1
|
Gallimore AR, Hepburn I, Georgiev SV, O. Rizzoli S, De Schutter E. Dynamic regulation of vesicle pools in a detailed spatial model of the complete synaptic vesicle cycle. SCIENCE ADVANCES 2025; 11:eadq6477. [PMID: 40435235 PMCID: PMC12118552 DOI: 10.1126/sciadv.adq6477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025]
Abstract
Synaptic transmission is driven by a complex cycle of vesicle docking, release, and recycling, maintained by distinct vesicle pools. However, the partitioning of vesicle pools and reserve pool recruitment remain poorly understood. We use a novel vesicle modeling technology to model the synaptic vesicle cycle in unprecedented molecular and spatial detail at a hippocampal synapse. Our model demonstrates robust recycling of synaptic vesicles that maintains consistent synaptic release, even during sustained high-frequency firing. We also show how the cytosolic proteins synapsin-1 and tomosyn-1 cooperate to regulate recruitment of reserve pool vesicles during sustained firing to maintain transmission, as well as the potential of selective vesicle active zone tethering to ensure rapid vesicle replenishment while minimizing reserve pool recruitment. We also monitored vesicle usage in isolated hippocampal neurons using pH-sensitive pHluorin, demonstrating that reserve vesicle recruitment depends on firing frequency, even at nonphysiologically high firing frequencies, as predicted by the model.
Collapse
Affiliation(s)
- Andrew R. Gallimore
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Iain Hepburn
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Svilen V. Georgiev
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Germany
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Stratigi A, Soler-García M, Krout M, Shukla S, De Bono M, Richmond JE, Laurent P. Neuroendocrine Control of Synaptic Transmission by PHAC-1 in C. elegans. J Neurosci 2025; 45:e1767232024. [PMID: 39919830 PMCID: PMC11949478 DOI: 10.1523/jneurosci.1767-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
A dynamic interplay between fast synaptic signals and slower neuromodulatory signals controls the excitatory/inhibitory (E/I) balance within neuronal circuits. The mechanisms by which neuropeptide signaling is regulated to maintain E/I balance remain uncertain. We designed a genetic screen to isolate genes involved in the peptidergic maintenance of the E/I balance in the C. elegans motor circuit. This screen identified the C. elegans orthologs of the presynaptic phosphoprotein synapsin (snn-1) and the protein phosphatase 1 (PP1) regulatory subunit PHACTR1 (phac-1). We demonstrate that both phac-1 and snn-1 alter the motor behavior of C. elegans, and genetic interactions suggest that SNN-1 contributes to PP1-PHAC-1 holoenzyme signaling. De novo variants of human PHACTR1, associated with early-onset epilepsies [developmental and epileptic encephalopathy 70 (DEE70)], when expressed in C. elegans resulted in constitutive PP1-PHAC-1 holoenzyme activity. Unregulated PP1-PHAC-1 signaling alters the synapsin and actin cytoskeleton and increases neuropeptide release by cholinergic motor neurons, which secondarily affects the presynaptic vesicle cycle. Together, these results clarify the dominant mechanisms of action of the DEE70 alleles and suggest that altered neuropeptide release may alter E/I balance in DEE70.
Collapse
Affiliation(s)
- Aikaterini Stratigi
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Miguel Soler-García
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mia Krout
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Shikha Shukla
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mario De Bono
- Institute of Science and Technology, Klosterneuburg 3400, Austria
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| |
Collapse
|
3
|
Li B, Fu CL, Sun ZY. Shaping membrane vesicles by tuning the activity of confined active polymer chains. J Chem Phys 2025; 162:094901. [PMID: 40029089 DOI: 10.1063/5.0244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Semi-flexible polymers, such as actin filaments, can deform the shape of membrane when confined in a membrane vesicle, playing an important role in biological processes. Here, we use dynamic Monte Carlo simulations to study an active polymer chain confined in a membrane vesicle. For flexible polymer chains, the membrane shape is governed by the competition between membrane bending rigidity and polymer activity. Stiff membrane is unaffected by small active forces, but moderate forces cause the polymer to alternate between stretched and disordered configurations, increasing the asphericity of both the polymer and the vesicle. For semi-flexible polymer chains, their stiffness can significantly impact both the vesicle and polymer shapes. We identify distinct classes of configurations that emerge as a function of polymer stiffness, membrane bending rigidity, and polymer activity. A weak polymer activity can cause the polymer to align along its contour, effectively increasing its stiffness. However, a moderate polymer activity softens the polymer chain. For membranes with low bending rigidities κ, large-scale deformations, such as wormlike or tadpole-shaped vesicles, appear at a weak polymer activity and high polymer stiffness. In the wormlike configuration, the polymer chain adopts a hairpin configuration to minimize the polymer bending energy. As the polymer stiffness increases, a tadpole-like vesicle forms, with part of the polymer deforming the membrane into a protrusion while the rest remaining confined in a bud-like structure. For stiffer membranes, we observe oblate vesicles containing toroidal polymer chains, resulting from the high cost of membrane bending energy. A moderate polymer activity causes the softening of the polymer chain, leading to a nearly spherical vesicle with slight shape fluctuation. We further characterize the order parameter of toroidal polymer chains in oblate vesicles and reveal that a slight increase in polymer activity leads to a more ordered helical structure of polymer chains.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Cui-Liu Fu
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Chauhan H, Carruthers NJ, Stemmer PM, Schneider BL, Moszczynska A. Interactions of VMAT2 with CDCrel-1 and Parkin in Methamphetamine Neurotoxicity. Int J Mol Sci 2024; 25:13070. [PMID: 39684782 DOI: 10.3390/ijms252313070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin. However, it is not known whether parkin loss of function within striatal dopaminergic (DAergic) terminals translates into decreased DA storage capacity. This study examined the relationship between parkin, its substrate cell division cycle related-1 (CDCrel-1) associated with synaptic vesicles, and vesicular monoamine transporter-2 (VMAT2) responsible for packaging DA in an in vivo model of METH neurotoxicity. To assess the individual differences in response to METH's neurotoxic effects, a large group of male Sprague Dawley rats were treated with binge METH or saline and sacrificed 1 h or 24 h later. This study is the first to show that CDCrel-1 interacts with VMAT2 in the rat striatum and that binge METH can alter this interaction as well as the levels and subcellular localization of CDCrel-1. The proteomic analysis of VMAT-2-associated proteins revealed the upregulation of several proteins involved in the exocytosis/endocytosis cycle and responses to stress. The results suggest that DAergic neurons are engaged in counteracting METH-induced toxic effects, including attempts to increase endocytosis and autophagy at 1 h after the METH binge, with the responses varying widely between individual rats. Studying CDCrel-1, VMAT2, and other proteins in large groups of outbred rats can help define individual genetic and molecular differences in responses to METH neurotoxicity, which, in turn, may aid treating humans suffering from MUD and its neurological consequences.
Collapse
Affiliation(s)
- Heli Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202, USA
- Bioinformatics Core, Michigan Medicine, University of Michigan, NCRC Building 14, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Paul M Stemmer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202, USA
| | - Bernard L Schneider
- Bertarelli Platform for Gene Therapy, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Ch. Des Mines 9, CH-1202 Geneva, Switzerland
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| |
Collapse
|
5
|
Miki T, Okamoto Y, Ueno-Umegai M, Toyofuku R, Hattori S, Sakaba T. Single-vesicle imaging reveals actin-dependent spatial restriction of vesicles at the active zone, essential for sustained transmission. Proc Natl Acad Sci U S A 2024; 121:e2402152121. [PMID: 39405348 PMCID: PMC11513904 DOI: 10.1073/pnas.2402152121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Synaptic-vesicle (SV) recruitment is thought to maintain reliable neurotransmitter release during high-frequency signaling. However, the mechanism underlying the SV reloading for sustained neurotransmission at central synapses remains unknown. To elucidate this, we performed direct observations of SV reloading and mobility at a single-vesicle level near the plasma membrane in cerebellar mossy fiber terminals using total internal reflection fluorescence microscopy, together with simultaneous recordings of membrane fusion by capacitance measurements. We found that actin disruption abolished the rapid SV recruitment and reduced sustained release. In contrast, induction of actin polymerization and stabilization did not affect vesicle recruitment and release, suggesting that the presence of actin filaments, rather than actin dynamics, was required for the rapid recruitment. Single-particle tracking experiments of quantum dot-labeled vesicles, which allows nanoscale resolution of vesicle mobility, revealed that actin disruption caused vesicles to diffuse more rapidly. Hidden Markov modeling with Bayesian inference revealed that SVs had two diffusion states under normal conditions: free-diffusing and trapped. After disruption of the actin filament, vesicles tended to have only the free-diffusing state. F-actin staining showed that actin filaments were localized outside the active zones (AZs) and surrounded some SV trajectories. Perturbation of SV mobility, possibly through interference with biomolecular condensates, also suggested that the restricted diffusion state determined the rate of SV recruitment. We propose that actin filaments confined SVs near the AZ to achieve rapid and efficient recruitment followed by priming and sustained synaptic transmission.
Collapse
Affiliation(s)
- Takafumi Miki
- Department of Cell Physiology, Graduate School of Medicine, Akita University, Akita010-8543, Japan
- Laboratory of Molecular Synaptic Function, Graduate School of Brain Science, Doshisha University, Kyoto610-0394, Japan
| | - Yuji Okamoto
- Department of Cell Physiology, Graduate School of Medicine, Akita University, Akita010-8543, Japan
| | | | - Rio Toyofuku
- Laboratory of Molecular Synaptic Function, Graduate School of Brain Science, Doshisha University, Kyoto610-0394, Japan
| | - Shun Hattori
- Department of Electronic Systems Engineering, Faculty of Advanced Engineering, The University of Shiga Prefecture, Hikone522-8533, Japan
| | - Takeshi Sakaba
- Laboratory of Molecular Synaptic Function, Graduate School of Brain Science, Doshisha University, Kyoto610-0394, Japan
| |
Collapse
|
6
|
Spencer RKW, Smirnova YG, Soleimani A, Müller M. Transient pores in hemifusion diaphragms. Biophys J 2024; 123:2455-2475. [PMID: 38867448 PMCID: PMC11365115 DOI: 10.1016/j.bpj.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Exchange of material across two membranes, as in the case of synaptic neurotransmitter release from a vesicle, involves the formation and poration of a hemifusion diaphragm (HD). The nontrivial geometry of the HD leads to environment-dependent control, regarding the stability and dynamics of the pores required for this kind of exocytosis. This work combines particle simulations, field-based calculations, and phenomenological modeling to explore the factors influencing the stability, dynamics, and possible control mechanisms of pores in HDs. We find that pores preferentially form at the HD rim, and that their stability is sensitive to a number of factors, including the three line tensions, membrane tension, HD size, and the ability of lipids to "flip-flop" across leaflets. Along with a detailed analysis of these factors, we discuss ways that vesicles or cells may use them to open and close pores and thereby quickly and efficiently transport material.
Collapse
Affiliation(s)
- Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| | - Yuliya G Smirnova
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany; Technische Universität Dortmund, Dortmund, Germany
| | - Alireza Soleimani
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| |
Collapse
|
7
|
Malkin J, O'Donnell C, Houghton CJ, Aitchison L. Signatures of Bayesian inference emerge from energy-efficient synapses. eLife 2024; 12:RP92595. [PMID: 39106188 PMCID: PMC11302983 DOI: 10.7554/elife.92595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.
Collapse
Affiliation(s)
- James Malkin
- Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Cian O'Donnell
- Faculty of Engineering, University of BristolBristolUnited Kingdom
- Intelligent Systems Research Centre, School of Computing, Engineering, and Intelligent Systems, Ulster UniversityDerry/LondonderryUnited Kingdom
| | - Conor J Houghton
- Faculty of Engineering, University of BristolBristolUnited Kingdom
| | | |
Collapse
|
8
|
Chauhan H, Carruthers N, Stemmer P, Schneider BP, Moszczynska A. Neurotoxic Methamphetamine Doses Alter CDCel-1 Levels and Its Interaction with Vesicular Monoamine Transporter-2 in Rat Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604458. [PMID: 39091864 PMCID: PMC11291068 DOI: 10.1101/2024.07.21.604458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, methamphetamine METH misuse in the US has been rapidly increasing and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including dysfunction of the neuroprotective protein parkin. However, it is not known whether parkin loss of function within striatal dopaminergic (DAergic) terminals translates into a decrease in DA storage capacity. This study examined the relationship between parkin, its substrate cell division cycle related-1 (CDCrel-1), and vesicular monoamine transporter-2 (VMAT2) in METH neurotoxicity in male Sprague Dawley rats. To also assess individual differences in response to METH's neurotoxic effects, a large group of rats was treated with binge METH or saline and sacrificed 1h or 24h later. This study is the first to show that binge METH alters the levels and subcellular localization of CDCrel-1 and that CDCrel-1 interacts with VMAT2 and increases its levels at the plasma membrane. Furthermore, we found wide individual differences in the responses of measured indices to METH. Proteomic analysis of VMAT-2-associated proteins revealed upregulation of several proteins involved in the exocytosis/endocytosis cycle. The results suggest that at 1h after METH binge, DAergic neurons are engaged in counteracting METH-induced toxic effects, including oxidative stress- and hyperthermia-induced inhibition of synaptic vesicle cycling, with the responses varying between individual rats. Studying CDCrel-1, VMAT2, and other proteins in large groups of outbred rats can help define individual genetic and molecular differences in responses to METH neurotoxicity which, in turn, will aid treating humans suffering from METH use disorder and its neurological consequences.
Collapse
Affiliation(s)
- Heli Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, USA 48201
| | - Nick Carruthers
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202
| | - Paul Stemmer
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202
| | - Bernard P. Schneider
- Brain Mind Institute École Polytechnique Fédérale de Lausanne School of Life Sciences, Ch. Des Mines, 9, CH-1202 Geneve, Switzerland
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, USA 48201
| |
Collapse
|
9
|
Lamanna J, Gloria G, Villa A, Malgaroli A. Anomalous diffusion of synaptic vesicles and its influences on spontaneous and evoked neurotransmission. J Physiol 2024; 602:2873-2898. [PMID: 38723211 DOI: 10.1113/jp284926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Neurons in the central nervous system communicate with each other by activating billions of tiny synaptic boutons distributed along their fine axons. These presynaptic varicosities are very crowded environments, comprising hundreds of synaptic vesicles. Only a fraction of these vesicles can be recruited in a single release episode, either spontaneous or evoked by action potentials. Since the seminal work by Fatt and Katz, spontaneous release has been modelled as a memoryless process. Nevertheless, at central synapses, experimental evidence indicates more complex features, including non-exponential distributions of release intervals and power-law behaviour in their rate. To describe these features, we developed a probabilistic model of spontaneous release based on Brownian motion of synaptic vesicles in the presynaptic environment. To account for different diffusion regimes, we based our simulations on fractional Brownian motion. We show that this model can predict both deviation from the Poisson hypothesis and power-law features in experimental quantal release series, thus suggesting that the vesicular motion by diffusion could per se explain the emergence of these properties. We demonstrate the efficacy of our modelling approach using electrophysiological recordings at single synaptic boutons and ultrastructural data. When this approach was used to simulate evoked responses, we found that the replenishment of the readily releasable pool driven by Brownian motion of vesicles can reproduce the characteristic binomial release distributions seen experimentally. We believe that our modelling approach supports the idea that vesicle diffusion and readily releasable pool dynamics are crucial factors for the physiological functioning of neuronal communication. KEY POINTS: We developed a new probabilistic model of spontaneous and evoked vesicle fusion based on simple biophysical assumptions, including the motion of vesicles before they dock to the release site. We provide closed-form equations for the interval distribution of spontaneous releases in the special case of Brownian diffusion of vesicles, showing that a power-law heavy tail is generated. Fractional Brownian motion (fBm) was exploited to simulate anomalous vesicle diffusion, including directed and non-directed motion, by varying the Hurst exponent. We show that our model predicts non-linear features observed in experimental spontaneous quantal release series as well as ultrastructural data of synaptic vesicles spatial distribution. Evoked exocytosis based on a diffusion-replenished readily releasable pool might explain the emergence of power-law behaviour in neuronal activity.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Gloria
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | | | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Turro, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Hepburn I, Lallouette J, Chen W, Gallimore AR, Nagasawa-Soeda SY, De Schutter E. Vesicle and reaction-diffusion hybrid modeling with STEPS. Commun Biol 2024; 7:573. [PMID: 38750123 PMCID: PMC11096338 DOI: 10.1038/s42003-024-06276-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Vesicles carry out many essential functions within cells through the processes of endocytosis, exocytosis, and passive and active transport. This includes transporting and delivering molecules between different parts of the cell, and storing and releasing neurotransmitters in neurons. To date, computational simulation of these key biological players has been rather limited and has not advanced at the same pace as other aspects of cell modeling, restricting the realism of computational models. We describe a general vesicle modeling tool that has been designed for wide application to a variety of cell models, implemented within our software STochastic Engine for Pathway Simulation (STEPS), a stochastic reaction-diffusion simulator that supports realistic reconstructions of cell tissue in tetrahedral meshes. The implementation is validated in an extensive test suite, parallel performance is demonstrated in a realistic synaptic bouton model, and example models are visualized in a Blender extension module.
Collapse
Affiliation(s)
- Iain Hepburn
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Jules Lallouette
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Weiliang Chen
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Andrew R Gallimore
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Sarah Y Nagasawa-Soeda
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, Japan.
| |
Collapse
|
11
|
Sun SED, Levenstein D, Li B, Mandelberg N, Chenouard N, Suutari BS, Sanchez S, Tian G, Rinzel J, Buzsáki G, Tsien RW. Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity. Cell Rep 2024; 43:113839. [PMID: 38507409 DOI: 10.1016/j.celrep.2024.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.
Collapse
Affiliation(s)
- Simón E D Sun
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Daniel Levenstein
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3810 University Street, Montreal, QC, Canada
| | - Boxing Li
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Nataniel Mandelberg
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas Chenouard
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, 75013 Paris, France
| | - Benjamin S Suutari
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Guoling Tian
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Richard W Tsien
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
12
|
Cuentas-Condori A, Chen S, Krout M, Gallik KL, Tipps J, Gailey C, Flautt L, Kim H, Mulcahy B, Zhen M, Richmond JE, Miller DM. The epithelial Na + channel UNC-8 promotes an endocytic mechanism that recycles presynaptic components to new boutons in remodeling neurons. Cell Rep 2023; 42:113327. [PMID: 37906594 PMCID: PMC10921563 DOI: 10.1016/j.celrep.2023.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/01/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Circuit refinement involves the formation of new presynaptic boutons as others are dismantled. Nascent presynaptic sites can incorporate material from recently eliminated synapses, but the recycling mechanisms remain elusive. In early-stage C. elegans larvae, the presynaptic boutons of GABAergic DD neurons are removed and new outputs established at alternative sites. Here, we show that developmentally regulated expression of the epithelial Na+ channel (ENaC) UNC-8 in remodeling DD neurons promotes a Ca2+ and actin-dependent mechanism, involving activity-dependent bulk endocytosis (ADBE), that recycles presynaptic material for reassembly at nascent DD synapses. ADBE normally functions in highly active neurons to accelerate local recycling of synaptic vesicles. In contrast, we find that an ADBE-like mechanism results in the distal recycling of synaptic material from old to new synapses. Thus, our findings suggest that a native mechanism (ADBE) can be repurposed to dismantle presynaptic terminals for reassembly at new, distant locations.
Collapse
Affiliation(s)
- Andrea Cuentas-Condori
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Siqi Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - John Tipps
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Casey Gailey
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Leah Flautt
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Hongkyun Kim
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA; Neurosience Program, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
13
|
Park JS, Lee IB, Moon HM, Hong SC, Cho M. Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment. Nat Commun 2023; 14:7160. [PMID: 37963891 PMCID: PMC10645962 DOI: 10.1038/s41467-023-42347-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
A eukaryotic cell is a microscopic world within which efficient material transport is essential. Yet, how a cell manages to deliver cellular cargos efficiently in a crowded environment remains poorly understood. Here, we used interferometric scattering microscopy to track unlabeled cargos in directional motion in a massively parallel fashion. Our label-free, cargo-tracing method revealed not only the dynamics of cargo transportation but also the fine architecture of the actively used cytoskeletal highways and the long-term evolution of the associated traffic at sub-diffraction resolution. Cargos frequently run into a blocked road or experience a traffic jam. Still, they have effective strategies to circumvent those problems: opting for an alternative mode of transport and moving together in tandem or migrating collectively. All taken together, a cell is an incredibly complex and busy space where the principle and practice of transportation intriguingly parallel those of our macroscopic world.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea.
- Department of Physics, Korea University, Seoul, Korea.
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea.
- Department of Chemistry, Korea University, Seoul, Korea.
| |
Collapse
|
14
|
Parkes M, Landers NL, Gramlich MW. Recently recycled synaptic vesicles use multi-cytoskeletal transport and differential presynaptic capture probability to establish a retrograde net flux during ISVE in central neurons. Front Cell Dev Biol 2023; 11:1286915. [PMID: 38020880 PMCID: PMC10657820 DOI: 10.3389/fcell.2023.1286915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Presynapses locally recycle synaptic vesicles to efficiently communicate information. During use and recycling, proteins on the surface of synaptic vesicles break down and become less efficient. In order to maintain efficient presynaptic function and accommodate protein breakdown, new proteins are regularly produced in the soma and trafficked to presynaptic locations where they replace older protein-carrying vesicles. Maintaining a balance of new proteins and older proteins is thus essential for presynaptic maintenance and plasticity. While protein production and turnover have been extensively studied, it is still unclear how older synaptic vesicles are trafficked back to the soma for recycling in order to maintain balance. In the present study, we use a combination of fluorescence microscopy, hippocampal cell cultures, and computational analyses to determine the mechanisms that mediate older synaptic vesicle trafficking back to the soma. We show that synaptic vesicles, which have recently undergone exocytosis, can differentially utilize either the microtubule or the actin cytoskeleton networks. We show that axonally trafficked vesicles traveling with higher speeds utilize the microtubule network and are less likely to be captured by presynapses, while slower vesicles utilize the actin network and are more likely to be captured by presynapses. We also show that retrograde-driven vesicles are less likely to be captured by a neighboring presynapse than anterograde-driven vesicles. We show that the loss of synaptic vesicle with bound molecular motor myosin V is the mechanism that differentiates whether vesicles will utilize the microtubule or actin networks. Finally, we present a theoretical framework of how our experimentally observed retrograde vesicle trafficking bias maintains the balance with previously observed rates of new vesicle trafficking from the soma.
Collapse
|
15
|
Bingham D, Jakobs CE, Wernert F, Boroni-Rueda F, Jullien N, Schentarra EM, Friedl K, Da Costa Moura J, van Bommel DM, Caillol G, Ogawa Y, Papandréou MJ, Leterrier C. Presynapses contain distinct actin nanostructures. J Cell Biol 2023; 222:e202208110. [PMID: 37578754 PMCID: PMC10424573 DOI: 10.1083/jcb.202208110] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
The architecture of the actin cytoskeleton that concentrates at presynapses remains poorly known, hindering our understanding of its roles in synaptic physiology. In this work, we measure and visualize presynaptic actin by diffraction-limited and super-resolution microscopy, thanks to a validated model of bead-induced presynapses in cultured neurons. We identify a major population of actin-enriched presynapses that concentrates more presynaptic components and shows higher synaptic vesicle cycling than their non-enriched counterparts. Pharmacological perturbations point to an optimal actin amount and the presence of distinct actin structures within presynapses. We directly visualize these nanostructures using Single Molecule Localization Microscopy (SMLM), defining three distinct types: an actin mesh at the active zone, actin rails between the active zone and deeper reserve pools, and actin corrals around the whole presynaptic compartment. Finally, CRISPR-tagging of endogenous actin allows us to validate our results in natural synapses between cultured neurons, confirming the role of actin enrichment and the presence of three types of presynaptic actin nanostructures.
Collapse
Affiliation(s)
- Dominic Bingham
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | | | - Florian Wernert
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Fanny Boroni-Rueda
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Nicolas Jullien
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | | | - Karoline Friedl
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
- Abbelight, Cachan, France
| | | | | | - Ghislaine Caillol
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
16
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
17
|
Zhang J, Wei K, Qu W, Wang M, Zhu Q, Dong X, Huang X, Yi W, Xu S, Li X. Ogt Deficiency Induces Abnormal Cerebellar Function and Behavioral Deficits of Adult Mice through Modulating RhoA/ROCK Signaling. J Neurosci 2023; 43:4559-4579. [PMID: 37225434 PMCID: PMC10286951 DOI: 10.1523/jneurosci.1962-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Previous studies have shown the essential roles of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in neuronal development, function and neurologic diseases. However, the function of Ogt and O-GlcNAcylation in the adult cerebellum has not been well elucidated. Here, we have found that cerebellum has the highest level of O-GlcNAcylation relative to cortex and hippocampus of adult male mice. Specific deletion of Ogt in granule neuron precursors (GNPs) induces abnormal morphology and decreased size of the cerebellum in adult male Ogt deficient [conditional knock-out (cKO)] mice. Adult male cKO mice show the reduced density and aberrant distribution of cerebellar granule cells (CGCs), the disrupted arrangement of Bergman glia (BG) and Purkinje cells. In addition, adult male cKO mice exhibit aberrant synaptic connection, impaired motor coordination, and learning and memory abilities. Mechanistically, we have identified G-protein subunit α12 (Gα12) is modified by Ogt-mediated O-GlcNAcylation. O-GlcNAcylation of Gα12 facilitates its binding to Rho guanine nucleotide exchange factor 12 (Arhgef12) and consequently activates RhoA/ROCK signaling. RhoA/ROCK pathway activator LPA can rescue the developmental deficits of Ogt deficient CGCs. Therefore, our study has revealed the critical function and related mechanisms of Ogt and O-GlcNAcylation in the cerebellum of adult male mice.SIGNIFICANCE STATEMENT Cerebellar function are regulated by diverse mechanisms. To unveil novel mechanisms is critical for understanding the cerebellar function and the clinical therapy of cerebellum-related diseases. In the present study, we have shown that O-GlcNAc transferase gene (Ogt) deletion induces abnormal cerebellar morphology, synaptic connection, and behavioral deficits of adult male mice. Mechanistically, Ogt catalyzes O-GlcNAcylation of Gα12, which promotes the binding to Arhgef12, and regulates RhoA/ROCK signaling pathway. Our study has uncovered the important roles of Ogt and O-GlcNAcylation in regulating cerebellar function and cerebellum-related behavior. Our results suggest that Ogt and O-GlcNAcylation could be potential targets for some cerebellum-related diseases.
Collapse
Affiliation(s)
- Jinyu Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Kaiyan Wei
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Mengxuan Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Xiaoxue Dong
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
18
|
Biojone C, C Casarotto P, Cannarozzo C, Fred SM, Herrera-Rodríguez R, Lesnikova A, Voipio M, Castrén E. nNOS-induced tyrosine nitration of TRKB impairs BDNF signaling and restrains neuronal plasticity. Prog Neurobiol 2023; 222:102413. [PMID: 36682419 DOI: 10.1016/j.pneurobio.2023.102413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) has been long recognized as an important modulator of neural plasticity, but characterization of the molecular mechanisms involved - specially the guanylyl cyclase-independent ones - has been challenging. There is evidence that NO could modify BDNF-TRKB signaling, a key mediator of neuronal plasticity. However, the mechanism underlying the interplay of NO and TRKB remains unclear. Here we show that NO induces nitration of the tyrosine 816 in the TRKB receptor in vivo and in vitro, and that post-translational modification inhibits TRKB phosphorylation and binding of phospholipase Cγ1 (PLCγ1) to this same tyrosine residue. Additionally, nitration triggers clathrin-dependent endocytosis of TRKB through the adaptor protein AP-2 and ubiquitination, thereby increasing translocation of TRKB away from the neuronal surface and directing it towards lysosomal degradation. Accordingly, inhibition of nitric oxide increases TRKB phosphorylation and TRKB-dependent neurite branching in neuronal cultures. In vivo, chronic inhibition of neuronal nitric oxide synthase (nNOS) dramatically reduced TRKB nitration and facilitated TRKB signaling in the visual cortex, and promoted a shift in ocular dominance upon monocular deprivation - an indicator of increased plasticity. Altogether, our data describe and characterize a new molecular brake on plasticity, namely nitration of TRKB receptors.
Collapse
Affiliation(s)
- Caroline Biojone
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Aarhus University, Department of Biomedicine, Faculty of Health, and Translational Neuropsychiatry Unit, Department of Clinical Medicine.
| | - Plinio C Casarotto
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Cecilia Cannarozzo
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Senem Merve Fred
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | - Angelina Lesnikova
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko Voipio
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
19
|
Zhang C, Yadav S, Speer CM. The synaptic basis of activity-dependent eye-specific competition. Cell Rep 2023; 42:112085. [PMID: 36753422 PMCID: PMC10404640 DOI: 10.1016/j.celrep.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. In the thalamus, axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. Here, we combine eye-specific tract tracing with volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. We show there are eye-specific differences in presynaptic vesicle pool size and vesicle association with the active zone at the earliest stages of retinogeniculate refinement but find no evidence of eye-specific differences in subsynaptic domain number, size, or transsynaptic alignment across development. Genetic disruption of spontaneous retinal activity decreases retinogeniculate synapse density, delays the emergence eye-specific differences in vesicle organization, and disrupts subsynaptic domain maturation. These results suggest that activity-dependent eye-specific presynaptic maturation underlies synaptic competition in the mammalian visual system.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Swapnil Yadav
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
20
|
Miryala CSJ, Holland ED, Dent EW. Contributions of microtubule dynamics and transport to presynaptic and postsynaptic functions. Mol Cell Neurosci 2022; 123:103787. [PMID: 36252720 PMCID: PMC9838116 DOI: 10.1016/j.mcn.2022.103787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Microtubules (MT) are elongated, tubular, cytoskeletal structures formed from polymerization of tubulin dimers. They undergo continuous cycles of polymerization and depolymerization, primarily at their plus ends, termed dynamic instability. Although this is an intrinsic property of MTs, there are a myriad of MT-associated proteins that function in regulating MT dynamic instability and other dynamic processes that shape the MT array. Additionally, MTs assemble into long, semi-rigid structures which act as substrates for long-range, motor-driven transport of many different types of cargoes throughout the cell. Both MT dynamics and motor-based transport play important roles in the function of every known type of cell. Within the last fifteen years many groups have shown that MT dynamics and transport play ever-increasing roles in the neuronal function of mature neurons. Not only are neurons highly polarized cells, but they also connect with one another through synapses to form complex networks. Here we will focus on exciting studies that have illuminated how MTs function both pre-synaptically in axonal boutons and post-synaptically in dendritic spines. It is becoming clear that MT dynamics and transport both serve important functions in synaptic plasticity. Thus, it is not surprising that disruption of MTs, either through hyperstabilization or destabilization, has profound consequences for learning and memory. Together, the studies described here suggest that MT dynamics and transport play key roles in synaptic function and when disrupted result in compromised learning and memory.
Collapse
Affiliation(s)
- Chandra S. J. Miryala
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705
| | - Elizabeth D. Holland
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705,Corresponding Author: Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705,
| |
Collapse
|
21
|
Orr BO, Fetter RD, Davis GW. Activation and expansion of presynaptic signaling foci drives presynaptic homeostatic plasticity. Neuron 2022; 110:3743-3759.e6. [PMID: 36087584 PMCID: PMC9671843 DOI: 10.1016/j.neuron.2022.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Presynaptic homeostatic plasticity (PHP) adaptively regulates synaptic transmission in health and disease. Despite identification of numerous genes that are essential for PHP, we lack a dynamic framework to explain how PHP is initiated, potentiated, and limited to achieve precise control of vesicle fusion. Here, utilizing both mice and Drosophila, we demonstrate that PHP progresses through the assembly and physical expansion of presynaptic signaling foci where activated integrins biochemically converge with trans-synaptic Semaphorin2b/PlexinB signaling. Each component of the identified signaling complexes, including alpha/beta-integrin, Semaphorin2b, PlexinB, talin, and focal adhesion kinase (FAK), and their biochemical interactions, are essential for PHP. Complex integrity requires the Sema2b ligand and complex expansion includes a ∼2.5-fold expansion of active-zone associated puncta composed of the actin-binding protein talin. Finally, complex pre-expansion is sufficient to accelerate the rate and extent of PHP. A working model is proposed incorporating signal convergence with dynamic molecular assemblies that instruct PHP.
Collapse
Affiliation(s)
- Brian O Orr
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA.
| |
Collapse
|
22
|
Yang Z, Wu J, Wu K, Luo J, Li C, Zhang J, Zhao M, Mei T, Liu X, Shang B, Zhang Y, Zhao L, Huang Z. Identification of Nitric Oxide-Donating Ripasudil Derivatives with Intraocular Pressure Lowering and Retinal Ganglion Cell Protection Activities. J Med Chem 2022; 65:11745-11758. [PMID: 36007247 DOI: 10.1021/acs.jmedchem.2c00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on the synergistic therapeutic effect of nitric oxide (NO) and Rho-associated protein kinase (ROCK) inhibitors on glaucoma, a new group of NO-donating ripasudil derivatives RNO-1-RNO-6 was designed, synthesized, and biologically evaluated. The results demonstrated that the most active compound RNO-6 maintained potent ROCK inhibitory and NO releasing abilities, reversibly depolymerized F-actin, and suppressed mitochondrial respiration in human trabecular meshwork (HTM) cells. Topical administration of RNO-6 (0.26%) in chronic ocular hypertension glaucoma mice exhibited significant IOP lowering and visual function and retinal ganglion cell (RGC) protection activities, superior to an equal molar dose of ripasudil. RNO-6 could be a promising agent for glaucoma or ocular hypertension, warranting further investigation.
Collapse
Affiliation(s)
- Zeqiu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China.,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Cunrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiaming Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China.,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
23
|
Montenegro‐Venegas C, Guhathakurta D, Pina‐Fernandez E, Andres‐Alonso M, Plattner F, Gundelfinger ED, Fejtova A. Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and
cAMP. EMBO Rep 2022; 23:e53659. [PMID: 35766170 PMCID: PMC9346490 DOI: 10.15252/embr.202153659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
Neuronal presynaptic terminals contain hundreds of neurotransmitter‐filled synaptic vesicles (SVs). The morphologically uniform SVs differ in their release competence segregating into functional pools that differentially contribute to neurotransmission. The presynaptic scaffold bassoon is required for neurotransmission, but the underlying molecular mechanisms are unknown. We report that glutamatergic synapses lacking bassoon feature decreased SV release competence and increased resting pool of SVs as assessed by imaging of SV release in cultured neurons. CDK5/calcineurin and cAMP/PKA presynaptic signalling are dysregulated, resulting in an aberrant phosphorylation of their downstream effectors synapsin1 and SNAP25, well‐known regulators of SV release competence. An acute pharmacological restoration of physiological CDK5 and cAMP/PKA activity fully normalises the SV pools in neurons lacking bassoon. Finally, we demonstrate that CDK5‐dependent regulation of PDE4 activity interacts with cAMP/PKA signalling and thereby controls SV release competence. These data reveal that bassoon organises SV pools in glutamatergic synapses via regulation of presynaptic phosphorylation and cAMP homeostasis and indicate a role of CDK5/PDE4/cAMP axis in the control of neurotransmitter release.
Collapse
Affiliation(s)
- Carolina Montenegro‐Venegas
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Debarpan Guhathakurta
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | | | - Maria Andres‐Alonso
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | | | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| |
Collapse
|
24
|
Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022; 348:127-147. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have been used in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NPs, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discussed the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media were considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Biological Sciences, University of Delaware, Newark, USA
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mohammadreza Amin
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
25
|
Islam R, Mishra J, Polavaram NS, Bhattacharya S, Hong Z, Bodas S, Sharma S, Bouska A, Gilbreath T, Said AM, Smith LM, Teply BA, Muders MH, Batra SK, Datta K, Dutta S. Neuropilin-2 axis in regulating secretory phenotype of neuroendocrine-like prostate cancer cells and its implication in therapy resistance. Cell Rep 2022; 40:111097. [PMID: 35858551 PMCID: PMC9362995 DOI: 10.1016/j.celrep.2022.111097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine (NE)-like tumors secrete various signaling molecules to establish paracrine communication within the tumor milieu and to create a therapy-resistant environment. It is important to identify molecular mediators that regulate this secretory phenotype in NE-like cancer. The current study highlights the importance of a cell surface molecule, Neuropilin-2 (NRP2), for the secretory function of NE-like prostate cancer (PCa). Our analysis on different patient cohorts suggests that NRP2 is high in NE-like PCa. We have developed cell line models to investigate NRP2's role in NE-like PCa. Our bioinformatics, mass spectrometry, cytokine array, and other supporting experiments reveal that NRP2 regulates robust secretory phenotype in NE-like PCa and controls the secretion of factors promoting cancer cell survival. Depletion of NRP2 reduces the secretion of these factors and makes resistant cancer cells sensitive to chemotherapy in vitro and in vivo. Therefore, targeting NRP2 can revert cellular secretion and sensitize PCa cells toward therapy.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Navatha Shree Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Zhengdong Hong
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sanika Bodas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Alyssa Bouska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Tyler Gilbreath
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Ahmed M Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo, Egypt
| | - Lynette M Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Benjamin A Teply
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Michael H Muders
- Department of Prostate Cancer Research, Center for Pathology, University of Bonn Medical Center, Bonn, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA.
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA.
| |
Collapse
|
26
|
Park C, Jung S, Park H. Single vesicle tracking for studying synaptic vesicle dynamics in small central synapses. Curr Opin Neurobiol 2022; 76:102596. [PMID: 35803103 DOI: 10.1016/j.conb.2022.102596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Sustained neurotransmission is driven by a continuous supply of synaptic vesicles to the release sites and modulated by synaptic vesicle dynamics. However, synaptic vesicle dynamics in synapses remain elusive because of technical limitations. Recent advances in fluorescence imaging techniques have enabled the tracking of single synaptic vesicles in small central synapses in living neurons. Single vesicle tracking has uncovered a wealth of new information about synaptic vesicle dynamics both within and outside presynaptic terminals, showing that single vesicle tracking is an effective tool for studying synaptic vesicle dynamics. Particularly, single vesicle tracking with high spatiotemporal resolution has revealed the dependence of synaptic vesicle dynamics on the location, stages of recycling, and neuronal activity. This review summarizes the recent findings from single synaptic vesicle tracking in small central synapses and their implications in synaptic transmission and pathogenic mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, 138667, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong.
| |
Collapse
|
27
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
28
|
Yao M, Qu H, Han Y, Cheng CY, Xiao X. Kinesins in Mammalian Spermatogenesis and Germ Cell Transport. Front Cell Dev Biol 2022; 10:837542. [PMID: 35547823 PMCID: PMC9083010 DOI: 10.3389/fcell.2022.837542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammalian testes, the apical cytoplasm of each Sertoli cell holds up to several dozens of germ cells, especially spermatids that are transported up and down the seminiferous epithelium. The blood-testis barrier (BTB) established by neighboring Sertoli cells in the basal compartment restructures on a regular basis to allow preleptotene/leptotene spermatocytes to pass through. The timely transfer of germ cells and other cellular organelles such as residual bodies, phagosomes, and lysosomes across the epithelium to facilitate spermatogenesis is important and requires the microtubule-based cytoskeleton in Sertoli cells. Kinesins, a superfamily of the microtubule-dependent motor proteins, are abundantly and preferentially expressed in the testis, but their functions are poorly understood. This review summarizes recent findings on kinesins in mammalian spermatogenesis, highlighting their potential role in germ cell traversing through the BTB and the remodeling of Sertoli cell-spermatid junctions to advance spermatid transport. The possibility of kinesins acting as a mediator and/or synchronizer for cell cycle progression, germ cell transit, and junctional rearrangement and turnover is also discussed. We mostly cover findings in rodents, but we also make special remarks regarding humans. We anticipate that this information will provide a framework for future research in the field.
Collapse
Affiliation(s)
- Mingxia Yao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
29
|
Goswami R, Bello AI, Bean J, Costanzo KM, Omer B, Cornelio-Parra D, Odah R, Ahluwalia A, Allan SK, Nguyen N, Shores T, Aziz NA, Mohan RD. The Molecular Basis of Spinocerebellar Ataxia Type 7. Front Neurosci 2022; 16:818757. [PMID: 35401096 PMCID: PMC8987156 DOI: 10.3389/fnins.2022.818757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia (SCA) type 7 (SCA7) is caused by a CAG trinucleotide repeat expansion in the ataxin 7 (ATXN7) gene, which results in polyglutamine expansion at the amino terminus of the ATXN7 protein. Although ATXN7 is expressed widely, the best characterized symptoms of SCA7 are remarkably tissue specific, including blindness and degeneration of the brain and spinal cord. While it is well established that ATXN7 functions as a subunit of the Spt Ada Gcn5 acetyltransferase (SAGA) chromatin modifying complex, the mechanisms underlying SCA7 remain elusive. Here, we review the symptoms of SCA7 and examine functions of ATXN7 that may provide further insights into its pathogenesis. We also examine phenotypes associated with polyglutamine expanded ATXN7 that are not considered symptoms of SCA7.
Collapse
Affiliation(s)
- Rituparna Goswami
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Abudu I. Bello
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Joe Bean
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Kara M. Costanzo
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Bwaar Omer
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Dayanne Cornelio-Parra
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Revan Odah
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Amit Ahluwalia
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Shefaa K. Allan
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Nghi Nguyen
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Taylor Shores
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - N. Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ryan D. Mohan
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Ryan D. Mohan,
| |
Collapse
|
30
|
Lamb R, Dhar B, Cherra SJ. PXF-1 promotes synapse development at the neuromuscular junction in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:945680. [PMID: 36311020 PMCID: PMC9606220 DOI: 10.3389/fnmol.2022.945680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are a family of proteins that modulate small G protein signaling. Mutations in a subfamily of GEFs that act on Rap, known as RapGEFs, have been associated with neurological disorders, and knockout mice display impairments in neuronal activity. However, the precise functions of RapGEFs in the nervous system remain unclear. Here, we have used the Caenorhabditis elegans neuromuscular junction, to investigate how the RapGEF homolog, PXF-1, regulates synaptic function. We found that loss of function mutations in pxf-1 reduced cholinergic activity at the neuromuscular junction. We observed that PXF-1 is expressed in the nervous system, and its expression in neurons is sufficient to promote synaptic activity. In pxf-1 mutant animals, there is a reduction in the levels of synaptic vesicles in cholinergic motor neurons but no change in the overall synapse numbers. In addition to synaptic vesicles proteins, we also found that filamentous actin, a scaffold for nascent synapses, was reduced at developing cholinergic synapses in pxf-1 mutant animals. Our studies indicate that PXF-1 regulates neuromuscular function by promoting the formation of actin filaments to support the development of motor neuron synapses.
Collapse
Affiliation(s)
- Reagan Lamb
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Bithika Dhar
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Salvatore J Cherra
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
31
|
Axonal CB1 Receptors Mediate Inhibitory Bouton Formation via cAMP Increase and PKA. J Neurosci 2021; 41:8279-8296. [PMID: 34413209 DOI: 10.1523/jneurosci.0851-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022] Open
Abstract
Experience-dependent formation and removal of inhibitory synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by the formation of inhibitory synapses to maintain coordination between excitation and inhibition. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons in hippocampal organotypic slices from mice (both sexes), we found that CB1 receptor activation mediated the formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o-protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs-proteins using DREADDs. Blocking PKA activity prevented CB1 receptor-mediated inhibitory bouton formation. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate an unexpected role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.SIGNIFICANCE STATEMENT Coordination between excitation and inhibition is required for proper brain function throughout life. It was previously shown that new inhibitory synapses can be formed in response to strong excitation to maintain this coordination, and this was mediated by endocannabinoid signaling via CB1 receptors. As activation of CB1 receptors generally results in the suppression of synaptic transmission, it remained unclear how CB1 receptors can mediate the formation of inhibitory synapses. Here we show that CB1 receptors on inhibitory axons signal via unconventional intracellular pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels and requires PKA activity. Our findings point to a central role for axonal cAMP signaling in activity-dependent inhibitory synapse formation.
Collapse
|
32
|
Aiken J, Holzbaur ELF. Cytoskeletal regulation guides neuronal trafficking to effectively supply the synapse. Curr Biol 2021; 31:R633-R650. [PMID: 34033795 DOI: 10.1016/j.cub.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development and proper function of the brain requires the formation of highly complex neuronal circuitry. These circuits are shaped from synaptic connections between neurons and must be maintained over a lifetime. The formation and continued maintenance of synapses requires accurate trafficking of presynaptic and postsynaptic components along the axon and dendrite, respectively, necessitating deliberate and specialized delivery strategies to replenish essential synaptic components. Maintenance of synaptic transmission also requires readily accessible energy stores, produced in part by localized mitochondria, that are tightly regulated with activity level. In this review, we focus on recent developments in our understanding of the cytoskeletal environment of axons and dendrites, examining how local regulation of cytoskeletal dynamics and organelle trafficking promotes synapse-specific delivery and plasticity. These new insights shed light on the complex and coordinated role that cytoskeletal elements play in establishing and maintaining neuronal circuitry.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Di Giaimo R, Penna E, Pizzella A, Cirillo R, Perrone-Capano C, Crispino M. Cross Talk at the Cytoskeleton-Plasma Membrane Interface: Impact on Neuronal Morphology and Functions. Int J Mol Sci 2020; 21:ijms21239133. [PMID: 33266269 PMCID: PMC7730950 DOI: 10.3390/ijms21239133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
The cytoskeleton and its associated proteins present at the plasma membrane not only determine the cell shape but also modulate important aspects of cell physiology such as intracellular transport including secretory and endocytic pathways. Continuous remodeling of the cell structure and intense communication with extracellular environment heavily depend on interactions between cytoskeletal elements and plasma membrane. This review focuses on the plasma membrane-cytoskeleton interface in neurons, with a special emphasis on the axon and nerve endings. We discuss the interaction between the cytoskeleton and membrane mainly in two emerging topics of neurobiology: (i) production and release of extracellular vesicles and (ii) local synthesis of new proteins at the synapses upon signaling cues. Both of these events contribute to synaptic plasticity. Our review provides new insights into the physiological and pathological significance of the cytoskeleton-membrane interface in the nervous system.
Collapse
Affiliation(s)
- Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
- Correspondence: (R.D.G.); (M.C.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Raffaella Cirillo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
- Correspondence: (R.D.G.); (M.C.)
| |
Collapse
|