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shervin Rahimpour
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Wang Q, Yang Q. Seizing the Hidden Assassin: Current Detection Strategies for Staphylococcus aureus and Methicillin-Resistant S. aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39031091 DOI: 10.1021/acs.jafc.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Staphylococcus aureus (S. aureus) is a kind of pathogenic bacteria which can lead to food poisoning, hospital, and community infections. S. aureus and methicillin-resistant S. aureus (MRSA) have become headaches for public health worldwide. Therefore, strengthening the detection of S. aureus and MRSA is a critical step to prevent and control its spread and infection. This review summarized multiple detection methods (electrochemical, optical, and other biosensors) for sensitive and efficient detection of nonresistant and resistant S. aureus. First, we have introduced the principle and methods of detection platform for S. aureus and MRSA. We also contrasted various detection strategies. Finally, the current situation and prospect of S. aureus and MRSA detection in the future are explored in depth, and its development direction of detection methods is also predicted. In this review, we found that although biosensors have shown tremendous brilliance in the field of monitoring, they are currently in the experimental stage. It can be certain that we are very close to entering the commercialization stage. The point-of care testing available to nonprofessionals will become a new direction. We firmly believe that the monitoring system will be more perfect and stable and public life will be healthier and safer.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, no. 700 Changcheng Road, Qingdao 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, no. 700 Changcheng Road, Qingdao 266109, China
| |
Collapse
|
8
|
Widney KA, Yang DD, Rusch LM, Copley SD. CRISPR-Cas9-assisted genome editing in E. coli elevates the frequency of unintended mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.584922. [PMID: 38562785 PMCID: PMC10983943 DOI: 10.1101/2024.03.19.584922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cas-assisted lambda Red recombineering techniques have rapidly become a mainstay of bacterial genome editing. Such techniques have been used to construct both individual mutants and massive libraries to assess the effects of genomic changes. We have found that a commonly used Cas9-assisted editing method results in unintended mutations elsewhere in the genome in 26% of edited clones. The unintended mutations are frequently found over 200 kb from the intended edit site and even over 10 kb from potential off-target sites. We attribute the high frequency of unintended mutations to error-prone polymerases expressed in response to dsDNA breaks introduced at the edit site. Most unintended mutations occur in regulatory or coding regions and thus may have phenotypic effects. Our findings highlight the risks associated with genome editing techniques involving dsDNA breaks in E. coli and likely other bacteria and emphasize the importance of sequencing the genomes of edited cells to ensure the absence of unintended mutations.
Collapse
Affiliation(s)
- Karl A. Widney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Dong-Dong Yang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Leo M. Rusch
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| |
Collapse
|
9
|
Niu YJ, Ren W, Liu G, Jin K, Zheng D, Zuo Q, Zhang Y, Cui XS, Chen G, Li B. Clonally derived chicken primordial germ cell lines maintain biological characteristics and proliferative potential in long-term culture. Theriogenology 2024; 215:67-77. [PMID: 38011785 DOI: 10.1016/j.theriogenology.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Chicken primordial germ cells (PGCs) are important cells with significant implications in preserving genetic resources, chicken breeding and production, and basic research on genetics and development. Currently, chicken PGCs can be cultured long-term in vitro to produce single-cell clones. However, systematic exploration of the cellular characteristics of these single-cell clonal lines has yet to be conducted. In this study, single-cell clonal lines were established from male and female PGCs of Rugao Yellow Chicken and Shouguang Black Chicken, respectively, using a micropipette-based method for single-cell isolation and culture. Analysis of glycogen granule staining, mRNA expression of pluripotency marker genes (POUV, SOX2, NANOG), germ cell marker genes (DAZL, CVH), and SSEA-1, EMA-1, SOX2, C-KIT, and CVH protein expression showed positive results, indicating that PGCs maintain normal cellular properties after single-cell cloning. Furthermore, tests on proliferation ability and gene expression levels in PGC single-cell clonal lines showed high expression of the pluripotency-related genes and TERT compared to control PGCs, and PGC single-cell clonal lines demonstrated higher proliferation ability. Finally, green fluorescent protein (GFP)-PGC single-cell clonal lines were established, and it was found that these single-cell clonal lines could still migrate into the gonads of recipients, suggesting their potential for germ-line transmission. This study systematically validated the normal cellular characteristics of PGC single-cell clonal lines, indicating that they could be applied in genetic modification research on chickens.
Collapse
Affiliation(s)
- Ying-Jie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Wenjie Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guangzheng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dan Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Morshedzadeh F, Ghanei M, Lotfi M, Ghasemi M, Ahmadi M, Najari-Hanjani P, Sharif S, Mozaffari-Jovin S, Peymani M, Abbaszadegan MR. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol 2024; 66:179-197. [PMID: 37269466 PMCID: PMC10239226 DOI: 10.1007/s12033-023-00724-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/05/2023]
Abstract
The CRISPR/Cas system, an innovative gene-editing tool, is emerging as a promising technique for genome modifications. This straightforward technique was created based on the prokaryotic adaptive immune defense mechanism and employed in the studies on human diseases that proved enormous therapeutic potential. A genetically unique patient mutation in the process of gene therapy can be corrected by the CRISPR method to treat diseases that traditional methods were unable to cure. However, introduction of CRISPR/Cas9 into the clinic will be challenging because we still need to improve the technology's effectiveness, precision, and applications. In this review, we first describe the function and applications of the CRISPR-Cas9 system. We next delineate how this technology could be utilized for gene therapy of various human disorders, including cancer and infectious diseases and highlight the promising examples in the field. Finally, we document current challenges and the potential solutions to overcome these obstacles for the effective use of CRISPR-Cas9 in clinical practice.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Ghasemi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Samaneh Sharif
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Badon IW, Oh Y, Kim HJ, Lee SH. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol Ther 2024; 32:32-43. [PMID: 37952084 PMCID: PMC10787141 DOI: 10.1016/j.ymthe.2023.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
In 2012, it was discovered that precise gene editing could be induced in target DNA using the reprogrammable characteristics of the CRISPR system. Since then, several studies have investigated the potential of the CRISPR system to edit various biological organisms. For the typical CRISPR system obtained from bacteria and archaea, many application studies have been conducted and have spread to various fields. To date, orthologs with various characteristics other than CRISPR-Cas9 have been discovered and are being intensively studied in the field of gene editing. CRISPR-Cas12 and its varied orthologs are representative examples of genome editing tools and have superior properties in terms of in vivo target gene editing compared with Cas9. Recently, TnpB and Fanzor of the OMEGA (obligate mobile element guided activity) system were identified to be the ancestor of CRISPR-Cas12 on the basis of phylogenetic analysis. Notably, the compact sizes of Cas12 and OMEGA endonucleases allow adeno-associated virus (AAV) delivery; hence, they are set to challenge Cas9 for in vivo gene therapy. This review is focused on these RNA-guided reprogrammable endonucleases: their structure, biochemistry, off-target effects, and applications in therapeutic gene editing.
Collapse
Affiliation(s)
- Isabel Wen Badon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea.
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
12
|
Lee Y, Oh Y, Lee SH. Recent advances in genome engineering by CRISPR technology. BMB Rep 2024; 57:12-18. [PMID: 38053294 PMCID: PMC10828434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 12/07/2023] Open
Abstract
Due to the development of CRISPR technology, the era of effective editing of target genes has arrived. However, the offtarget problem that occurs when recognizing target DNA due to the inherent nature of CRISPR components remains the biggest task to be overcome in the future. In this review, the principle of inducing such unintended off-target editing is analyzed from the structural aspect of CRISPR, and the methodology that has been developed to reduce off-target editing until now is summarized. [BMB Reports 2024; 57(1): 12-18].
Collapse
Affiliation(s)
- Youngsik Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
13
|
Park CS, Habib O, Lee Y, Hur JK. Applications of CRISPR technologies to the development of gene and cell therapy. BMB Rep 2024; 57:2-11. [PMID: 38178651 PMCID: PMC10828430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
Advancements in gene and cell therapy have resulted in novel therapeutics for diseases previously considered incurable or challenging to treat. Among the various contributing technologies, genome editing stands out as one of the most crucial for the progress in gene and cell therapy. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the subsequent evolution of genetic engineering technology have markedly expanded the field of target-specific gene editing. Originally studied in the immune systems of bacteria and archaea, the CRISPR system has demonstrated wide applicability to effective genome editing of various biological systems including human cells. The development of CRISPR-based base editing has enabled directional cytosine-tothymine and adenine-to-guanine substitutions of select DNA bases at the target locus. Subsequent advances in prime editing further elevated the flexibility of the edit multiple consecutive bases to desired sequences. The recent CRISPR technologies also have been actively utilized for the development of in vivo and ex vivo gene and cell therapies. We anticipate that the medical applications of CRISPR will rapidly progress to provide unprecedented possibilities to develop novel therapeutics towards various diseases. [BMB Reports 2024; 57(1): 2-11].
Collapse
Affiliation(s)
- Chul-Sung Park
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Omer Habib
- Division of R&D, RedGene Inc., Seoul 08790, Korea
| | - Younsu Lee
- Division of R&D, RedGene Inc., Seoul 08790, Korea
| | - Junho K. Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
15
|
Chen C, Wang Z, Qin Y. CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Exp Hematol Oncol 2023; 12:95. [PMID: 37964355 PMCID: PMC10647168 DOI: 10.1186/s40164-023-00457-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is essentially an adaptive immunity weapon in prokaryotes against foreign DNA. This system inspires the development of genome-editing technology in eukaryotes. In biomedicine research, CRISPR has offered a powerful platform to establish tumor-bearing models and screen potential targets in the immuno-oncology field, broadening our insights into cancer genomics. In translational medicine, the versatile CRISPR/Cas9 system exhibits immense potential to break the current limitations of cancer immunotherapy, thereby expanding the feasibility of adoptive cell therapy (ACT) in treating solid tumors. Herein, we first explain the principles of CRISPR/Cas9 genome editing technology and introduce CRISPR as a tool in tumor modeling. We next focus on the CRISPR screening for target discovery that reveals tumorigenesis, immune evasion, and drug resistance mechanisms. Moreover, we discuss the recent breakthroughs of genetically modified ACT using CRISPR/Cas9. Finally, we present potential challenges and perspectives in basic research and clinical translation of CRISPR/Cas9. This review provides a comprehensive overview of CRISPR/Cas9 applications that advance our insights into tumor-immune interaction and lay the foundation to optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
16
|
Fang J, Wang J, Wang Y, Liu X, Chen B, Zou W. Ribo-On and Ribo-Off tools using a self-cleaving ribozyme allow manipulation of endogenous gene expression in C. elegans. Commun Biol 2023; 6:816. [PMID: 37542105 PMCID: PMC10403566 DOI: 10.1038/s42003-023-05184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Investigating gene function relies on the efficient manipulation of endogenous gene expression. Currently, a limited number of tools are available to robustly manipulate endogenous gene expression between "on" and "off" states. In this study, we insert a 63 bp coding sequence of T3H38 ribozyme into the 3' untranslated region (UTR) of C. elegans endogenous genes using the CRISPR/Cas9 technology, which reduces the endogenous gene expression to a nearly undetectable level and generated loss-of-function phenotypes similar to that of the genetic null animals. To achieve conditional knockout, a cassette of loxP-flanked transcriptional termination signal and ribozyme is inserted into the 3' UTR of endogenous genes, which eliminates gene expression spatially or temporally via the controllable expression of the Cre recombinase. Conditional endogenous gene turn-on can be achieved by either injecting morpholino, which blocks the ribozyme self-cleavage activity or using the Cre recombinase to remove the loxP-flanked ribozyme. Together, our results demonstrate that these ribozyme-based tools can efficiently manipulate endogenous gene expression both in space and time and expand the toolkit for studying the functions of endogenous genes.
Collapse
Affiliation(s)
- Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jie Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Yuzhi Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Baohui Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China.
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
17
|
Wei W, Chen ZN, Wang K. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence. Int J Mol Sci 2023; 24:12317. [PMID: 37569693 PMCID: PMC10418799 DOI: 10.3390/ijms241512317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
As an emerging treatment strategy for malignant tumors, chimeric antigen receptor T (CAR-T) cell therapy has been widely used in clinical practice, and its efficacy has been markedly improved in the past decade. However, the clinical effect of CAR-T therapy is not so satisfying, especially in solid tumors. Even in hematologic malignancies, a proportion of patients eventually relapse after receiving CAR-T cell infusions, owing to the poor expansion and persistence of CAR-T cells. Recently, CRISPR/Cas9 technology has provided an effective approach to promoting the proliferation and persistence of CAR-T cells in the body. This technology has been utilized in CAR-T cells to generate a memory phenotype, reduce exhaustion, and screen new targets to improve the anti-tumor potential. In this review, we aim to describe the major causes limiting the persistence of CAR-T cells in patients and discuss the application of CRISPR/Cas9 in promoting CAR-T cell persistence and its anti-tumor function. Finally, we investigate clinical trials for CRISPR/Cas9-engineered CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China;
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China;
| |
Collapse
|
18
|
Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, Salihi A, Baniahmad A, Ghafouri-Fard S, Rahman M, Glassy MC, Branicki W, Taheri M. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res 2023; 10:32. [PMID: 37460924 PMCID: PMC10351202 DOI: 10.1186/s40779-023-00468-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region 44001 Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region 44001 Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001 Iraq
| | - Fattma Abodi Ali
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, 44001 Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 22100 Malmö, Sweden
| | - Mark C. Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, San Diego, CA 94720 USA
| | - Wojciech Branicki
- Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| |
Collapse
|
19
|
Sahel DK, Vora LK, Saraswat A, Sharma S, Monpara J, D'Souza AA, Mishra D, Tryphena KP, Kawakita S, Khan S, Azhar M, Khatri DK, Patel K, Singh Thakur RR. CRISPR/Cas9 Genome Editing for Tissue-Specific In Vivo Targeting: Nanomaterials and Translational Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207512. [PMID: 37166046 PMCID: PMC10323670 DOI: 10.1002/advs.202207512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/15/2023] [Indexed: 05/12/2023]
Abstract
Clustered randomly interspaced short palindromic repeats (CRISPRs) and its associated endonuclease protein, i.e., Cas9, have been discovered as an immune system in bacteria and archaea; nevertheless, they are now being adopted as mainstream biotechnological/molecular scissors that can modulate ample genetic and nongenetic diseases via insertion/deletion, epigenome editing, messenger RNA editing, CRISPR interference, etc. Many Food and Drug Administration-approved and ongoing clinical trials on CRISPR adopt ex vivo strategies, wherein the gene editing is performed ex vivo, followed by reimplantation to the patients. However, the in vivo delivery of the CRISPR components is still under preclinical surveillance. This review has summarized the nonviral nanodelivery strategies for gene editing using CRISPR/Cas9 and its recent advancements, strategic points of view, challenges, and future aspects for tissue-specific in vivo delivery of CRISPR/Cas9 components using nanomaterials.
Collapse
Affiliation(s)
- Deepak Kumar Sahel
- Department of PharmacyBirla Institute of Technology and Science‐PilaniBITS‐Pilani, Vidya ViharPilaniRajasthan333031India
| | - Lalitkumar K. Vora
- School of PharmacyQueen's University Belfast97 Lisburn RoadBelfastBT9 7BLUK
| | - Aishwarya Saraswat
- College of Pharmacy & Health SciencesSt. John's UniversityQueensNY11439USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Jasmin Monpara
- Department of Pharmaceutical SciencesUniversity of SciencesPhiladelphiaPA19104USA
| | - Anisha A. D'Souza
- Graduate School of Pharmaceutical Sciences and School of PharmacyDuquesne UniversityPittsburghPA15282USA
| | - Deepakkumar Mishra
- School of PharmacyQueen's University Belfast97 Lisburn RoadBelfastBT9 7BLUK
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience LabDepartment of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)‐HyderabadTelangana500037India
| | - Satoru Kawakita
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCA95616USA
| | - Shahid Khan
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| | - Mohd Azhar
- Research and Development Tata Medical and Diagnostics LimitedMumbaiMaharashtra400001India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience LabDepartment of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)‐HyderabadTelangana500037India
| | - Ketan Patel
- College of Pharmacy & Health SciencesSt. John's UniversityQueensNY11439USA
| | | |
Collapse
|
20
|
Marchetti F, Cardoso R, Chen CL, Douglas GR, Elloway J, Escobar PA, Harper T, Heflich RH, Kidd D, Lynch AM, Myers MB, Parsons BL, Salk JJ, Settivari RS, Smith-Roe SL, Witt KL, Yauk CL, Young R, Zhang S, Minocherhomji S. Error-corrected next generation sequencing - Promises and challenges for genotoxicity and cancer risk assessment. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108466. [PMID: 37643677 DOI: 10.1016/j.mrrev.2023.108466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.
Collapse
Affiliation(s)
| | | | - Connie L Chen
- Health and Environmental Sciences Institute, Washington, DC, USA.
| | | | - Joanne Elloway
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Tod Harper
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Robert H Heflich
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Darren Kidd
- Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | | | - Meagan B Myers
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Barbara L Parsons
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | | | | | | | - Kristine L Witt
- NIEHS, Division of the National Toxicology Program, Research Triangle Park, NC, USA
| | | | - Robert Young
- MilliporeSigma, Rockville, MD, USA; Current: Consultant, Bethesda, MD, USA
| | | | - Sheroy Minocherhomji
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA; Current: Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
21
|
Cromer MK, Majeti KR, Rettig GR, Murugan K, Kurgan GL, Bode NM, Hampton JP, Vakulskas CA, Behlke MA, Porteus MH. Comparative analysis of CRISPR off-target discovery tools following ex vivo editing of CD34 + hematopoietic stem and progenitor cells. Mol Ther 2023; 31:1074-1087. [PMID: 36793210 PMCID: PMC10124080 DOI: 10.1016/j.ymthe.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
While a number of methods exist to investigate CRISPR off-target (OT) editing, few have been compared head-to-head in primary cells after clinically relevant editing processes. Therefore, we compared in silico tools (COSMID, CCTop, and Cas-OFFinder) and empirical methods (CHANGE-Seq, CIRCLE-Seq, DISCOVER-Seq, GUIDE-Seq, and SITE-Seq) after ex vivo hematopoietic stem and progenitor cell (HSPC) editing. We performed editing using 11 different gRNAs complexed with Cas9 protein (high-fidelity [HiFi] or wild-type versions), then performed targeted next-generation sequencing of nominated OT sites identified by in silico and empirical methods. We identified an average of less than one OT site per guide RNA (gRNA) and all OT sites generated using HiFi Cas9 and a 20-nt gRNA were identified by all OT detection methods with the exception of SITE-seq. This resulted in high sensitivity for the majority of OT nomination tools and COSMID, DISCOVER-Seq, and GUIDE-Seq attained the highest positive predictive value (PPV). We found that empirical methods did not identify OT sites that were not also identified by bioinformatic methods. This study supports that refined bioinformatic algorithms could be developed that maintain both high sensitivity and PPV, thereby enabling more efficient identification of potential OT sites without compromising a thorough examination for any given gRNA.
Collapse
Affiliation(s)
- M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Kiran R Majeti
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Karthik Murugan
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA
| | - Gavin L Kurgan
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA
| | - Nicole M Bode
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA
| | - Jessica P Hampton
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Kesavan G. Innovations in CRISPR-Based Therapies. Mol Biotechnol 2023; 65:138-145. [PMID: 34586618 DOI: 10.1007/s12033-021-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Gene and cell therapies have shown tremendous advancement in the last 5 years. Prominent examples include the successful use of CRISPR-edited stem cells for treating blood disorders like sickle cell anemia and beta-thalassemia, and ongoing clinical trials for treating blindness. This mini-review assesses the status of CRISPR-based therapies, both in vivo and ex vivo, and the challenges associated with clinical translation. In vivo CRISPR therapies have been used to treat eye and liver diseases due to the practicality of delivering editing components to the target tissue. In contrast, even though ex vivo CRISPR therapy involves cell isolation, expansion, and infusion, its advantages include characterizing the gene edits before infusion and restricting off-target effects in other tissues. Further, the safety, affordability, and feasibility of CRISPR therapies, especially for treating large number of patients, are discussed.
Collapse
Affiliation(s)
- Gokul Kesavan
- Vowels Lifesciences Private Limited, 271, 5th Main Rd, 4th Block, Jayanagar, Bengaluru, Karnataka, 560011, India. .,Vowels Advanced School of Learning and Research, 271, 5th Main Rd, 4th Block, Jayanagar, Bengaluru, Karnataka, 560011, India.
| |
Collapse
|
23
|
Comprehensive UHPLC- and CE-based methods for engineered Cas9 characterization. Talanta 2023; 252:123780. [DOI: 10.1016/j.talanta.2022.123780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
|
24
|
Lim D, Zhou Q, Cox KJ, Law BK, Lee M, Kokkonda P, Sreekanth V, Pergu R, Chaudhary SK, Gangopadhyay SA, Maji B, Lai S, Amako Y, Thompson DB, Subramanian HKK, Mesleh MF, Dančík V, Clemons PA, Wagner BK, Woo CM, Church GM, Choudhary A. A general approach to identify cell-permeable and synthetic anti-CRISPR small molecules. Nat Cell Biol 2022; 24:1766-1775. [PMID: 36396978 PMCID: PMC9891305 DOI: 10.1038/s41556-022-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
The need to control the activity and fidelity of CRISPR-associated nucleases has resulted in a demand for inhibitory anti-CRISPR molecules. The small-molecule inhibitor discovery platforms available at present are not generalizable to multiple nuclease classes, only target the initial step in the catalytic activity and require high concentrations of nuclease, resulting in inhibitors with suboptimal attributes, including poor potency. Here we report a high-throughput discovery pipeline consisting of a fluorescence resonance energy transfer-based assay that is generalizable to contemporary and emerging nucleases, operates at low nuclease concentrations and targets all catalytic steps. We applied this pipeline to identify BRD7586, a cell-permeable small-molecule inhibitor of SpCas9 that is twofold more potent than other inhibitors identified to date. Furthermore, unlike the reported inhibitors, BRD7586 enhanced SpCas9 specificity and its activity was independent of the genomic loci, DNA-repair pathway or mode of nuclease delivery. Overall, these studies describe a general pipeline to identify inhibitors of contemporary and emerging CRISPR-associated nucleases.
Collapse
Affiliation(s)
- Donghyun Lim
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul, South Korea
| | - Qingxuan Zhou
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kurt J Cox
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin K Law
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Miseon Lee
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Soumyashree A Gangopadhyay
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Sophia Lai
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yuka Amako
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - David B Thompson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Hari K K Subramanian
- Department of Mechanical Engineering, University of California-Riverside, Riverside, CA, USA
| | - Michael F Mesleh
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vlado Dančík
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
Hao L, Xu W, Qi G, Xin T, Xu Z, Lei H, Song J. GAGE is a method for identification of plant species based on whole genome analysis and genome editing. Commun Biol 2022; 5:947. [PMID: 36088518 PMCID: PMC9464240 DOI: 10.1038/s42003-022-03894-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Whole genomes of plants should be ideal databases for their species identification, but unfortunately there was no such method before this exploration. Here we report a plant species identification method based on the whole Genome Analysis and Genome Editing (GAGE). GAGE searches for target sequences from the whole genome of the subject plant and specifically detects them by employing a CRISPR/Cas12a system. Similar to how Mendel chose Pisum sativum (pea), we selected Crocus sativus (saffron) to establish GAGE, in which we constructed a library containing all candidate target sequences. Taking a target sequence in the ITS2 region as an example, we confirmed the feasibility, specificity, and sensitivity of GAGE. Consequently, we succeeded in not only using GAGE to identify Cr. sativus and its adulterants, but also executing GAGE in the plants from different classes including angiosperms, gymnosperms, ferns, and lycophytes. This sensitive and rapid method is the first plant species identification method based on the whole genome and provides new insights into the application of the whole genome in species identification. A plant species identification method, GAGE, is reported that searches for target sequences from the whole genome of the subject plant and specifically detects them by employing a CRISPR/Cas12a system.
Collapse
|
26
|
Lin H, Liang Y, Zou L, Li B, Zhao J, Wang H, Sun J, Deng X, Tang S. Combination of Isothermal Recombinase-Aided Amplification and CRISPR-Cas12a-Mediated Assay for Rapid Detection of Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern. Front Microbiol 2022; 13:945133. [PMID: 35836420 PMCID: PMC9274097 DOI: 10.3389/fmicb.2022.945133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 variants is a new and unsolved threat; therefore, it is an urgent and unmet need to develop a simple and rapid method for detecting and tracking SARS-CoV-2 variants. The spike gene of SARS-CoV-2 was amplified by isothermal recombinase-aided amplification (RAA) followed by the cleavage of CRISPR-Cas12a in which five allele-specific crRNAs and two Omicron-specific crRNAs were designed to detect and distinguish major SARS-CoV-2 variants of concerns (VOCs), including alpha, beta, delta variants, and Omicron sublineages BA.1 and BA.2. The whole reaction can be carried out in one tube at 39°C within 1.5–2 h, and the results can be read out by a fluorescence meter or naked eyes. Our results show that the RAA/CRISPR-Cas12a-based assay could readily distinguish the signature mutations, i.e., K417N, T478K, E484K, N501Y, and D614G, with a sensitivity of 100.0% and a specificity of 94.9–100.0%, respectively. The assay had a low limit of detection (LOD) of 104 copies/reaction and a concordance of 92.59% with Sanger sequencing results when detecting 54 SARS-CoV-2 positive clinical samples. The two Omicron-specific crRNAs can readily and correctly distinguish Omicron BA.1 and BA.2 sublineages with a LOD of as low as 20 copies/reaction. Furthermore, no cross-reaction was observed for all crRNAs analyzed when detecting clinical samples infected with 11 common respiratory pathogens. The combination of isothermal amplification and CRISPR-Cas12a-mediated assay is suitable for rapid detection of major SARS-CoV-2 variants in point-of-care testing and in resource-limiting settings. This simple assay could be quickly updated for emerging variants and implemented to routinely monitor and track the spread of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hongqing Lin
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuanhao Liang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lirong Zou
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Baisheng Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Jianhui Zhao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haiying Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiufeng Sun
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xiaoling Deng
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xiaoling Deng,
| | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Shixing Tang,
| |
Collapse
|
27
|
Zhang N, He J, Muhammad A, Shao Y. CRISPR/Cas9–Mediated Genome Editing for Pseudomonas fulva, a Novel Pseudomonas Species with Clinical, Animal, and Plant–Associated Isolates. Int J Mol Sci 2022; 23:ijms23105443. [PMID: 35628253 PMCID: PMC9145825 DOI: 10.3390/ijms23105443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/23/2022] Open
Abstract
As one of the most widespread groups of Gram–negative bacteria, Pseudomonas bacteria are prevalent in almost all natural environments, where they have developed intimate associations with plants and animals. Pseudomonas fulva is a novel species of Pseudomonas with clinical, animal, and plant–associated isolates, closely related to human and animal health, plant growth, and bioremediation. Although genetic manipulations have been proven as powerful tools for understanding bacterial biological and biochemical characteristics and the evolutionary origins, native isolates are often difficult to genetically manipulate, thereby making it a time–consuming and laborious endeavor. Here, by using the CRISPR–Cas system, a versatile gene–editing tool with a two–plasmid strategy was developed for a native P. fulva strain isolated from the model organism silkworm (Bombyx mori) gut. We harmonized and detailed the experimental setup and clarified the optimal conditions for bacteria transformation, competent cell preparation, and higher editing efficiency. Furthermore, we provided some case studies, testing and validating this approach. An antibiotic–related gene, oqxB, was knocked out, resulting in the slow growth of the P. fulva deletion mutant in LB containing chloramphenicol. Fusion constructs with knocked–in gfp exhibited intense fluorescence. Altogether, the successful construction and application of new genetic editing approaches gave us more powerful tools to investigate the functionalities of the novel Pseudomonas species.
Collapse
Affiliation(s)
- Nan Zhang
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China (A.M.)
| | - Jintao He
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China (A.M.)
| | - Abrar Muhammad
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China (A.M.)
| | - Yongqi Shao
- Max Planck Partner Group, Faculty of Agriculture, Life and Environmental Sciences, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China (A.M.)
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China
- Correspondence: ; Fax: +86-571-88982757
| |
Collapse
|
28
|
Oh Y, Lee WJ, Hur JK, Song WJ, Lee Y, Kim H, Gwon LW, Kim YH, Park YH, Kim CH, Lim KS, Song BS, Huh JW, Kim SU, Jun BH, Jung C, Lee SH. Expansion of the prime editing modality with Cas9 from Francisella novicida. Genome Biol 2022; 23:92. [PMID: 35410288 PMCID: PMC8996390 DOI: 10.1186/s13059-022-02644-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
Prime editing can induce a desired base substitution, insertion, or deletion in a target gene using reverse transcriptase after nick formation by CRISPR nickase. In this study, we develop a technology that can be used to insert or replace external bases in the target DNA sequence by linking reverse transcriptase to the Francisella novicida Cas9, which is a CRISPR-Cas9 ortholog. Using FnCas9(H969A) nickase, the targeting limitation of existing Streptococcus pyogenes Cas9 nickase [SpCas9(H840A)]-based prime editing is dramatically extended, and accurate prime editing is induced specifically for the target genes in human cell lines.
Collapse
Affiliation(s)
- Yeounsun Oh
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Wi-Jae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea.,Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woo Jeung Song
- Department of Medicine, Major in Medical Genetics, Graduate School, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Hanseop Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Lee Wha Gwon
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Chan Hyoung Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Kyung-Seob Lim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Jae-Won Huh
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Seung Hwan Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea. .,Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea. .,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
29
|
Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells 2022; 11:999. [PMID: 35326449 PMCID: PMC8946942 DOI: 10.3390/cells11060999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.
Collapse
Affiliation(s)
- Saleh Jamehdor
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 989155432609, Iran;
| | - Sara Pajouhanfar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sadaf Saba
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838738, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
30
|
Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A, Taheri M. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer 2022; 21:64. [PMID: 35241090 PMCID: PMC8892709 DOI: 10.1186/s12943-021-01487-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing processes that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a consequence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome human health.
Collapse
Affiliation(s)
- Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar Saleh Ismael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Anna Zanichelli
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Becirovic E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol Life Sci 2022; 79:130. [PMID: 35152318 PMCID: PMC8840918 DOI: 10.1007/s00018-022-04175-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
AbstractSince the revolutionary discovery of the CRISPR-Cas technology for programmable genome editing, its range of applications has been extended by multiple biotechnological tools that go far beyond its original function as “genetic scissors”. One of these further developments of the CRISPR-Cas system allows genes to be activated in a targeted and efficient manner. These gene-activating CRISPR-Cas modules (CRISPRa) are based on a programmable recruitment of transcription factors to specific loci and offer several key advantages that make them particularly attractive for therapeutic applications. These advantages include inter alia low off-target effects, independence of the target gene size as well as the potential to develop gene- and mutation-independent therapeutic strategies. Herein, I will give an overview on the currently available CRISPRa modules and discuss recent developments, future potentials and limitations of this approach with a focus on therapeutic applications and in vivo delivery.
Collapse
Affiliation(s)
- Elvir Becirovic
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
32
|
Wu YC, Chen CI, Chen PY, Kuo CH, Hung YH, Peng KY, Wu VC, Tsai-Wu JJ, Hsu CL. GRAde: a long-read sequencing approach to efficiently identifying the CYP11B1/CYP11B2 chimeric form in patients with glucocorticoid-remediable aldosteronism. BMC Bioinformatics 2022; 22:613. [PMID: 35012455 PMCID: PMC8750845 DOI: 10.1186/s12859-022-04561-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoid-remediable aldosteronism (GRA) is a form of heritable hypertension caused by a chimeric fusion resulting from unequal crossing over between 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2), which are two genes with similar sequences. Different crossover patterns of the CYP11B1 and CYP11B2 chimeric genes may be associated with a variety of clinical presentations. It is therefore necessary to develop an efficient approach for identifying the differences between the hybrid genes of a patient with GRA. RESULTS We developed a long-read analysis pipeline named GRAde (GRA deciphering), which utilizes the nonidentical bases in the CYP11B1 and CYP11B2 genomic sequences to identify and visualize the chimeric form. We sequenced the polymerase chain reaction (PCR) products of the CYP11B1/CYP11B2 chimeric gene from 36 patients with GRA using the Nanopore MinION device and analyzed the sequences using GRAde. Crossover events were identified for 30 out of the 36 samples. The crossover sites appeared in the region exhibiting high sequence similarity between CYP11B1 and CYP11B2, and 53.3% of the cases were identified as having a gene conversion in intron 2. More importantly, there were six cases for whom the PCR products indicated a chimeric gene, but the GRAde results revealed no crossover pattern. The crossover regions were further verified by Sanger sequencing analysis. CONCLUSIONS PCR-based target enrichment followed by long-read sequencing is an efficient and precise approach to dissecting complex genomic regions, such as those involved in GRA mutations, which could be directly applied to clinical diagnosis. The scripts of GRAde are available at https://github.com/hsu-binfo/GRAde .
Collapse
Affiliation(s)
- Yu-Ching Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-I Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Peng-Ying Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hung Kuo
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsuan Hung
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyy-Jih Tsai-Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - TAIPAI group
- TAIPAI, Taiwan Primary Aldosteronism Investigator Group and TSA, Taiwan Society of Aldosteronism, Taipei, Taiwan
| |
Collapse
|
33
|
Genetic approaches for increasing fitness in endangered species. Trends Ecol Evol 2022; 37:332-345. [PMID: 35027225 DOI: 10.1016/j.tree.2021.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The global rate of wildlife extinctions is accelerating, and the persistence of many species requires conservation breeding programs. A central paradigm of these programs is to preserve the genetic diversity of the founder populations. However, this may preserve original characteristics that make them vulnerable to extinction. We introduce targeted genetic intervention (TGI) as an alternative approach that promotes traits that enable species to persist in the face of threats by changing the incidence of alleles that impact on fitness. The TGI toolkit includes methods with established efficacy in model organisms and agriculture but are largely untried for conservation, such as synthetic biology and artificial selection. We explore TGI approaches as a species-restoration tool for intractable threats including infectious disease and climate change.
Collapse
|
34
|
Niu R, Peng J, Zhang Z, Shang X. R-CRISPR: A Deep Learning Network to Predict Off-Target Activities with Mismatch, Insertion and Deletion in CRISPR-Cas9 System. Genes (Basel) 2021; 12:1878. [PMID: 34946828 PMCID: PMC8702036 DOI: 10.3390/genes12121878] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system is a groundbreaking gene-editing tool, which has been widely adopted in biomedical research. However, the guide RNAs in CRISPR-Cas9 system may induce unwanted off-target activities and further affect the practical application of the technique. Most existing in silico prediction methods that focused on off-target activities possess limited predictive precision and remain to be improved. Hence, it is necessary to propose a new in silico prediction method to address this problem. In this work, a deep learning framework named R-CRISPR is presented, which devises an encoding scheme to encode gRNA-target sequences into binary matrices, a convolutional neural network as feature extractor, and a recurrent neural network to predict off-target activities with mismatch, insertion, or deletion. It is demonstrated that R-CRISPR surpasses six mainstream prediction methods with a significant improvement on mismatch-only datasets verified by GUIDE-seq. Compared with the state-of-art prediction methods, R-CRISPR also achieves competitive performance on datasets with mismatch, insertion, and deletion. Furthermore, experiments show that data concatenate could influence the quality of training data, and investigate the optimal combination of datasets.
Collapse
Affiliation(s)
| | | | | | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (R.N.); (J.P.); (Z.Z.)
| |
Collapse
|
35
|
Yang X, Huang T, Wang T, Gao H, Zhang H, Peng W, Zhao J, Hu S, Lu P, Hong Z, Li B, Deng K. MAT2A-Mediated S-Adenosylmethionine Level in CD4 + T Cells Regulates HIV-1 Latent Infection. Front Immunol 2021; 12:745784. [PMID: 34616406 PMCID: PMC8488394 DOI: 10.3389/fimmu.2021.745784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Antiretroviral drugs effectively halt HIV-1 replication and disease progression, however, due to the presence of a stable viral latent reservoir, the infection cannot be cured by antiretroviral drugs alone. Elucidating the molecular mechanisms underlying HIV-1 latent infection remains a critical hurdle that precludes the development of novel therapeutic strategies aiming for a potential functional cure. Cellular metabolism has been reported to affect HIV-1 replication in CD4+ T cells, but it remains largely unclear whether it is involved in the regulation of HIV-1 latency. Here, we performed a sub-pooled CRISPR library knockout screen targeting 1773 metabolic-related genes in a cell model of HIV-1 latent infection and found that Methionine Adenosyltransferase 2A (MAT2A) contributes to HIV-1 latency. MAT2A knockout enhanced the reactivation of latent HIV-1 while MAT2A overexpression did the opposite. Mechanistically, MAT2A modulates HIV-1 latency through S-Adenosylmethionine (SAM)-mediated one-carbon flux. MAT2A knockout resulted in a significant downregulation of DNA and histone methylation at the HIV-1 5’-LTR. Importantly, we found that the plasma level of SAM is positively correlated with HIV-1 DNA in PBMCs from ART-treated infected individuals, suggesting SAM could serve as a potential biomarker for the latent viral reservoir. Overall, this study reveals an important role of MAT2A-mediated one-carbon metabolism in regulating HIV-1 latency and provides a promising target for the development of new strategies for a functional cure of HIV-1.
Collapse
Affiliation(s)
- Xiaofan Yang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tiantian Wang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Gao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haitao Zhang
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Wen Peng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shujing Hu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Panpan Lu
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongsi Hong
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Abdelrahman M, Wei Z, Rohila JS, Zhao K. Multiplex Genome-Editing Technologies for Revolutionizing Plant Biology and Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:721203. [PMID: 34691102 PMCID: PMC8526792 DOI: 10.3389/fpls.2021.721203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
Multiplex genome-editing (MGE) technologies are recently developed versatile bioengineering tools for modifying two or more specific DNA loci in a genome with high precision. These genome-editing tools have greatly increased the feasibility of introducing desired changes at multiple nucleotide levels into a target genome. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) [CRISPR/Cas] system-based MGE tools allow the simultaneous generation of direct mutations precisely at multiple loci in a gene or multiple genes. MGE is enhancing the field of plant molecular biology and providing capabilities for revolutionizing modern crop-breeding methods as it was virtually impossible to edit genomes so precisely at the single base-pair level with prior genome-editing tools, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Recently, researchers have not only started using MGE tools to advance genome-editing applications in certain plant science fields but also have attempted to decipher and answer basic questions related to plant biology. In this review, we discuss the current progress that has been made toward the development and utilization of MGE tools with an emphasis on the improvements in plant biology after the discovery of CRISPR/Cas9. Furthermore, the most recent advancements involving CRISPR/Cas applications for editing multiple loci or genes are described. Finally, insights into the strengths and importance of MGE technology in advancing crop-improvement programs are presented.
Collapse
Affiliation(s)
- Mohamed Abdelrahman
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafr El-Shaikh, Egypt
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jai S. Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture - Agricultural Research Services, Stuttgart, AR, United States
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Pattan V, Kashyap R, Bansal V, Candula N, Koritala T, Surani S. Genomics in medicine: A new era in medicine. World J Methodol 2021; 11:231-242. [PMID: 34631481 PMCID: PMC8472545 DOI: 10.5662/wjm.v11.i5.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
The sequencing of complete human genome revolutionized the genomic medicine. However, the complex interplay of gene-environment-lifestyle and influence of non-coding genomic regions on human health remain largely unexplored. Genomic medicine has great potential for diagnoses or disease prediction, disease prevention and, targeted treatment. However, many of the promising tools of genomic medicine are still in their infancy and their application may be limited because of the limited knowledge we have that precludes its use in many clinical settings. In this review article, we have reviewed the evolution of genomic methodologies/tools, their limitations, and scope, for current and future clinical application.
Collapse
Affiliation(s)
- Vishwanath Pattan
- Division of Endocrinology, Wyoming Medical Center, Casper, WY 82601, United States
| | - Rahul Kashyap
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Vikas Bansal
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Narsimha Candula
- Hospital Medicine, University Florida Health, Jacksonville, FL 32209, United States
| | - Thoyaja Koritala
- Hospital Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Salim Surani
- Department of Internal Medicine, Texas A&M University, Corpus Christi, TX 78405, United States
| |
Collapse
|
38
|
Lee HJ, Seo M, Choi HJ, Rengaraj D, Jung KM, Park JS, Lee KY, Kim YM, Park KJ, Han ST, Lee KH, Yao HHC, Han JY. DMRT1 gene disruption alone induces incomplete gonad feminization in chicken. FASEB J 2021; 35:e21876. [PMID: 34449112 DOI: 10.1096/fj.202100902r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
Compared with the well-described XY sex determination system in mammals, the avian ZW sex determination system is poorly understood. Knockdown and overexpression studies identified doublesex and mab-3-related transcription factor 1 (DMRT1) as the testis-determining gene in chicken. However, the detailed effects of DMRT1 gene disruption from embryonic to adult development are not clear. Herein, we have generated DMRT1-disrupted chickens using the clustered regularly interspaced short palindromic repeats-associated protein 9 system, followed by an analysis of physiological, hormonal, and molecular changes in the genome-modified chickens. In the early stages of male chicken development, disruption of DMRT1 induced gonad feminization with extensive physiological and molecular changes; however, functional feminine reproductivity could not be implemented with disturbed hormone synthesis. Subsequent RNA-sequencing analysis of the DMRT1-disrupted chicken gonads revealed gene networks, including several novel genes linearly and non-linearly associated with DMRT1, which are involved in gonad feminization. By comparing the gonads of wild type with the genome-modified chickens, a set of genes were identified that is involved in the ZW sex determination system independent of DMRT1. Our results extend beyond the Z-dosage hypothesis to provide further information about the avian ZW sex determination system and epigenetic effects of gonad feminization.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Minseok Seo
- Department of Computer Convergence Software, Korea University, Sejong Metropolitan City, Republic of Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Soo Taek Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyu Hyuk Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
39
|
Tekel SJ, Brookhouser N, Standage-Beier K, Wang X, Brafman DA. Cytosine and adenosine base editing in human pluripotent stem cells using transient reporters for editing enrichment. Nat Protoc 2021; 16:3596-3624. [PMID: 34172975 DOI: 10.1038/s41596-021-00552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Deaminase fused-Cas9 base editing technologies have enabled precise single-nucleotide genomic editing without the need for the introduction of damaging double-stranded breaks and inefficient homology-directed repair. However, current methods to isolate base-edited cell populations are ineffective, especially when utilized with human pluripotent stem cells, a cell type resistant to genome modification. Here, we outline a series of methods that employ transient reporters of editing enrichment (TREE) to facilitate the highly efficient single-base editing of human cells at precise genomic loci. Briefly, these transient reporters of editing enrichment based methods employ a transient episomal fluorescent reporter that allows for the real-time, flow-cytometry-based enrichment of cells that have had single nucleotide changes at precise genomic locations. This protocol details how these approaches can enable the rapid (~3-4 weeks) and efficient (clonal editing efficiencies >80%) generation of biallelic or multiplexed edited isogenic hPSC lines using adenosine and cytosine base editors.
Collapse
Affiliation(s)
- Stefan J Tekel
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
40
|
CRISPR/Cas based gene editing: marking a new era in medical science. Mol Biol Rep 2021; 48:4879-4895. [PMID: 34143395 PMCID: PMC8212587 DOI: 10.1007/s11033-021-06479-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9 system, a bacterial adaptive immune system developed into a genome editing technology, has emerged as a powerful tool revolutionising genome engineering in all branches of biological science including agriculture, research and medicine. Rapid evolution of CRISPR/Cas9 system from the generation of double strand breaks to more advanced applications on gene regulation has made the wide-spread use of this technology possible. Medical science has benefited greatly from CRISPR/Cas9; being both a versatile and economical tool, it has brought gene therapy closer to reality. In this review, the development of CRISPR/Cas9 system, variants thereof and its application in different walks of medical science- research, diagnostics and therapy, will be discussed.
Collapse
|
41
|
Hendriks D, Clevers H, Artegiani B. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell 2021; 27:705-731. [PMID: 33157047 DOI: 10.1016/j.stem.2020.10.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas technology has revolutionized biological research and holds great therapeutic potential. Here, we review CRISPR-Cas systems and their latest developments with an emphasis on application to human cells. We also discuss how different CRISPR-based strategies can be used to accomplish a particular genome engineering goal. We then review how different CRISPR tools have been used in genome engineering of human stem cells in vitro, covering both the pluripotent (iPSC/ESC) and somatic adult stem cell fields and, in particular, 3D organoid cultures. Finally, we discuss the progress and challenges associated with CRISPR-based genome editing of human stem cells for therapeutic use.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
42
|
Castells-Roca L, Tejero E, Rodríguez-Santiago B, Surrallés J. CRISPR Screens in Synthetic Lethality and Combinatorial Therapies for Cancer. Cancers (Basel) 2021; 13:1591. [PMID: 33808217 PMCID: PMC8037779 DOI: 10.3390/cancers13071591] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a complex disease resulting from the accumulation of genetic dysfunctions. Tumor heterogeneity causes the molecular variety that divergently controls responses to chemotherapy, leading to the recurrent problem of cancer reappearance. For many decades, efforts have focused on identifying essential tumoral genes and cancer driver mutations. More recently, prompted by the clinical success of the synthetic lethality (SL)-based therapy of the PARP inhibitors in homologous recombinant deficient tumors, scientists have centered their novel research on SL interactions (SLI). The state of the art to find new genetic interactions are currently large-scale forward genetic CRISPR screens. CRISPR technology has rapidly evolved to be a common tool in the vast majority of laboratories, as tools to implement CRISPR screen protocols are available to all researchers. Taking advantage of SLI, combinatorial therapies have become the ultimate model to treat cancer with lower toxicity, and therefore better efficiency. This review explores the CRISPR screen methodology, integrates the up-to-date published findings on CRISPR screens in the cancer field and proposes future directions to uncover cancer regulation and individual responses to chemotherapy.
Collapse
Affiliation(s)
- Laia Castells-Roca
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eudald Tejero
- Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Benjamín Rodríguez-Santiago
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|
43
|
Cring MR, Sheffield VC. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther 2020; 29:3-12. [PMID: 33037407 DOI: 10.1038/s41434-020-00197-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
The field of gene therapy has made significant strides over the last several decades toward the treatment of previously untreatable genetic disease. Gene therapy techniques have been aimed at mitigating disease features of recessive and dominant disorders, as well as several cancers and other diseases. While there have been numerous disease targets of gene therapy trials, only four therapies have reached FDA and/or EMA approval for clinical use. Gene correction using CRISPR-Cas9 is an extension of gene therapy that has received considerable attention in recent years and boasts many possible uses beyond classical gene therapy approaches. While there is significant therapeutic potential using gene therapy and gene correction strategies, a number of hurdles remain to be overcome before they become more common in clinical use, particularly with regards to safety and efficacy. As research progresses in this exciting field, it is likely that these therapies will become first-line treatments and will have tremendous positive impacts on the lives of patients with genetic disorders.
Collapse
Affiliation(s)
- Matthew R Cring
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA, USA. .,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|