1
|
Turner M, Uday AB, Velyvis A, Rennella E, Zeytuni N, Vahidi S. Structural basis for allosteric modulation of M. tuberculosis proteasome core particle. Nat Commun 2025; 16:3138. [PMID: 40169579 PMCID: PMC11962144 DOI: 10.1038/s41467-025-58430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
The Mycobacterium tuberculosis (Mtb) proteasome system selectively degrades damaged or misfolded proteins and is crucial for the pathogen's survival within the host. Targeting the 20S core particle (CP) offers a viable strategy for developing tuberculosis treatments. The activity of Mtb 20S CP, like that of its eukaryotic counterpart, is allosterically regulated, yet the specific conformations involved have not been captured in high-resolution structures to date. Here, we use single-particle electron cryomicroscopy and H/D exchange mass spectrometry to determine the Mtb 20S CP structure in an auto-inhibited state that is distinguished from the canonical resting state by the conformation of switch helices at the α/β interface. The rearrangement of these helices collapses the S1 pocket, effectively inhibiting substrate binding. Biochemical experiments show that the Mtb 20S CP activity can be altered through allosteric sites far from the active site. Our findings underscore the potential of targeting allostery to develop antituberculosis therapeutics.
Collapse
Affiliation(s)
- Madison Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Adwaith B Uday
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
- Centre de Recherche en Biologie Structurale (CRBS), Montréal, QC, Canada.
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Afsari S, Ryan E, Ashcroft B, Wang X, Lindsay S. Scanning Tunneling Microscope Measurement of Proteasome Conductance. Biomolecules 2025; 15:496. [PMID: 40305189 PMCID: PMC12024802 DOI: 10.3390/biom15040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025] Open
Abstract
The proteasome is an enzyme that sequentially degrades peptides into small fragments, so the ability to make electrical measurements of its conformational fluctuations could lead to an electronic readout of the sequence of single peptide molecules. Here, we report scanning tunneling microscope (STM) measurements of the conductance of the T. acidophilum 20S proteasome core particle (CP). The wild-type CP did not change conductance significantly as a 4 amino acid peptide substrate was added. Larger peptides were digested by a mutant, CP-Δ12, in which 12 residues were deleted from the N terminus of the alpha chains (opening the central pore). The conductance of this molecule decreased significantly in the presence of a denatured pleiotrophin substrate. Control experiments showed that strong bonding of the protein, both to the substrate electrode and the STM probe, was required for conductivity to be observed. It also appears that substantial penetration of the probe into the protein film is required, a problematic constraint on incorporating the CP into a fixed-gap device for technological applications.
Collapse
Affiliation(s)
- Sepideh Afsari
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.A.); (E.R.)
| | - Eathen Ryan
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.A.); (E.R.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Brian Ashcroft
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.A.); (E.R.)
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Stuart Lindsay
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (S.A.); (E.R.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Ganapathy J, Hand KA, Shabek N. Analysis of 26S Proteasome Activity across Arabidopsis Tissues. PLANTS (BASEL, SWITZERLAND) 2024; 13:1696. [PMID: 38931128 PMCID: PMC11207565 DOI: 10.3390/plants13121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Plants utilize the ubiquitin proteasome system (UPS) to orchestrate numerous essential cellular processes, including the rapid responses required to cope with abiotic and biotic stresses. The 26S proteasome serves as the central catalytic component of the UPS that allows for the proteolytic degradation of ubiquitin-conjugated proteins in a highly specific manner. Despite the increasing number of studies employing cell-free degradation assays to dissect the pathways and target substrates of the UPS, the precise extraction methods of highly potent tissues remain unexplored. Here, we utilize a fluorogenic reporting assay using two extraction methods to survey proteasomal activity in different Arabidopsis thaliana tissues. This study provides new insights into the enrichment of activity and varied presence of proteasomes in specific plant tissues.
Collapse
Affiliation(s)
| | | | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA; (J.G.); (K.A.H.)
| |
Collapse
|
4
|
Henderson LW, Sharon EM, Gautam AKS, Anthony AJ, Jarrold MF, Russell DH, Matouschek A, Clemmer DE. Stability of 20S Proteasome Configurations: Preopening the Axial Gate. J Phys Chem Lett 2023; 14:5014-5017. [PMID: 37224454 PMCID: PMC10916758 DOI: 10.1021/acs.jpclett.3c01040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from 11 to 55 °C reveal a series of related configurations and coupled transitions that appear to be associated with opening of the proteolytic core. We find no evidence for dissociation, and all transitions are reversible. A thermodynamic analysis indicates that configurations fall into three general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58 charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-priming process that loosens the closed-pore configuration. Only a small fraction (≤2%) of these 20S precursor configurations appear to open and thus expose the catalytic cavity.
Collapse
Affiliation(s)
- Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - Adam J Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
5
|
Deshmukh FK, Ben-Nissan G, Olshina MA, Füzesi-Levi MG, Polkinghorn C, Arkind G, Leushkin Y, Fainer I, Fleishman SJ, Tawfik D, Sharon M. Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family. Nat Commun 2023; 14:3126. [PMID: 37253751 DOI: 10.1038/s41467-023-38404-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Controlled degradation of proteins is necessary for ensuring their abundance and sustaining a healthy and accurately functioning proteome. One of the degradation routes involves the uncapped 20S proteasome, which cleaves proteins with a partially unfolded region, including those that are damaged or contain intrinsically disordered regions. This degradation route is tightly controlled by a recently discovered family of proteins named Catalytic Core Regulators (CCRs). Here, we show that CCRs function through an allosteric mechanism, coupling the physical binding of the PSMB4 β-subunit with attenuation of the complex's three proteolytic activities. In addition, by dissecting the structural properties that are required for CCR-like function, we could recapitulate this activity using a designed protein that is half the size of natural CCRs. These data uncover an allosteric path that does not involve the proteasome's enzymatic subunits but rather propagates through the non-catalytic subunit PSMB4. This way of 20S proteasome-specific attenuation opens avenues for decoupling the 20S and 26S proteasome degradation pathways as well as for developing selective 20S proteasome inhibitors.
Collapse
Affiliation(s)
- Fanindra Kumar Deshmukh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya A Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maria G Füzesi-Levi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Caley Polkinghorn
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yegor Leushkin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dan Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
6
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
7
|
Salome AZ, Lee KW, Grant T, Westphall MS, Coon JJ. Matrix-Landing Mass Spectrometry for Electron Microscopy Imaging of Native Protein Complexes. Anal Chem 2022; 94:17616-17624. [PMID: 36475605 PMCID: PMC9951558 DOI: 10.1021/acs.analchem.2c04263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, we described the use of a chemical matrix for landing and preserving the cations of protein-protein complexes within a mass spectrometer (MS) instrument. By use of a glycerol-landing matrix, we used negative stain transmission electron microscopy (TEM) to obtain a three-dimensional (3D) reconstruction of landed GroEL complexes. Here, we investigate the utilities of other chemical matrices for their abilities to land, preserve, and allow for direct imaging of these cationic particles using TEM. We report here that poly(propylene) glycol (PPG) offers superior performance over glycerol for matrix landing. We demonstrated the utility of the PPG matrix landing using three protein-protein complexes─GroEL, the 20S proteasome core particle, and β-galactosidase─and obtained a 3D reconstruction of each complex from matrix-landed particles. These structures have no detectable differences from the structures obtained using conventional preparation methods, suggesting the structures are well preserved at least to the resolution limit of the reconstructions (∼20 Å). We conclude that matrix landing offers a direct approach to couple native MS with TEM for protein structure determination.
Collapse
Affiliation(s)
- Austin Z. Salome
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Kenneth W. Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, Madison, WI
| | - Michael S. Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, Madison, WI
| |
Collapse
|
8
|
Allostery Modulates Interactions between Proteasome Core Particles and Regulatory Particles. Biomolecules 2022; 12:biom12060764. [PMID: 35740889 PMCID: PMC9221237 DOI: 10.3390/biom12060764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Allostery-regulation at distant sites is a key concept in biology. The proteasome exhibits multiple forms of allosteric regulation. This regulatory communication can span a distance exceeding 100 Ångstroms and can modulate interactions between the two major proteasome modules: its core particle and regulatory complexes. Allostery can further influence the assembly of the core particle with regulatory particles. In this focused review, known and postulated interactions between these proteasome modules are described. Allostery may explain how cells build and maintain diverse populations of proteasome assemblies and can provide opportunities for therapeutic interventions.
Collapse
|
9
|
The YΦ motif defines the structure-activity relationships of human 20S proteasome activators. Nat Commun 2022; 13:1226. [PMID: 35264557 PMCID: PMC8907193 DOI: 10.1038/s41467-022-28864-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
The 20S proteasome (20S) facilitates turnover of most eukaryotic proteins. Substrate entry into the 20S first requires opening of gating loops through binding of HbYX motifs that are present at the C-termini of certain proteasome activators (PAs). The HbYX motif has been predominantly characterized in the archaeal 20S, whereas little is known about the sequence preferences of the human 20S (h20S). Here, we synthesize and screen ~120 HbYX-like peptides, revealing unexpected differences from the archaeal system and defining the h20S recognition sequence as the Y-F/Y (YФ) motif. To gain further insight, we create a functional chimera of the optimized sequence, NLSYYT, fused to the model activator, PA26E102A. A cryo-EM structure of PA26E102A-h20S is used to identify key interactions, including non-canonical contacts and gate-opening mechanisms. Finally, we demonstrate that the YФ sequence preferences are tuned by valency, allowing multivalent PAs to sample greater sequence space. These results expand the model for termini-mediated gating and provide a template for the design of h20S activators. The proteasome complexes, composed of 20S core particles and one or two regulatory particles (proteasome activators), degrade most eukaryotic proteins. Here, the authors identify a sequence motif and resolve its interactions mediating the activation of the human 20S proteasome.
Collapse
|
10
|
Ayan E, Yuksel B, Destan E, Ertem FB, Yildirim G, Eren M, Yefanov OM, Barty A, Tolstikova A, Ketawala GK, Botha S, Dao EH, Hayes B, Liang M, Seaberg MH, Hunter MS, Batyuk A, Mariani V, Su Z, Poitevin F, Yoon CH, Kupitz C, Cohen A, Doukov T, Sierra RG, Dağ Ç, DeMirci H. Cooperative allostery and structural dynamics of streptavidin at cryogenic- and ambient-temperature. Commun Biol 2022; 5:73. [PMID: 35058563 PMCID: PMC8776744 DOI: 10.1038/s42003-021-02903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/28/2021] [Indexed: 11/11/2022] Open
Abstract
Multimeric protein assemblies are abundant in nature. Streptavidin is an attractive protein that provides a paradigm system to investigate the intra- and intermolecular interactions of multimeric protein complexes. Also, it offers a versatile tool for biotechnological applications. Here, we present two apo-streptavidin structures, the first one is an ambient temperature Serial Femtosecond X-ray crystal (Apo-SFX) structure at 1.7 Å resolution and the second one is a cryogenic crystal structure (Apo-Cryo) at 1.1 Å resolution. These structures are mostly in agreement with previous structural data. Combined with computational analysis, these structures provide invaluable information about structural dynamics of apo streptavidin. Collectively, these data further reveal a novel cooperative allostery of streptavidin which binds to substrate via water molecules that provide a polar interaction network and mimics the substrate biotin which displays one of the strongest affinities found in nature.
Collapse
Affiliation(s)
- Esra Ayan
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Busra Yuksel
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Ebru Destan
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Fatma Betul Ertem
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Gunseli Yildirim
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Meryem Eren
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | | | - Anton Barty
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Gihan K Ketawala
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - E Han Dao
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, 94025, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Matthew H Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Frederic Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Aina Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Çağdaş Dağ
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, Koc University, 34450, Istanbul, Turkey
- Koc University Isbank Center for Infectious Diseases (KUISCID), 34010, Istanbul, Turkey
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey.
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, 94025, USA.
- Koc University Isbank Center for Infectious Diseases (KUISCID), 34010, Istanbul, Turkey.
| |
Collapse
|
11
|
Frayssinhes JYA, Cerruti F, Laulin J, Cattaneo A, Bachi A, Apcher S, Coux O, Cascio P. PA28γ-20S proteasome is a proteolytic complex committed to degrade unfolded proteins. Cell Mol Life Sci 2021; 79:45. [PMID: 34913092 PMCID: PMC11071804 DOI: 10.1007/s00018-021-04045-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
PA28γ is a nuclear activator of the 20S proteasome that, unlike the 19S regulatory particle, stimulates hydrolysis of several substrates in an ATP- and ubiquitin-independent manner and whose exact biological functions and molecular mechanism of action still remain elusive. In an effort to shed light on these important issues, we investigated the stimulatory effect of PA28γ on the hydrolysis of different fluorogenic peptides and folded or denatured full-length proteins by the 20S proteasome. Importantly, PA28γ was found to dramatically enhance breakdown rates by 20S proteasomes of several naturally or artificially unstructured proteins, but not of their native, folded counterparts. Furthermore, these data were corroborated by experiments in cell lines with a nucleus-tagged myelin basic protein. Finally, mass spectrometry analysis of the products generated during proteasomal degradation of two proteins demonstrated that PA28γ does not increase, but rather decreases, the variability of peptides that are potentially suitable for MHC class I antigen presentation. These unexpected findings indicate that global stimulation of the degradation of unfolded proteins may represent a more general feature of PA28γ and suggests that this proteasomal activator might play a broader role in the pathway of protein degradation than previously believed.
Collapse
Affiliation(s)
| | - Fulvia Cerruti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Justine Laulin
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie Des Tumeurs et Immunothérapie, Villejuif, France
| | | | - Angela Bachi
- The FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Sebastien Apcher
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie Des Tumeurs et Immunothérapie, Villejuif, France
| | - Olivier Coux
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
12
|
Turnbaugh C, Axelrod JJ, Campbell SL, Dioquino JY, Petrov PN, Remis J, Schwartz O, Yu Z, Cheng Y, Glaeser RM, Mueller H. High-power near-concentric Fabry-Perot cavity for phase contrast electron microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:053005. [PMID: 34243315 PMCID: PMC8159438 DOI: 10.1063/5.0045496] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
Transmission electron microscopy (TEM) of vitrified biological macromolecules (cryo-EM) is limited by the weak phase contrast signal that is available from such samples. Using a phase plate would thus substantially improve the signal-to-noise ratio. We have previously demonstrated the use of a high-power Fabry-Perot cavity as a phase plate for TEM. We now report improvements to our laser cavity that allow us to achieve record continuous wave intensities of over 450 GW/cm2, sufficient to produce the optimal 90° phase shift for 300 keV electrons. In addition, we have performed the first cryo-EM reconstruction using a laser phase plate, demonstrating that the stability of this laser phase plate is sufficient for use during standard cryo-EM data collection.
Collapse
Affiliation(s)
| | | | | | | | - Petar N. Petrov
- Department of Physics, 366 Physics MS 7300, University of California-Berkeley, Berkeley, California 94720, USA
| | - Jonathan Remis
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA
| | - Osip Schwartz
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
13
|
Song C, Satoh T, Sekiguchi T, Kato K, Murata K. Structural Fluctuations of the Human Proteasome α7 Homo-Tetradecamer Double Ring Imply the Proteasomal α-Ring Assembly Mechanism. Int J Mol Sci 2021; 22:ijms22094519. [PMID: 33926037 PMCID: PMC8123668 DOI: 10.3390/ijms22094519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The 20S proteasome, which is composed of layered α and β heptameric rings, is the core complex of the eukaryotic proteasome involved in proteolysis. The α7 subunit is a component of the α ring, and it self-assembles into a homo-tetradecamer consisting of two layers of α7 heptameric rings. However, the structure of the α7 double ring in solution has not been fully elucidated. We applied cryo-electron microscopy to delineate the structure of the α7 double ring in solution, revealing a structure different from the previously reported crystallographic model. The D7-symmetrical double ring was stacked with a 15° clockwise twist and a separation of 3 Å between the two rings. Two more conformations, dislocated and fully open, were also identified. Our observations suggest that the α7 double-ring structure fluctuates considerably in solution, allowing for the insertion of homologous α subunits, finally converting to the hetero-heptameric α rings in the 20S proteasome.
Collapse
Affiliation(s)
- Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; (C.S.); (T.S.)
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan;
| | - Taichiro Sekiguchi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; (C.S.); (T.S.)
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan;
- School of Physical Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; (C.S.); (T.S.)
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan;
- School of Physical Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Correspondence: (K.K.); (K.M.)
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; (C.S.); (T.S.)
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
- Correspondence: (K.K.); (K.M.)
| |
Collapse
|
14
|
Radzinski M, Oppenheim T, Metanis N, Reichmann D. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Biomolecules 2021; 11:469. [PMID: 33809923 PMCID: PMC8004198 DOI: 10.3390/biom11030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an essential component of proper cellular function; however, sustaining protein health is a challenging task, especially during the aerobic lifestyle. Natural cellular oxidants may be involved in cell signaling and antibacterial defense; however, imbalanced levels can lead to protein misfolding, cell damage, and death. This merges together the processes of protein homeostasis and redox regulation. At the heart of this process are redox-regulated proteins or thiol-based switches, which carefully mediate various steps of protein homeostasis across folding, localization, quality control, and degradation pathways. In this review, we discuss the "redox code" of the proteostasis network, which shapes protein health during cell growth and aging. We describe the sources and types of thiol modifications and elaborate on diverse strategies of evolving antioxidant proteins in proteostasis networks during oxidative stress conditions. We also highlight the involvement of cysteines in protein degradation across varying levels, showcasing the importance of cysteine thiols in proteostasis at large. The individual examples and mechanisms raised open the door for extensive future research exploring the interplay between the redox and protein homeostasis systems. Understanding this interplay will enable us to re-write the redox code of cells and use it for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Meytal Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Tal Oppenheim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| | - Norman Metanis
- Institute of Chemistry, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (M.R.); (T.O.)
| |
Collapse
|
15
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|