1
|
Yao X, Wang B, Su Y, Bing Z, Li Q, Dong Q, Yin H, Wang J, Pan Y, Yuan G. SOX9 Promotes Collagen VI Secretion by Upregulating PCOLCE in Neurofibroma. Mol Neurobiol 2024; 61:7862-7876. [PMID: 38436832 DOI: 10.1007/s12035-024-04036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Neurofibromatosis type 1 (NF1) is caused by NF1 gene mutations. Patients with NF1 often have complications with tumors, such as neurofibroma. In order to investigate the pathogenesis of human neurofibroma, a systematic comparison of protein expression levels between Schwann cell-like sNF96.2 cells, which originated from malignant peripheral nerve sheath tumors (MPNST), and normal Schwann cells was performed using 4-D label-free proteomic analysis. In addition, the expression levels and localization of dysregulated proteins were confirmed using a Gene Expression Omnibus (GEO) transcriptomic dataset, Western blot analysis, and immunofluorescence labeling. The effects of SRY-box transcription factor 9 (SOX9) in the neurofibroma and surrounding microenvironment were evaluated in vivo using a tumor transplantation model. The present study observed that SOX9 and procollagen C-endopeptidase enhancer (PCOLCE) were significantly altered. NF1 mutation promoted the nuclear translocation and transcriptional activity of SOX9 in neurofibromas. SOX9 increased collagen VI secretions by enhancing the activation of PCOLCE in neurofibroma cells. These findings might provide new perspectives on the pathophysiological significance of SOX9 in neurofibromas and elucidate a novel molecular mechanism underlying neurofibromas.
Collapse
Affiliation(s)
- Xuan Yao
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Bo Wang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yuanping Su
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Zhitong Bing
- Institute of modern physics, Chinese Academy of Science, Lanzhou, 730000, Gansu, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Qiao Li
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hang Yin
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jianying Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Guoqiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
2
|
Na B, Shah SR, Vasudevan HN. Past, Present, and Future Therapeutic Strategies for NF-1-Associated Tumors. Curr Oncol Rep 2024; 26:706-713. [PMID: 38709422 PMCID: PMC11169015 DOI: 10.1007/s11912-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE OF REVIEW Neurofibromatosis type 1 (NF-1) is a cancer predisposition syndrome caused by mutations in the NF1 tumor suppressor gene that encodes the neurofibromin protein, which functions as a negative regulator of Ras signaling. We review the past, current, and future state of therapeutic strategies for tumors associated with NF-1. RECENT FINDINGS Therapeutic efforts for NF-1-associated tumors have centered around inhibiting Ras output, leading to the clinical success of downstream MEK inhibition for plexiform neurofibromas and low-grade gliomas. However, MEK inhibition and similar molecular monotherapy approaches that block Ras signaling do not work for all patients and show limited efficacy for more aggressive cancers such as malignant peripheral nerve sheath tumors and high-grade gliomas, motivating novel treatment approaches. We highlight the current therapeutic landscape for NF-1-associated tumors, broadly categorizing treatment into past strategies for serial Ras pathway blockade, current approaches targeting parallel oncogenic and tumor suppressor pathways, and future avenues of investigation leveraging biologic and technical innovations in immunotherapy, pharmacology, and gene delivery.
Collapse
Affiliation(s)
- Brian Na
- Department of Neurology, UCLA Neuro-Oncology Program, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp R Shah
- Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Bok S, Yallowitz AR, Sun J, McCormick J, Cung M, Hu L, Lalani S, Li Z, Sosa BR, Baumgartner T, Byrne P, Zhang T, Morse KW, Mohamed FF, Ge C, Franceschi RT, Cowling RT, Greenberg BH, Pisapia DJ, Imahiyerobo TA, Lakhani S, Ross ME, Hoffman CE, Debnath S, Greenblatt MB. A multi-stem cell basis for craniosynostosis and calvarial mineralization. Nature 2023; 621:804-812. [PMID: 37730988 PMCID: PMC10799660 DOI: 10.1038/s41586-023-06526-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC1 (CTSK+ CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2+ CSC) that we identified in this study. Deletion of Twist1, a gene associated with craniosynostosis in humans2,3, solely in CTSK+ CSCs is sufficient to drive craniosynostosis in mice, but the sites that are destined to fuse exhibit an unexpected depletion of CTSK+ CSCs and a corresponding expansion of DDR2+ CSCs, with DDR2+ CSC expansion being a direct maladaptive response to CTSK+ CSC depletion. DDR2+ CSCs display full stemness features, and our results establish the presence of two distinct stem cell lineages in the sutures, with both populations contributing to physiologic calvarial mineralization. DDR2+ CSCs mediate a distinct form of endochondral ossification without the typical haematopoietic marrow formation. Implantation of DDR2+ CSCs into suture sites is sufficient to induce fusion, and this phenotype was prevented by co-transplantation of CTSK+ CSCs. Finally, the human counterparts of DDR2+ CSCs and CTSK+ CSCs display conserved functional properties in xenograft assays. The interaction between these two stem cell populations provides a new biologic interface for the modulation of calvarial mineralization and suture patency.
Collapse
Affiliation(s)
- Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alisha R Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason McCormick
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Michelle Cung
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lingling Hu
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Sarfaraz Lalani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zan Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Branden R Sosa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomas Baumgartner
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Paul Byrne
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Kyle W Morse
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Fatma F Mohamed
- Department of Periodontics, Prevention and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chunxi Ge
- Department of Periodontics, Prevention and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Periodontics, Prevention and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - Barry H Greenberg
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thomas A Imahiyerobo
- Division of Plastic Surgery, Department of Surgery, New York-Presbyterian Hospital and Columbia University Medical Center, New York, NY, USA
| | - Shenela Lakhani
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Caitlin E Hoffman
- Department of Neurological Surgery, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, USA
| | - Shawon Debnath
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Research Division, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
4
|
Gao Y, Ding Y, Tai XR, Zhang C, Wang D. Ponatinib: An update on its drug targets, therapeutic potential and safety. Biochim Biophys Acta Rev Cancer 2023; 1878:188949. [PMID: 37399979 DOI: 10.1016/j.bbcan.2023.188949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Leukemia is a malignancy of the hematopoietic system, and as its pathogenesis has become better understood, three generations of tyrosine kinase inhibitors (TKIs) have been developed. Ponatinib is the third-generation breakpoint cluster region (BCR) and Abelson (ABL) TKI, which has been influential in the leukemia therapy for a decade. Moreover, ponatinib is a potent multi-target kinase inhibitor that acts on various kinases, such as KIT, RET, and Src, making it a promising treatment option for triple-negative breast cancer (TNBC), lung cancer, myeloproliferative syndrome, and other diseases. The drug's significant cardiovascular toxicity poses a significant challenge to its clinical use, requiring the development of strategies to minimize its toxicity and side effects. In this article, the pharmacokinetics, targets, therapeutic potential, toxicity and production mechanism of ponatinib will be reviewed. Furthermore, we will discuss methods to reduce the drug's toxicity, providing new avenues for research to improve its safety in clinical use.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/pharmacology
- Fusion Proteins, bcr-abl/therapeutic use
- Drug Resistance, Neoplasm
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/chemically induced
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yue Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xin-Ran Tai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
5
|
Yang G, Lu T, Weisenberger DJ, Liang G. The Multi-Omic Landscape of Primary Breast Tumors and Their Metastases: Expanding the Efficacy of Actionable Therapeutic Targets. Genes (Basel) 2022; 13:1555. [PMID: 36140723 PMCID: PMC9498783 DOI: 10.3390/genes13091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC) mortality is almost exclusively due to metastasis, which is the least understood aspect of cancer biology and represents a significant clinical challenge. Although we have witnessed tremendous advancements in the treatment for metastatic breast cancer (mBC), treatment resistance inevitably occurs in most patients. Recently, efforts in characterizing mBC revealed distinctive genomic, epigenomic and transcriptomic (multi-omic) landscapes to that of the primary tumor. Understanding of the molecular underpinnings of mBC is key to understanding resistance to therapy and the development of novel treatment options. This review summarizes the differential molecular landscapes of BC and mBC, provides insights into the genomic heterogeneity of mBC and highlights the therapeutically relevant, multi-omic features that may serve as novel therapeutic targets for mBC patients.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211121, China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Kim JM, Yang YS, Hong J, Chaugule S, Chun H, van der Meulen MCH, Xu R, Greenblatt MB, Shim JH. Biphasic regulation of osteoblast development via the ERK MAPK-mTOR pathway. eLife 2022; 11:78069. [PMID: 35975983 PMCID: PMC9417416 DOI: 10.7554/elife.78069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence supports that osteogenic differentiation of skeletal progenitors is a key determinant of overall bone formation and bone mass. Despite extensive studies showing the function of mitogen-activated protein kinases (MAPKs) in osteoblast differentiation, none of these studies show in vivo evidence of a role for MAPKs in osteoblast maturation subsequent to lineage commitment. Here, we describe how the extracellular signal-regulated kinase (ERK) pathway in osteoblasts controls bone formation by suppressing the mechanistic target of rapamycin (mTOR) pathway. We also show that, while ERK inhibition blocks the differentiation of osteogenic precursors when initiated at an early stage, ERK inhibition surprisingly promotes the later stages of osteoblast differentiation. Accordingly, inhibition of the ERK pathway using a small compound inhibitor or conditional deletion of the MAP2Ks Map2k1 (MEK1) and Map2k2 (MEK2), in mature osteoblasts and osteocytes, markedly increased bone formation due to augmented osteoblast differentiation. Mice with inducible deletion of the ERK pathway in mature osteoblasts also displayed similar phenotypes, demonstrating that this phenotype reflects continuous postnatal inhibition of late-stage osteoblast maturation. Mechanistically, ERK inhibition increases mitochondrial function and SGK1 phosphorylation via mTOR2 activation, which leads to osteoblast differentiation and production of angiogenic and osteogenic factors to promote bone formation. This phenotype was partially reversed by inhibiting mTOR. Our study uncovers a surprising dichotomy of ERK pathway functions in osteoblasts, whereby ERK activation promotes the early differentiation of osteoblast precursors, but inhibits the subsequent differentiation of committed osteoblasts via mTOR-mediated regulation of mitochondrial function and SGK1.
Collapse
Affiliation(s)
- Jung-Min Kim
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Yeon-Suk Yang
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Jaehyoung Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sachin Chaugule
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Hyonho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering and Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, United States.,Research Division, Hospital for Special Surgery, New York, United States
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Matthew B Greenblatt
- Research Division, Hospital for Special Surgery, New York, United States.,Department of Pathology and Laboratory Medicine, Weill Cornell, New York, United States
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States.,Horae Gene Therapy Center, Worcester, United States.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Worcester, United States
| |
Collapse
|
7
|
miRNA-338-3p inhibits the migration, invasion and proliferation of human lung adenocarcinoma cells by targeting MAP3K2. Aging (Albany NY) 2022; 14:6094-6110. [PMID: 35929837 PMCID: PMC9417240 DOI: 10.18632/aging.204198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Objective: This study aimed to investigate the effects of micro ribonucleic acid (miR)-338-3p on the migration, invasion and proliferation of lung adenocarcinoma (LUAD) cells. Methods: Bioinformatics analysis was employed to evaluate the function and expression of related genes in lung cancer. Human A549 and NCI-H1299 cells cultured to logarithmic growth stage were assigned to negative control (NC) mimic group, miR-338-3p mimic group (miR-mimic group), NC inhibitor group and miR-338-3p inhibitor group (miR-inhibitor group) treated with or without MAP3K2 overexpression (OE)-lentivirus, or TBHQ or FR180204. Transwell assay, cell colony formation assay, Western blotting and cell-cycle analysis were carried out. Results: Bioinformatics results manifested that miR-338 and MAP3K2 were involved in LUAD. The expression levels of MAP3K2, p-ERK1/2, MMP-2, MMP-3, MMP-9, cyclin A2 and cyclin D1 were increased after addition of miR-338-3p inhibitor, consistent with the raised amount of LUAD cells in migration and invasion experiments and number of colonies formed, as well as the cell cycle, but miR-338-3p mimic reversed these results. Moreover, MAP3K2 overexpression elevated the level of p-ERK1/2. Meanwhile, after treatment with TBHQ or FR180204, the influence of miR-338-3p inhibitor or mimic was also verified. Conclusions: MiR-338-3p overexpression can modulate the ERK1/2 signaling pathway by targeting MAP3K2, thus inhibiting the migration, invasion and proliferation of human LUAD cells.
Collapse
|
8
|
Vergara N, de Mier MVPR, Rodelo-Haad C, Revilla-González G, Membrives C, Díaz-Tocados JM, Martínez-Moreno JM, Torralbo AI, Herencia C, Rodríguez-Ortiz ME, López-Baltanás R, Richards WG, Felsenfeld A, Almadén Y, Martin-Malo A, Ureña J, Santamaría R, Soriano S, Rodríguez M, Muñoz-Castañeda JR. The direct effect of fibroblast growth factor 23 on vascular smooth muscle cell phenotype and function. Nephrol Dial Transplant 2022; 38:322-343. [PMID: 35867864 PMCID: PMC9923714 DOI: 10.1093/ndt/gfac220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In chronic kidney disease (CKD) patients, increased levels of fibroblast growth factor 23 (FGF23) are associated with cardiovascular mortality. The relationship between FGF23 and heart hypertrophy has been documented, however, it is not known whether FGF23 has an effect on vasculature. Vascular smooth muscle cells VSMCs may exhibit different phenotypes; our hypothesis is that FGF23 favours a switch from a contractile to synthetic phenotype that may cause vascular dysfunction. Our objective was to determine whether FGF23 may directly control a change in VSMC phenotype. METHODS This study includes in vitro, in vivo and ex vivo experiments and evaluation of patients with CKD stages 2-3 studying a relationship between FGF23 and vascular dysfunction. RESULTS In vitro studies show that high levels of FGF23, by acting on its specific receptor FGFR1 and Erk1/2, causes a change in the phenotype of VSMCs from contractile to synthetic. This change is mediated by a downregulation of miR-221/222, which augments the expression of MAP3K2 and PAK1. miR-221/222 transfections recovered the contractile phenotype of VSMCs. Infusion of recombinant FGF23 to rats increased vascular wall thickness, with VSMCs showing a synthetic phenotype with a reduction of miR-221 expression. Ex-vivo studies on aortic rings demonstrate also that high FGF23 increases arterial stiffening. In CKD 2-3 patients, elevation of FGF23 was associated with increased pulse wave velocity and reduced plasma levels of miR-221/222. CONCLUSION In VSMCs, high levels of FGF23, through the downregulation of miR-221/222, causes a change to a synthetic phenotype. This change in VSMCs increases arterial stiffening and impairs vascular function, which might ultimately worsen cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Gonzalo Revilla-González
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Departemento de Fisiología Médica y Biofísica, Sevilla, Spain
| | - Cristina Membrives
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Juan M Díaz-Tocados
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Julio M Martínez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Ana I Torralbo
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Carmen Herencia
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | | | - Rodrigo López-Baltanás
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | | | - Arnold Felsenfeld
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System and the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yolanda Almadén
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,Internal Medicine Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Biomedical Research Networking Centre consortium for the area of Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Alejandro Martin-Malo
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain,Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain, and the European Uremic Toxins group
| | - Juan Ureña
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Departemento de Fisiología Médica y Biofísica, Sevilla, Spain
| | | | - Sagrario Soriano
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain,Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain, and the European Uremic Toxins group
| | | | | |
Collapse
|
9
|
β-Arrestin2 Is Critically Involved in the Differential Regulation of Phosphosignaling Pathways by Thyrotropin-Releasing Hormone and Taltirelin. Cells 2022; 11:cells11091473. [PMID: 35563779 PMCID: PMC9103620 DOI: 10.3390/cells11091473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL.
Collapse
|
10
|
Greenblatt MB, Shim JH, Bok S, Kim JM. The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. J Bone Metab 2022; 29:1-15. [PMID: 35325978 PMCID: PMC8948490 DOI: 10.11005/jbm.2022.29.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
- Research Division, Hospital for Special Surgery, New York, NY,
USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
- Horae Gene Therapy Center, and Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA,
USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
| |
Collapse
|
11
|
Mu X, Zhang HY, Shen YH, Yang HY. Familial left cervical neurofibromatosis 1 with scoliosis: A case report. World J Clin Cases 2021; 9:8839-8845. [PMID: 34734064 PMCID: PMC8546810 DOI: 10.12998/wjcc.v9.i29.8839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an inherited autosomal dominant disorder affecting many parts of the body with café au lait spots, skeletal deformity, and scoliosis. A familial case of NF1 with scoliosis and a painless mass had not yet been reported.
CASE SUMMARY We describe the case of a 15-year-old male patient with a painless lump on the left side of his neck for 10 years and scoliosis. His right shoulder was about 5 cm lower than the left, the left side of his face was deformed, and the left submandibular skin was relaxed. The folding and drooping were obvious and movement was poor. Computed tomography revealed the involvement of the neck, upper chest wall, and surrounding left shoulder, accompanied by bone changes and scoliosis. Histological evaluation showed subepidermal pale blue mucoid degeneration, fibrous fusiform cells in the dermis in a fascicular, woven arrangement. His mother had the same medical history. The diagnosis was neurofibromatosis of the left neck. Various parts of the tumor tissue were serially resected during several visits. Eight months after surgery, there was a slight tendency to regrow.
CONCLUSION This case of slow-progressing NF1 highlights the importance of early diagnosis and treatment to reduce its impact on the patient’s growth and development.
Collapse
Affiliation(s)
- Xia Mu
- School of Stomatology, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
- Department of Stomatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Han-Yu Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Yue-Hong Shen
- Department of Stomatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Hong-Yu Yang
- School of Stomatology, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
- Department of Stomatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
12
|
Yin S, Liao Q, Wang Y, Shi Q, Xia P, Yi M, Huang J. Ccdc134 deficiency impairs cerebellar development and motor coordination. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12763. [PMID: 34382738 DOI: 10.1111/gbb.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.
Collapse
Affiliation(s)
- Sha Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qinyuan Liao
- Department of Immunology, Guilin Medical University, Guilin, Guangxi province, China
| | - Yida Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianwen Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, and NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Schreuder WH, van der Wal JE, de Lange J, van den Berg H. Multiple versus solitary giant cell lesions of the jaw: Similar or distinct entities? Bone 2021; 149:115935. [PMID: 33771761 DOI: 10.1016/j.bone.2021.115935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The majority of giant cell lesions of the jaw present as a solitary focus of disease in bones of the maxillofacial skeleton. Less frequently they occur as multifocal lesions. This raises the clinical dilemma if these should be considered distinct entities and therefore each need a specific therapeutic approach. Solitary giant cell lesions of the jaw present with a great diversity of symptoms. Recent molecular analysis revealed that these are associated with somatic gain-of-function mutations in KRAS, FGFR1 or TRPV4 in a large component of the mononuclear stromal cells which all act on the RAS/MAPK pathway. For multifocal lesions, a small group of neoplastic multifocal giant cell lesions of the jaw remain after ruling out hyperparathyroidism. Strikingly, most of these patients are diagnosed with jaw lesions before the age of 20 years, thus before the completion of dental and jaw development. These multifocal lesions are often accompanied by a diagnosis or strong clinical suspicion of a syndrome. Many of the frequently reported syndromes belong to the so-called RASopathies, with germline or mosaic mutations leading to downstream upregulation of the RAS/MAPK pathway. The other frequently reported syndrome is cherubism, with gain-of-function mutations in the SH3BP2 gene leading through assumed and unknown signaling to an autoinflammatory bone disorder with hyperactive osteoclasts and defective osteoblastogenesis. Based on this extensive literature review, a RAS/MAPK pathway activation is hypothesized in all giant cell lesions of the jaw. The different interaction between and contribution of deregulated signaling in individual cell lineages and crosstalk with other pathways among the different germline- and non-germline-based alterations causing giant cell lesions of the jaw can be explanatory for the characteristic clinical features. As such, this might also aid in the understanding of the age-dependent symptomatology of syndrome associated giant cell lesions of the jaw; hopefully guiding ideal timing when installing treatment strategies in the future.
Collapse
Affiliation(s)
- Willem H Schreuder
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Head and Neck Surgery and Oncology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacqueline E van der Wal
- Department of Pathology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatrics / Oncology, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|