1
|
Lai R, Li H. Deacetylation mechanism of histone deacetylase 8: insights from QM/MM MP2 calculations. Phys Chem Chem Phys 2025; 27:7120-7138. [PMID: 40109193 DOI: 10.1039/d5cp00002e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the catalytic mechanism of histone deacetylases can greatly benefit the development of targeted therapies that are safe and effective. Combined quantum mechanical and molecular mechanical (QM/MM) Møller-Plesset second-order perturbation theory (MP2) geometry optimizations are performed to investigate the catalytic mechanism of the deacetylation reaction of a tetrapeptide catalyzed by human Histone Deacetylase 8. A three-step catalytic mechanism is identified: the first step is the formation of a negatively charged tetrahedral intermediate via nucleophilic addition of the activated water to the amide C atom and a proton transfer from the water to His143; the second step is the formation of a neutral tetrahedral intermediate with an elongated amide C-N bond via a proton transfer from His143 to the amide N atom. The third step is the complete cleavage of the amide C-N bond, accompanied by a proton transfer from the newly formed carboxylic group of the neutral tetrahedral intermediate to His142. These three steps have similar computed energy barriers, with the second step having the highest calculated activation free energy of 19.6 kcal mol-1. When there is no potassium ion at site 1, the calculated activation free energy is 17.7 kcal mol-1. Both values are in good agreement with an experimental value of 17.5 kcal mol-1. Their difference implies that there would be a 25-fold increase in the enzyme's activity, in line with experiments. The solvent hydrogen-deuterium kinetic isotope effect was computed to be ∼3.8 for the second step in both cases. It is also found that the energy barriers are significantly and systematically higher on the QM/MM B3LYP and QM/MM B3LYP-D3 potential energy surfaces. In particular, the QM/MM B3LYP and B3LYP-D3 methods fail to predict the neutral tetrahedral intermediate and a meaningful transition state for the third step, leading to a two-step mechanism. With a sufficiently large basis set such as aug-cc-pVDZ, QM/MM M05-2X, M06-2X, M06, and MN15 methods can give results much closer to the QM/MM MP2 method. However, when a smaller basis set such as 6-31G* is used, these methods can lead to errors as large as 10 kcal mol-1 on the reaction pathway. These results highlight the importance of using accurate QM methods in the computational study of enzyme catalysis.
Collapse
Affiliation(s)
- Rui Lai
- College of Chemistry, Jilin University, Changchun, 130021, China.
| | - Hui Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Luo Y, Yan Z, Chu X, Zhang Y, Qiu Y, Li H. Binding mechanism and distant regulation of histone deacetylase 8 by PCI-34051. Commun Biol 2025; 8:221. [PMID: 39939814 PMCID: PMC11821889 DOI: 10.1038/s42003-025-07649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Histone deacetylase 8 (HDAC8) is a well-known epigenetic regulator for cancer therapy. However, developing targeted inhibitors for HDAC8 is challenging due to a limited understanding of its structural dynamics, which is crucial for ligand interaction. Here, we employed an integrated approach, including native mass spectrometry (native MS), hydrogen-deuterium exchange mass spectrometry (HDX-MS), and molecular dynamics (MD) simulation, to investigate the inhibition mechanism and dynamic regulation of human HDAC8 (hHDAC8) by selective inhibitor PCI-34051, compared with the pan-inhibitor SAHA. Our results revealed that PCI-34051 engages with an expanded set of residues and conforms more aptly to the binding channel of hHDAC8, stabilizing the flexible loops surrounding the binding channel. Moreover, this dynamic stabilization effect is not limited to the binding regions, but also extends to distant regions (such as L2, α5, and α1 + α2), with L3 serving as a critical structural bridge. Overall, these results show the structural and dynamic regulations of hHDAC8 by PCI-34051, which induces a lower energy state for the protein-ligand system compared to SAHA, thus showing better inhibitory effects. In addition, it also suggests that certain regions, specifically loops L2 and L3, within the hHDAC8 protein could be key regions for targeted intervention.
Collapse
Affiliation(s)
- Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zhaoyue Yan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yufan Qiu
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Schweipert M, Nehls T, Wurster E, Böltner J, Anton K, Lammer P, Lermyte F, Meyer-Almes FJ. The pivotal role of histidine 976 in human histone deacetylase 4 for enzyme function and ligand recognition. Bioorg Chem 2024; 153:107883. [PMID: 39406110 DOI: 10.1016/j.bioorg.2024.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024]
Abstract
Human histone deacetylase 4 (HDAC4) belongs to class IIa of the zinc-dependent histone deacetylases. HDAC4 is an established target for various indication areas, in particular Huntington's disease, heart failure and cancer. To reduce unwanted side effects, it is advantageous to develop isozyme-selective inhibitors, which poses a major challenge due to the highly conserved active centers of the HDAC family. According to current knowledge it is assumed that H976 in HDAC4wt occurs exclusively in the out-conformation and thus the selective foot pocket is constitutively open. In contrast, the side chain of the corresponding tyrosine in HDAC4H976Y adopts the in-conformation, and is thus able to stabilize the intermediate state of the deacetylation reaction and block access to the foot pocket. In this study, we provide evidence that a dynamic equilibrium exists between the in- and out-conformation in HDAC4wt. The binding of selective HDAC4 inhibitors that address the foot pocket can be enhanced in HDAC4 variants with mainly small, but also medium hydrophobic or polar side chains. We attribute this to the fact that these side chains are preferentially present in the out-conformation. Therefore, we propose HDAC4H976A and other HDAC4 variants as promising tools to find and enrich HDAC4-selective foot pocket binders in screening campaigns that might have been overlooked in conventional screens with HDAC4wt.
Collapse
Affiliation(s)
- Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Thomas Nehls
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Eva Wurster
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Jaqueline Böltner
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Katharina Anton
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Patrick Lammer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, 64295 Darmstadt, Germany.
| |
Collapse
|
4
|
Schwalbe H, Audergon P, Haley N, Amaro CA, Agirre J, Baldus M, Banci L, Baumeister W, Blackledge M, Carazo JM, Carugo KD, Celie P, Felli I, Hart DJ, Hauß T, Lehtiö L, Lindorff-Larsen K, Márquez J, Matagne A, Pierattelli R, Rosato A, Sobott F, Sreeramulu S, Steyaert J, Sussman JL, Trantirek L, Weiss MS, Wilmanns M. The future of integrated structural biology. Structure 2024; 32:1563-1580. [PMID: 39293444 DOI: 10.1016/j.str.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Instruct-ERIC, "the European Research Infrastructure Consortium for Structural biology research," is a pan-European distributed research infrastructure making high-end technologies and methods in structural biology available to users. Here, we describe the current state-of-the-art of integrated structural biology and discuss potential future scientific developments as an impulse for the scientific community, many of which are located in Europe and are associated with Instruct. We reflect on where to focus scientific and technological initiatives within the distributed Instruct research infrastructure. This review does not intend to make recommendations on funding requirements or initiatives directly, neither at the national nor the European level. However, it addresses future challenges and opportunities for the field, and foresees the need for a stronger coordination within the European and international research field of integrated structural biology to be able to respond timely to thematic topics that are often prioritized by calls for funding addressing societal needs.
Collapse
Affiliation(s)
- Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany; Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK.
| | - Pauline Audergon
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Natalie Haley
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Claudia Alen Amaro
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, UK
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Lucia Banci
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jose Maria Carazo
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | - Patrick Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Isabella Felli
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Darren J Hart
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Thomas Hauß
- Macromolecular Crystallography, Helmholtz-Zentrum, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - José Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff", University of Florence and Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
| | - Joel L Sussman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lukas Trantirek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL) Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Karunanithy G, Shukla VK, Hansen DF. Solution-state methyl NMR spectroscopy of large non-deuterated proteins enabled by deep neural networks. Nat Commun 2024; 15:5073. [PMID: 38871714 PMCID: PMC11176362 DOI: 10.1038/s41467-024-49378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Methyl-TROSY nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterising large biomolecules in solution. However, preparing samples for these experiments is demanding and entails deuteration, limiting its use. Here we demonstrate that NMR spectra recorded on protonated, uniformly 13C labelled samples can be processed using deep neural networks to yield spectra that are of similar quality to typical deuterated methyl-TROSY spectra, potentially providing information for proteins that cannot be produced in bacterial systems. We validate the methodology experimentally on three proteins with molecular weights in the range 42-360 kDa. We further demonstrate the applicability of our methodology to 3D NOESY spectra of Escherichia coli Malate Synthase G (81 kDa), where observed NOE cross-peaks are in good agreement with the available structure. The method represents an advance in the field of using deep learning to analyse complex magnetic resonance data and could have an impact on the study of large biomolecules in years to come.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- The Francis Crick Institute, London, NW1 1BF, UK
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
- The Francis Crick Institute, London, NW1 1BF, UK.
| |
Collapse
|
6
|
Shi L, Ying K, Sha L, Zhang Y, Sun L, Li G. DNA-Peptide Interaction-Modulated Charge Reversal in Biomimetic Nanochannels for Simple and Efficient Detection of Histone Deacetylases. Anal Chem 2024; 96:4817-4824. [PMID: 38482584 DOI: 10.1021/acs.analchem.3c04819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Protein acetylation, a fundamental post-translational modification, plays a critical role in the regulation of gene expression and cellular processes. Monitoring histone deacetylases (HDACs) is important for understanding epigenetic dynamics and advancing the early diagnosis of malignancies. Here, we leverage the dynamic characteristics of DNA-peptide interactions in biomimetic nanochannels to develop a HDAC detection method. In specific, the catalysis of peptide deacetylation by HDACs triggers alterations in the charge states of the nanochannel surface to accommodate DNA molecules. Then, the interaction between DNA and peptides shifts the nanochannel surface charge from positive to negative, leading to a reversal of the ion current rectification (ICR). By calculation of the ICR ratio, quantitative detection of HDACs can be efficiently achieved using the nanochannel-based method in an enzyme-free and label-free manner. Our experimental results demonstrate that HDACs can be detected by using this method within a concentration range of 0.5-500 nM. The innate simplicity and efficiency of this strategy may render it a valuable tool for advancing both fundamental research and clinical applications in the realm of epigenetics and personalized medicine.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Keqin Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lingjun Sha
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Front Bioeng Biotechnol 2024; 11:1333752. [PMID: 38318419 PMCID: PMC10841552 DOI: 10.3389/fbioe.2023.1333752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.
Collapse
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Somnath Mondal
- Department of Chemistry, Pennsylvania State University, State College, PA, United States
| | - Dhiman Ghosh
- Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| |
Collapse
|
8
|
Keeley A, Kopranovic A, Di Lorenzo V, Ábrányi-Balogh P, Jänsch N, Lai LN, Petri L, Orgován Z, Pölöske D, Orlova A, Németh A, Desczyk C, Imre T, Bajusz D, Moriggl R, Meyer-Almes FJ, Keserü GM. Electrophilic MiniFrags Revealed Unprecedented Binding Sites for Covalent HDAC8 Inhibitors. J Med Chem 2024; 67:572-585. [PMID: 38113354 PMCID: PMC10788917 DOI: 10.1021/acs.jmedchem.3c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.
Collapse
Affiliation(s)
- Aaron
B. Keeley
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Aleksandra Kopranovic
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Vincenzo Di Lorenzo
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Niklas Jänsch
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Linh N. Lai
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - László Petri
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Zoltán Orgován
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Daniel Pölöske
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine, 1210 Vienna, Austria
| | - Anna Orlova
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine, 1210 Vienna, Austria
| | - András
György Németh
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Charlotte Desczyk
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Tímea Imre
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- MS
Metabolomics
Research Group, Research Centre for Natural
Sciences, Magyar tudósok
krt 2, H-1117 Budapest, Hungary
| | - Dávid Bajusz
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Richard Moriggl
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine, 1210 Vienna, Austria
| | - Franz-Josef Meyer-Almes
- Department
of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - György M. Keserü
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3., H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
9
|
Mondal S, Sarvari G, Boehr DD. Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA. Viruses 2023; 15:2413. [PMID: 38140654 PMCID: PMC10747604 DOI: 10.3390/v15122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus-host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release.
Collapse
Affiliation(s)
| | | | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
10
|
Shukla VK, Heller GT, Hansen DF. Biomolecular NMR spectroscopy in the era of artificial intelligence. Structure 2023; 31:1360-1374. [PMID: 37848030 DOI: 10.1016/j.str.2023.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Biomolecular nuclear magnetic resonance (NMR) spectroscopy and artificial intelligence (AI) have a burgeoning synergy. Deep learning-based structural predictors have forever changed structural biology, yet these tools currently face limitations in accurately characterizing protein dynamics, allostery, and conformational heterogeneity. We begin by highlighting the unique abilities of biomolecular NMR spectroscopy to complement AI-based structural predictions toward addressing these knowledge gaps. We then highlight the direct integration of deep learning approaches into biomolecular NMR methods. AI-based tools can dramatically improve the acquisition and analysis of NMR spectra, enhancing the accuracy and reliability of NMR measurements, thus streamlining experimental processes. Additionally, deep learning enables the development of novel types of NMR experiments that were previously unattainable, expanding the scope and potential of biomolecular NMR spectroscopy. Ultimately, a combination of AI and NMR promises to further revolutionize structural biology on several levels, advance our understanding of complex biomolecular systems, and accelerate drug discovery efforts.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Gabriella T Heller
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Shukla VK, Siemons L, Hansen DF. Intrinsic structural dynamics dictate enzymatic activity and inhibition. Proc Natl Acad Sci U S A 2023; 120:e2310910120. [PMID: 37782780 PMCID: PMC10576142 DOI: 10.1073/pnas.2310910120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
Enzymes are known to sample various conformations, many of which are critical for their biological function. However, structural characterizations of enzymes predominantly focus on the most populated conformation. As a result, single-point mutations often produce structures that are similar or essentially identical to those of the wild-type enzyme despite large changes in enzymatic activity. Here, we show for mutants of a histone deacetylase enzyme (HDAC8) that reduced enzymatic activities, reduced inhibitor affinities, and reduced residence times are all captured by the rate constants between intrinsically sampled conformations that, in turn, can be obtained independently by solution NMR spectroscopy. Thus, for the HDAC8 enzyme, the dynamic sampling of conformations dictates both enzymatic activity and inhibitor potency. Our analysis also dissects the functional role of the conformations sampled, where specific conformations distinct from those in available structures are responsible for substrate and inhibitor binding, catalysis, and product dissociation. Precise structures alone often do not adequately explain the effect of missense mutations on enzymatic activity and drug potency. Our findings not only assign functional roles to several conformational states of HDAC8 but they also underscore the paramount role of dynamics, which will have general implications for characterizing missense mutations and designing inhibitors.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Lucas Siemons
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - D. Flemming Hansen
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Song C, Liu X, Lin W, Lai K, Pan S, Lu Z, Li D, Li N, Geng Q. Systematic analysis of histone acetylation regulators across human cancers. BMC Cancer 2023; 23:733. [PMID: 37553641 PMCID: PMC10408135 DOI: 10.1186/s12885-023-11220-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Histone acetylation (HA) is an important and common epigenetic pathway, which could be hijacked by tumor cells during carcinogenesis and cancer progression. However, the important role of HA across human cancers remains elusive. METHODS In this study, we performed a comprehensive analysis at multiple levels, aiming to systematically describe the molecular characteristics and clinical relevance of HA regulators in more than 10000 tumor samples representing 33 cancer types. RESULTS We found a highly heterogeneous genetic alteration landscape of HA regulators across different human cancer types. CNV alteration may be one of the major mechanisms leading to the expression perturbations in HA regulators. Furthermore, expression perturbations of HA regulators correlated with the activity of multiple hallmark oncogenic pathways. HA regulators were found to be potentially useful for the prognostic stratification of kidney renal clear cell carcinoma (KIRC). Additionally, we identified HDAC3 as a potential oncogene in lung adenocarcinoma (LUAD). CONCLUSION Overall, our results highlights the importance of HA regulators in cancer development, which may contribute to the development of clinical strategies for cancer treatment.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Xinfei Liu
- Department of Hematology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Weichen Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
13
|
Wan MSM, Muhammad R, Koliopoulos MG, Roumeliotis TI, Choudhary JS, Alfieri C. Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex. Nat Commun 2023; 14:2556. [PMID: 37137925 PMCID: PMC10156912 DOI: 10.1038/s41467-023-38276-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023] Open
Abstract
Lysine acetylation in histone tails is a key post-translational modification that controls transcription activation. Histone deacetylase complexes remove histone acetylation, thereby repressing transcription and regulating the transcriptional output of each gene. Although these complexes are drug targets and crucial regulators of organismal physiology, their structure and mechanisms of action are largely unclear. Here, we present the structure of a complete human SIN3B histone deacetylase holo-complex with and without a substrate mimic. Remarkably, SIN3B encircles the deacetylase and contacts its allosteric basic patch thereby stimulating catalysis. A SIN3B loop inserts into the catalytic tunnel, rearranges to accommodate the acetyl-lysine moiety, and stabilises the substrate for specific deacetylation, which is guided by a substrate receptor subunit. Our findings provide a model of specificity for a main transcriptional regulator conserved from yeast to human and a resource of protein-protein interactions for future drug designs.
Collapse
Affiliation(s)
- Mandy S M Wan
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Reyhan Muhammad
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Marios G Koliopoulos
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Jyoti S Choudhary
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK.
| |
Collapse
|
14
|
Rajaraman S, Balakrishnan R, Deshmukh D, Ganorkar A, Biswas S, Pulya S, Ghosh B. HDAC8 as an emerging target in drug discovery with special emphasis on medicinal chemistry. Future Med Chem 2023; 15:885-908. [PMID: 37227732 DOI: 10.4155/fmc-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
HDAC8 catalyzes the deacetylation of both histones and nonhistone proteins. The abnormal expression of HDAC8 is associated with various pathological conditions causing cancer and other diseases like myopathies, Cornelia de Lange syndrome, renal fibrosis, and viral and parasitic infections. The substrates of HDAC8 are involved in diverse molecular mechanisms of cancer such as cell proliferation, invasion, metastasis and drug resistance. Based on the crystal structures and the key residues at the active site, HDAC8 inhibitors have been designed along the canonical pharmacophore. This article details the importance, recent advancements, and the structural and functional aspects of HDAC8 with special emphasis on the medicinal chemistry aspect of HDAC8 inhibitors that will help in developing novel epigenetic therapeutics.
Collapse
Affiliation(s)
- Srinidhi Rajaraman
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Ranjani Balakrishnan
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Dhruv Deshmukh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Abhiram Ganorkar
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| |
Collapse
|
15
|
Bhattacharya A, Shukla VK, Kachariya N, Preeti, Sehrawat P, Kumar A. Disorder in the Human Skp1 Structure is the Key to its Adaptability to Bind Many Different Proteins in the SCF Complex Assembly. J Mol Biol 2022; 434:167830. [PMID: 36116539 DOI: 10.1016/j.jmb.2022.167830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Skp1(S-phase kinase-associated protein 1 - Homo sapiens) is an adapter protein of the SCF(Skp1-Cullin1-Fbox) complex, which links the constant components (Cul1-RBX) and the variable receptor (F-box proteins) in Ubiquitin E3 ligase. It is intriguing how Skp1 can recognise and bind to a variety of structurally different F-box proteins. For practical reasons, previous efforts have used truncated Skp1, and thus it has not been possible to track the crucial aspects of the substrate recognition process. In this background, we report the solution structure of the full-length Skp1 protein determined by NMR spectroscopy for the first time and investigate the sequence-dependent dynamics in the protein. The solution structure reveals that Skp1 has an architecture: β1-β2-H1-H2-L1-H3-L2-H4-H5-H6-H7(partially formed) and a long tail-like disordered C-terminus. Structural analysis using DALI (Distance Matrix Alignment) reveals conserved domain structure across species for Skp1. Backbone dynamics investigated using NMR relaxation suggest substantial variation in the motional timescales along the length of the protein. The loops and the C-terminal residues are highly flexible, and the (R2/R1) data suggests μs-ms timescale motions in the helices as well. Further, the dependence of amide proton chemical shift on temperature and curved profiles of their residuals indicate that the residues undergo transitions between native state and excited state. The curved profiles for several residues across the length of the protein suggest that there are native-like low-lying excited states, particularly for several C-terminal residues. Our results provide a rationale for how the protein can adapt itself, bind, and get functionally associated with other proteins in the SCF complex by utilising its flexibility and conformational sub-states.
Collapse
Affiliation(s)
- Amrita Bhattacharya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vaibhav Kumar Shukla
- Biophysical Chemistry & Structural Biology Laboratory, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India. https://twitter.com/bhu_vaibhav
| | - Nitin Kachariya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Preeti
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Parveen Sehrawat
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
16
|
Fusco G, Bemporad F, Chiti F, Dobson CM, De Simone A. The role of structural dynamics in the thermal adaptation of hyperthermophilic enzymes. Front Mol Biosci 2022; 9:981312. [PMID: 36158582 PMCID: PMC9490001 DOI: 10.3389/fmolb.2022.981312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Proteins from hyperthermophilic organisms are evolutionary optimised to adopt functional structures and dynamics under conditions in which their mesophilic homologues are generally inactive or unfolded. Understanding the nature of such adaptation is of crucial interest to clarify the underlying mechanisms of biological activity in proteins. Here we measured NMR residual dipolar couplings of a hyperthermophilic acylphosphatase enzyme at 80°C and used these data to generate an accurate structural ensemble representative of its native state. The resulting energy landscape was compared to that obtained for a human homologue at 37°C, and additional NMR experiments were carried out to probe fast (15N relaxation) and slow (H/D exchange) backbone dynamics, collectively sampling fluctuations of the two proteins ranging from the nanosecond to the millisecond timescale. The results identified key differences in the strategies for protein-protein and protein-ligand interactions of the two enzymes at the respective physiological temperatures. These include the dynamical behaviour of a β-strand involved in the protection against aberrant protein aggregation and concerted motions of loops involved in substrate binding and catalysis. Taken together these results elucidate the structure-dynamics-function relationship associated with the strategies of thermal adaptation of protein molecules.
Collapse
Affiliation(s)
- Giuliana Fusco
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Bemporad
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | | | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Alfonso De Simone,
| |
Collapse
|
17
|
Jaipuria G, Shet D, Malik S, Swain M, Atreya HS, Galea CA, Slomiany MG, Rosenzweig SA, Forbes BE, Norton RS, Mondal S. IGF-dependent dynamic modulation of a protease cleavage site in the intrinsically disordered linker domain of human IGFBP2. Proteins 2022; 90:1732-1743. [PMID: 35443068 PMCID: PMC9357107 DOI: 10.1002/prot.26350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
Functional regulation via conformational dynamics is well known in structured proteins but less well characterized in intrinsically disordered proteins and their complexes. Using NMR spectroscopy, we have identified a dynamic regulatory mechanism in the human insulin-like growth factor (IGF) system involving the central, intrinsically disordered linker domain of human IGF-binding protein-2 (hIGFBP2). The bioavailability of IGFs is regulated by the proteolysis of IGF-binding proteins. In the case of hIGFBP2, the linker domain (L-hIGFBP2) retains its intrinsic disorder upon binding IGF-1, but its dynamics are significantly altered, both in the IGF binding region and distantly located protease cleavage sites. The increase in flexibility of the linker domain upon IGF-1 binding may explain the IGF-dependent modulation of proteolysis of IGFBP2 in this domain. As IGF homeostasis is important for cell growth and function, and its dysregulation is a key contributor to several cancers, our findings open up new avenues for the design of IGFBP analogs inhibiting IGF-dependent tumors.
Collapse
Affiliation(s)
- Garima Jaipuria
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Divya Shet
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Nanobiophysics lab, Raman Research Institute, Sadashivnagar, Bangalore-80, India
| | - Shahid Malik
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Monalisa Swain
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Frederick National Laboratory for Cancer Research, Maryland-21701, USA
| | | | - Charles A. Galea
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Mark G. Slomiany
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Steven A. Rosenzweig
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Briony E. Forbes
- Flinders Health and Medical Research Institute, Flinders University, SA 5042, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia,ARC Centre for Fragment-Based Design, Monash University, Parkville 3052, Australia
| | - Somnath Mondal
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Univ. Bordeaux, Institut Européen de Chimie et Biologie and INSERM U1212, ARNA Laboratory, 2 rue Robert Escarpit, 33607 Pessac Cedex, Bordeaux, France
| |
Collapse
|
18
|
Saccoccia F, Pozzetti L, Gimmelli R, Butini S, Guidi A, Papoff G, Giannaccari M, Brogi S, Scognamiglio V, Gemma S, Ruberti G, Campiani G. Crystal structures of Schistosoma mansoni histone deacetylase 8 reveal a novel binding site for allosteric inhibitors. J Biol Chem 2022; 298:102375. [PMID: 35970392 PMCID: PMC9486128 DOI: 10.1016/j.jbc.2022.102375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Parasitic diseases cause significant global morbidity and mortality particularly in the poorest regions of the world. Schistosomiasis, one of the most widespread neglected tropical diseases, affects more than 200 million people worldwide. Histone deacetylase (HDAC) inhibitors are prominent epigenetic drugs that are being investigated in the treatment of several diseases, including cancers and parasitic diseases. Schistosoma mansoni HDAC8 (SmHDAC8) is highly expressed in all life cycle stages of the parasite and selective inhibition is required in order to avoid undesirable off-target effects in the host. Herein, by X-ray crystal structures of SmHDAC8-inhibitor complexes, biochemical and phenotypic studies, we found two schistosomicidal spiroindoline-derivatives binding a novel site, next to Trp198, on the enzyme surface. We determined that by acting on this site, either by mutation of the Trp198 or by compound binding, a decrease in the activity of the enzyme is achieved. Remarkably, this allosteric site differs from the human counterpart; rather, it is conserved in all Schistosoma spp., as well as Rhabidoptera and Trematoda classes, thus paving the way for the design of HDAC8-selective allosteric inhibitors with improved properties.
Collapse
Affiliation(s)
- Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy.
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Alessandra Guidi
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Marialaura Giannaccari
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, Italian National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Via Ercole Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy.
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy.
| |
Collapse
|
19
|
Ding S, Gao Y, Lv D, Tao Y, Liu S, Chen C, Huang Z, Zheng S, Hu Y, Chow LKY, Wei Y, Feng P, Dai W, Wang X, Xia Y. DNTTIP1 promotes nasopharyngeal carcinoma metastasis via recruiting HDAC1 to DUSP2 promoter and activating ERK signaling pathway. EBioMedicine 2022; 81:104100. [PMID: 35689852 PMCID: PMC9189780 DOI: 10.1016/j.ebiom.2022.104100] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Distant metastasis remains the leading cause of treatment failure in patients with nasopharyngeal carcinoma (NPC), making it critical to identify efficient therapeutic targets for metastatic NPC. Previous studies have demonstrated that deoxynucleotidyltransferase terminal-interacting protein 1 (DNTTIP1) is associated with the development of various types of cancer. However, its role and mechanism in NPC have not been explored. Methods RNA-seq profiling was performed for three pairs of NPC and normal nasopharynx tissues. DNTTIP1 expression in NPC specimens was detected by immunohistochemistry. In vitro and in vivo assays were used to investigate the function of DNTTIP1. The molecular mechanism was determined using RT-qPCR, western blotting, RNA-seq, luciferase reporter assays, ChIP assays, and co-IP assays. Findings DNTTIP1 was found to be significantly upregulated in NPC tissues. Furthermore, DNTTIP1 promoted NPC growth and metastasis in vitro and in vivo. Upregulation of DNTTIP1 in NPC indicated poor clinical outcomes. Mechanistically, DNTTIP1 suppressed DUSP2 gene expression via recruiting HDAC1 to its promoter and maintaining a deacetylated state of histone H3K27. The downregulation of DUSP2 resulted in aberrant activation of the ERK signaling and elevated MMP2 levels, promoting NPC metastasis. Chidamide, an HDAC inhibitor, was shown to suppress NPC metastasis by regulating the DNTTIP1/HDAC1-DUSP2 axis. Interpretation Our findings demonstrate that DNTTIP1 not only regulates NPC metastasis but also independently predicts NPC prognosis. Furthermore, targeting DNTTIP1/HDAC1 by Chidamide may benefit NPC patients with metastasis. Funding This work was supported by the National Natural Science Foundation of China (No. 81872464, 82073243).
Collapse
Affiliation(s)
- Shirong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yalan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Songran Liu
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Zilu Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Shuohan Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yujun Hu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (SAR), China
| | - Yinghong Wei
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ping Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (SAR), China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, China.
| | - Yunfei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.
| |
Collapse
|
20
|
HDACs and the epigenetic plasticity of cancer cells: Target the complexity. Pharmacol Ther 2022; 238:108190. [PMID: 35430294 DOI: 10.1016/j.pharmthera.2022.108190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and immune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epigenome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contaminating enthusiasm. Unfortunately, the complexity of the epigenetic machinery has frustrated this enthusiasm. To develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complexity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the maintenance of the transformed state and the rational for their selective targeting.
Collapse
|
21
|
Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front Oncol 2021; 11:700947. [PMID: 34395273 PMCID: PMC8360675 DOI: 10.3389/fonc.2021.700947] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 02/01/2023] Open
Abstract
Over decades of studies, accumulating evidence has suggested that epigenetic dysregulation is a hallmark of tumours. Post-translational modifications of histones are involved in tumour pathogenesis and development mainly by influencing a broad range of physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are pivotal epigenetic modulators that regulate dynamic processes in the acetylation of histones at lysine residues, thereby influencing transcription of oncogenes and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of many nonhistone proteins and thus orchestrate a host of pathological processes, such as tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.
Collapse
Affiliation(s)
- Rihan Hai
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liuer He
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
22
|
Shukla VK, Siemons L, Gervasio FL, Hansen DF. Aromatic side-chain flips orchestrate the conformational sampling of functional loops in human histone deacetylase 8. Chem Sci 2021; 12:9318-9327. [PMID: 34349901 PMCID: PMC8278956 DOI: 10.1039/d1sc01929e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Human histone deacetylase 8 (HDAC8) is a key hydrolase in gene regulation and an important drug-target. High-resolution structures of HDAC8 in complex with substrates or inhibitors are available, which have provided insights into the bound state of HDAC8 and its function. Here, using long all-atom unbiased molecular dynamics simulations and Markov state modelling, we show a strong correlation between the conformation of aromatic side chains near the active site and opening and closing of the surrounding functional loops of HDAC8. We also investigated two mutants known to allosterically downregulate the enzymatic activity of HDAC8. Based on experimental data, we hypothesise that I19S-HDAC8 is unable to release the product, whereas both product release and substrate binding are impaired in the S39E-HDAC8 mutant. The presented results deliver detailed insights into the functional dynamics of HDAC8 and provide a mechanism for the substantial downregulation caused by allosteric mutations, including a disease causing one.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London London WC1E 6BT UK
| | - Lucas Siemons
- Department of Structural and Molecular Biology, Division of Biosciences, University College London London WC1E 6BT UK
| | - Francesco L Gervasio
- Department of Chemistry, University College London London WC1E 6BT UK
- Pharmaceutical Sciences, University of Geneva Geneva CH-1211 Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva Geneva CH-1211 Switzerland
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London London WC1E 6BT UK
| |
Collapse
|
23
|
Karunanithy G, Shukla VK, Hansen DF. Methodological advancements for characterising protein side chains by NMR spectroscopy. Curr Opin Struct Biol 2021; 70:61-69. [PMID: 33989947 DOI: 10.1016/j.sbi.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
The surface of proteins is covered by side chains of polar amino acids that are imperative for modulating protein functionality through the formation of noncovalent intermolecular interactions. However, despite their tremendous importance, the unique structures of protein side chains require tailored approaches for investigation by nuclear magnetic resonance spectroscopy and so have traditionally been understudied compared with the protein backbone. Here, we review substantial recent methodological advancements within nuclear magnetic resonance spectroscopy to address this issue. Specifically, we consider advancements that provide new insight into methyl-bearing side chains, show the potential of using non-natural amino acids and reveal the actions of charged side chains. Combined, the new methods promise unprecedented characterisations of side chains that will further elucidate protein function.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
24
|
Karunanithy G, Hansen DF. FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling. JOURNAL OF BIOMOLECULAR NMR 2021; 75:179-191. [PMID: 33870472 PMCID: PMC8131344 DOI: 10.1007/s10858-021-00366-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 05/25/2023]
Abstract
In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple 13Cα-13Cβ couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
25
|
Mahajan M, Suryavanshi S, Bhowmick S, Alasmary FA, Almutairi TM, Islam MA, Kaul-Ghanekar R. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys Chem 2021; 273:106588. [PMID: 33848944 DOI: 10.1016/j.bpc.2021.106588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Histone deacetylase 8 (HDAC8) has emerged as a promising drug target for cancer therapeutics development. HDAC8 has been reported to regulate cancer cell proliferation, invasion and promote metastasis through modulation of cell cycle associated proteins. Of late, phytocompounds have been demonstrated to exhibit anticancer and anti-HDAC8 activity. Here, we have shown the HDAC8 inhibitory potential of an active phytocompound from HC9 (herbal composition-9), a polyherbal anticancer formulation based on the traditional Ayurvedic drug, Stanya Shodhan Kashaya. HC9 was recently reported to exhibit anticancer activity against breast cancer cells through induction of cell cycle arrest, decrease in migration and invasion as well as regulation of inflammation and chromatin modulators. In silico studies such as molecular docking, molecular dynamics (MD) simulation and binding free energy analyses showed greater binding energy values and interaction stability of MA with HDAC8 compared to other phytocompounds of HC9. Interestingly, in vitro validation confirmed the anti-HDAC8 activity of MA. Further, in vitro studies showed that MA significantly decreased the viability of breast and prostate cancer cell lines, thereby confirming its anticancer potential.
Collapse
Affiliation(s)
- Minal Mahajan
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Snehal Suryavanshi
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 91 APC Road, Kolkata 700 009, India
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India.
| |
Collapse
|
26
|
Osko JD, Porter NJ, Decroos C, Lee MS, Watson PR, Raible SE, Krantz ID, Deardorff MA, Christianson DW. Structural analysis of histone deacetylase 8 mutants associated with Cornelia de Lange Syndrome spectrum disorders. J Struct Biol 2021; 213:107681. [PMID: 33316326 PMCID: PMC7981260 DOI: 10.1016/j.jsb.2020.107681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Cornelia de Lange Syndrome (CdLS) and associated spectrum disorders are characterized by one or more congenital anomalies including distinctive facial features, upper limb abnormalities, intellectual disability, and other symptoms. The molecular genetic basis of CdLS is linked to defects in cohesin, a protein complex that functions in sister chromatid cohesion, chromatin organization, and transcriptional regulation. Histone deacetylase 8 (HDAC8) plays an important role in cohesin function by catalyzing the deacetylation of SMC3, which is required for efficient recycling of the cohesin complex. Missense mutations in HDAC8 have been identified in children diagnosed with CdLS spectrum disorders, and here we outline structure-function relationships for four of these mutations. Specifically, we report the 1.50 Å-resolution structure of the I45T HDAC8-suberoylanilide hydroxamic acid complex, the 1.84 Å-resolution structure of E66D/Y306F HDAC8 complexed with a peptide assay substrate, and the 2.40 Å-resolution structure of G320R HDAC8 complexed with the inhibitor M344. Additionally, we present a computationally generated model of D176G HDAC8. These structures illuminate new structure-function relationships for HDAC8 and highlight the importance of long-range interactions in the protein scaffold that can influence catalytic function.
Collapse
Affiliation(s)
- Jeremy D Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104-6323, United States
| | - Nicholas J Porter
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104-6323, United States
| | - Christophe Decroos
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104-6323, United States
| | - Matthew S Lee
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104-6323, United States
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104-6323, United States
| | - Sarah E Raible
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Matthew A Deardorff
- Departments of Pathology and Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34(th) Street, Philadelphia, PA 19104-6323, United States.
| |
Collapse
|
27
|
Luo Y, Li H. Structure-Based Inhibitor Discovery of Class I Histone Deacetylases (HDACs). Int J Mol Sci 2020; 21:E8828. [PMID: 33266366 PMCID: PMC7700698 DOI: 10.3390/ijms21228828] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Class I histone deacetylases (HDACs) are promising targets for epigenetic therapies for a range of diseases such as cancers, inflammations, infections and neurological diseases. Although six HDAC inhibitors are now licensed for clinical treatments, they are all pan-inhibitors with little or no HDAC isoform selectivity, exhibiting undesirable side effects. A major issue with the currently available HDAC inhibitors is that they have limited specificity and target multiple deacetylases. Except for HDAC8, Class I HDACs (1, 2 and 3) are recruited to large multiprotein complexes to function. Therefore, there are rising needs to develop new, hopefully, therapeutically efficacious HDAC inhibitors with isoform or complex selectivity. Here, upon the introduction of the structures of Class I HDACs and their complexes, we provide an up-to-date overview of the structure-based discovery of Class I HDAC inhibitors, including pan-, isoform-selective and complex-specific inhibitors, aiming to provide an insight into the discovery of additional HDAC inhibitors with greater selectivity, specificity and therapeutic utility.
Collapse
Affiliation(s)
- Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China;
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China;
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| |
Collapse
|