1
|
Wang Z, Robbins B, Zhuang R, van Bruggen R, Sandini T, Li XM, Zhang Y. Psilocybin mitigates behavioral despair and cognitive impairment in treatment-resistant depression model using wistar kyoto rats. Sci Rep 2025; 15:18432. [PMID: 40419666 DOI: 10.1038/s41598-025-03383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 05/20/2025] [Indexed: 05/28/2025] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability that affects over 300 million people globally. Despite multiple antidepressant trials, approximately one-third of MDD patients remain symptomatic, progressing to treatment-resistant depression (TRD). This persistence possibly is due to the multifaceted etiology of TRD, encompassing biological, psychological, and environmental factors. Chronic stress, prevalent in modern life, significantly contributes to mental health disorders and complicates TRD treatment. This study investigated psilocybin as a potential TRD treatment using a diathesis-stress animal model. Twenty-two male Wistar-Kyoto (WKY) rats were divided into control and stress groups, with the stress group further subdivided to receive either sham treatment or psilocybin as early intervention. Behavioral assessments demonstrated a significant and sustained beneficial effect of psilocybin on behavioral despair and cognitive impairment. Biochemical analyses revealed psilocybin-induced increases in thyroid-stimulating hormone (TSH) levels without significant changes in the hypothalamic-pituitary-adrenal (HPA) axis. The ability of psilocybin to counter stress-induced TSH reductions suggested that TSH may serve as a proxy marker of therapeutic response, although its causal role in mood regulation remains unclear. Additionally, following psilocybin administration, changes in cannabinoid receptor type I (CB1R) suggest a potential modulation of psilocybin intervention on the component of the endocannabinoid system (ECS), though causal links remain unconfirmed without antagonist studies. These findings highlight the potential of psilocybin to treat TRD through the targeting of previously unexplored biological pathways.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Brett Robbins
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ryan Zhuang
- Western Canada High School, Calgary, AB, Canada
| | - Rebekah van Bruggen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thaisa Sandini
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Katz Group Centre for Research, 11315 87 Ave NW, Edmonton, AB, T6G 2H5, Canada.
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Katz Group Centre for Research, 11315 87 Ave NW, Edmonton, AB, T6G 2H5, Canada.
| |
Collapse
|
2
|
Volpi T, Holden D, Gallezot JD, Nabulsi N, Lim K, Labaree D, Gao H, Kapinos M, Keliher EJ, Fonseca KR, Trapa P, Varrone A, Halldin C, Maresca KP, Huang Y, Carson RE. A novel approach for modeling in vivo enzyme turnover in the presence of a suicide inhibitor drug: A proof-of-concept brain PET study on MAG lipase. J Cereb Blood Flow Metab 2025:271678X251329254. [PMID: 40370302 DOI: 10.1177/0271678x251329254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
PET imaging allows the study of enzyme concentration and activity in vivo. The enzyme natural turnover α , relevant for drug development, can be estimated if a suicide inhibitor drug is used. The main aim of this study was to develop a model for estimating α by accounting for the presence of residual inhibitor. We analyzed nonhuman primate PET data with monoacyglycerol lipase (MAGL) tracer [11C]PF-06809247, and suicide inhibitor PF-06818883 (0.03-1.27 mg/kg, active compound PF-06807893). As [11C]PF-06809247 is an irreversible tracer, we used simulations to evaluate the impact of flow limitation on identifiability of kinetic parameters. Based on this, MAGL activity estimates were obtained from three outcome parameters: Ki, k3, K ˜ 3 (=K 1 K i K 1 - K i ). A new model, which links enzyme activity to the inhibitor drug's plasma concentration, was used to estimate α . Using a conservative statistical cut-off, MAGL turnover half-lives were estimated (Ki: 3.9 h; k3: 4.6 h; K ˜ 3 : 6.1 h) - with faster turnover for Ki (flow-limited). Serial PET experiments and measuring the drug's plasma concentration allowed to estimate α correcting for residual suicide inhibition. This approach can be extended to other PET enzyme targets, improving our understanding of enzyme pathological alterations and suicide inhibitor-based therapies.
Collapse
Affiliation(s)
- Tommaso Volpi
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - Daniel Holden
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - Keunpoong Lim
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - David Labaree
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - Hong Gao
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - Michael Kapinos
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - Edmund J Keliher
- Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Kari R Fonseca
- Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Patrick Trapa
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA, USA
| | - Andrea Varrone
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Biophysics and Radiation Biology, and HUN-REN TKI, Semmelweis University, Budapest, Hungary
| | - Kevin P Maresca
- Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Xu M, Wang J, Shi J, Wu X, Zhao Q, Shen H, Chen J, Yu J. Esketamine mitigates endotoxin-induced hippocampal injury by regulating calcium transient and synaptic plasticity via the NF-α1/CREB pathway. Neuropharmacology 2025; 269:110362. [PMID: 39947390 DOI: 10.1016/j.neuropharm.2025.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Esketamine (ES) has been shown to confer neuroprotection partly by exerting anti-inflammation, alleviating oxidative stress, enhancing neuronal vitality, and promoting synaptic remodeling. Nonetheless, its precise function in SAE and the associated mechanisms are not understood. In this study, we investigated the neuroprotective potential of ES at behavioral, structural, and functional levels in vivo and in vitro. C57BL/6J mice administered with lipopolysaccharide (LPS) served as the research model and were injected with 10 mg/kg ES intraperitoneally. Fiber photometry was performed to record Ca2+ transients during behavioral assays. The neuronal dendritic architecture and synaptic plasticity were examined using the Golgi staining and transmission electron microscopy. Stereotactic administration of siRNA was performed to suppress the NF-α1 expression and determine the role of the NF-α1/CREB pathway in vitro. The neuroprotective effects of ES were verified in primary neurons and HT22 cells using a conditioned culture. The ES treatment alleviated sepsis symptoms, cognitive impairment, and decreased mortality. It also upregulated the NF-α1 expression in the hippocampal CA1 region and reduced neuroinflammation, oxidative stress, and neuronal loss. Moreover, ES treatment normalized the Ca2+ transients and improved dendritic structure as well as synaptic plasticity. However, NF-α1 knockdown p-CREB downregulation abolished the protective effects of ES. This also reversed the phenotypic characteristics of Ca2+ transients, dendritic structure, and post-synaptic plasticity. ES can abolish the LPS-induced hippocampal neurotoxicity in vitro and in vivo models and modulate neuronal Ca2+ transients and post-synaptic plasticity via the NF-α1/CREB signaling pathway. These findings provide a theoretical basis that will guide the future application of ES to treat hippocampal injury in sepsis.
Collapse
Affiliation(s)
- Mu Xu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Jialiang Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China
| | - Xiuyun Wu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Qin Zhao
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| | - Jingli Chen
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China.
| |
Collapse
|
4
|
Wang Z, Robbins B, Zhuang R, Sandini T, van Bruggen R, Li XM, Zhang Y. Early psilocybin intervention alleviates behavioral despair and cognitive impairment in stressed Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111243. [PMID: 39756636 DOI: 10.1016/j.pnpbp.2024.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Chronic stress exerts profound effects on mental health, contributing to disorders such as depression, anxiety, and cognitive impairment. This study examines the potential of psilocybin to alleviate behavioral despair and cognitive deficits in a rodent model of chronic stress, focusing on the interplay between the Hypothalamic-Pituitary-Adrenal (HPA) axis and the Endocannabinoid System (ECS). Twenty-two male Wistar rats were divided into control and stress groups. Animals within the stress group were exposed to predator odor and chronic social instability to induce chronic stress, and were either sham treated, or given psilocybin. Behavioral assessments were conducted using the Open Field Test, Sucrose Preference Test, Novel Object Recognition, Elevated Plus Maze, and Forced Swimming Test to evaluate locomotion, anhedonia, memory, anxiety, and behavioral despair, respectively. Blood and brain samples were analyzed for biochemical markers. Results indicated that psilocybin significantly reduced stress-induced behavioral despair and cognitive impairments, likely through ECS-mediated downregulation of the HPA axis. These findings suggest that early intervention with psilocybin has sustained beneficial effects on stress-related behavioral and cognitive disturbances, underscoring its potential as a novel therapeutic approach for stress-related mental health disorders.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada
| | - Brett Robbins
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada
| | - Ryan Zhuang
- Western Canada High School, Calgary, AB, Canada
| | - Thaisa Sandini
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada
| | - Rebekah van Bruggen
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada.
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, College of Health Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Silva NR, Arjmand S, Domingos LB, Chaves-Filho AM, Mottin M, Real CC, Waszkiewicz AL, Gobira PH, Ferraro AN, Landau AM, Andrade CH, Müller HK, Wegener G, Joca SRL. Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression. Pharmacol Res 2025; 211:107545. [PMID: 39667543 DOI: 10.1016/j.phrs.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology. Changes in eCB receptors and enzymes were assessed at mRNA and protein levels (qPCR and western blot), CB1 binding ([3H]SR141716A autoradiography) and endocannabinoid content (lipidomics). The results demonstrated that the depressive behavior in FSL was negatively correlated with 2-AG levels, which were restored upon acute S-KET treatment. Although S-KET decreased CB1 and FAAH gene expression in FSL, there were no significant changes at protein levels. [3H]SR141716A binding to CB1 receptors was increased by S-KET and in silico analysis suggested that it binds to CB1, CB2, GPR55 and FAAH. Overall, S-KET effects correlated with an increased endocannabinoid signaling in the PFC, but systemic treatment with rimonabant failed to block its behavioral effects. Altogether, our results indicate that S-KET facilitates eCB signaling in the PFC of FSL. The inability of rimonabant to block the antidepressant effect of S-KET highlights the complexity of its interaction with the ECS, warranting further investigation into the molecular pathways.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Luana B Domingos
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Adriano M Chaves-Filho
- Division of Medical Sciences, University of Victoria, Canada; Neuropharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Brazil
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Caroline C Real
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | | | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Sâmia R L Joca
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| |
Collapse
|
6
|
Liu P, Liu Z, Zhou H, Zhu J, Sun Z, Zhang G, Liu Y. Lipidomics in forensic science: a comprehensive review of applications in drugs, alcohol, latent fingermarks, fire debris, and seafood authentication. Mol Omics 2024; 20:618-629. [PMID: 39400253 DOI: 10.1039/d4mo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Forensic science, an interdisciplinary field encompassing the collection, examination, and presentation of evidence in legal proceedings, has recently embraced lipidomics as a valuable tool. Lipidomics, a subfield of metabolomics, specializes in the analysis of lipid structures and functions, offering insights into biological processes that can aid forensic investigations. While not a substitute for DNA analysis in personal identification, lipidomics complements this technique by focusing on small biological molecules, with distinct sample requirements. This review comprehensively explores the current applications of lipidomics in forensic science. The review commences with an introduction to the concept and historical background of lipidomics, subsequently delving into its utilization in diverse areas such as drug analysis, ethyl alcohol and substitute assessment, latent fingermark detection, fire debris analysis, and seafood authentication. By showcasing the various biological materials and methods employed, this review underscores the potential of lipidomics as a powerful adjunct in forensic investigations.
Collapse
Affiliation(s)
- Pingyang Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhanfang Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Hong Zhou
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Jun Zhu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Zhenwen Sun
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Guannan Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Yao Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
7
|
Brakatselos C, Polissidis A, Ntoulas G, Asprogerakas MZ, Tsarna O, Vamvaka-Iakovou A, Nakas G, Delis A, Tzimas P, Skaltsounis L, Silva J, Delis F, Oliveira JF, Sotiropoulos I, Antoniou K. Multi-level therapeutic actions of cannabidiol in ketamine-induced schizophrenia psychopathology in male rats. Neuropsychopharmacology 2024; 50:388-400. [PMID: 39242923 PMCID: PMC11631973 DOI: 10.1038/s41386-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Repeated administration of ketamine (KET) has been used to model schizophrenia-like symptomatology in rodents, but the psychotomimetic neurobiological and neuroanatomical underpinnings remain elusive. In parallel, the unmet need for a better treatment of schizophrenia requires the development of novel therapeutic strategies. Cannabidiol (CBD), a major non-addictive phytocannabinoid has been linked to antipsychotic effects with unclear mechanistic basis. Therefore, this study aims to clarify the neurobiological substrate of repeated KET administration model and to evaluate CBD's antipsychotic potential and neurobiological basis. CBD-treated male rats with and without prior repeated KET administration underwent behavioral analyses, followed by multilevel analysis of different brain areas including dopaminergic and glutamatergic activity, synaptic signaling, as well as electrophysiological recordings for the assessment of corticohippocampal and corticostriatal network activity. Repeated KET model is characterized by schizophrenia-like symptomatology and alterations in glutamatergic and dopaminergic activity mainly in the PFC and the dorsomedial striatum (DMS), through a bi-directional pattern. These observations are accompanied by glutamatergic/GABAergic deviations paralleled to impaired function of parvalbumin- and cholecystokinin-positive interneurons, indicative of excitation/inhibition (E/I) imbalance. Moreover, CBD counteracted the schizophrenia-like behavioral phenotype as well as reverted prefrontal abnormalities and ventral hippocampal E/I deficits, while partially modulated dorsostriatal dysregulations. This study adds novel insights to our understanding of the KET-induced schizophrenia-related brain pathology, as well as the CBD antipsychotic action through a region-specific set of modulations in the corticohippocampal and costicostrtiatal circuitry of KET-induced profile contributing to the development of novel therapeutic strategies focused on the ECS and E/I imbalance restoration.
Collapse
Affiliation(s)
- Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Science and Mathematics, ACG-Research Center, Deree - American College of Greece, 15342, Athens, Greece
| | - George Ntoulas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Michail-Zois Asprogerakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Olga Tsarna
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasia Vamvaka-Iakovou
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gerasimos Nakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasios Delis
- Center of Basic Research, Biological Imaging Unit, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Petros Tzimas
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Joao Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
8
|
Li M, Yang XK, Yang J, Li TX, Cui C, Peng X, Lei J, Ren K, Ming J, Zhang P, Tian B. Ketamine ameliorates post-traumatic social avoidance by erasing the traumatic memory encoded in VTA-innervated BLA engram cells. Neuron 2024; 112:3192-3210.e6. [PMID: 39032491 DOI: 10.1016/j.neuron.2024.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Erasing traumatic memory during memory reconsolidation is a promising retrieval-extinction strategy for post-traumatic stress disorder (PTSD). Here, we developed an acute social defeat stress (SDS) mouse model with short-term and re-exposure-evoked long-term social avoidance. SDS-associated traumatic memories were identified to be stored in basolateral amygdala (BLA) engram cells. A single intraperitoneal administration of subanesthetic-dose ketamine within, but not beyond, the re-exposure time window significantly alleviates SDS-induced social avoidance, which reduces the activity and quantity of reactivated BLA engram cells. Furthermore, activation or inhibition of dopaminergic projections from the ventral tegmental area to the BLA effectively mimics or blocks the therapeutic effect of re-exposure with ketamine and is dopamine D2 receptor dependent. Single-cell RNA sequencing reveals that re-exposure with ketamine triggered significant changes in memory-related pathways in the BLA. Together, our research advances the understanding of how ketamine mitigates PTSD symptoms and offers promising avenues for developing more effective treatments for trauma-related disorders.
Collapse
Affiliation(s)
- Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xue-Ke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tong-Xia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| |
Collapse
|
9
|
Dragon J, Obuchowicz E. How depression and antidepressant drugs affect endocannabinoid system?-review of clinical and preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4511-4536. [PMID: 38280009 DOI: 10.1007/s00210-023-02938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/30/2023] [Indexed: 01/29/2024]
Abstract
As major depressive disorder is becoming a more and more common issue in modern society, it is crucial to discover new possible grip points for its diagnosis and antidepressive therapy. One of them is endocannabinoid system, which has been proposed as a manager of emotional homeostasis, and thus, endocannabinoid alterations have been found in animals undergoing various preclinical models of depression procedures as well as in humans suffering from depressive-like disorders. In this review article, studies regarding those alterations have been summed up and analyzed. Another important issue raised by the researchers is the impact of currently used antidepressive drugs on endocannabinoid system so that it would be possible to predict reversibility of endocannabinoid alterations following stress exposure and, in the future, to be able to design individually personalized therapies. Preclinical studies investigating this topic have been analyzed and described in this article. Unfortunately, too few clinical studies in this field exist, what indicates an urgent need for collecting such data, so that it would be possible to compare them with preclinical outcomes and draw reliable conclusions.
Collapse
Affiliation(s)
- Jonasz Dragon
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland
| |
Collapse
|
10
|
Bao H, Wang C, Xue X, Hu B, Guo Q. CB1 receptor mediates anesthetic drug ketamine‑induced neuroprotection against glutamate in HT22 cells. Exp Ther Med 2024; 27:268. [PMID: 38756904 PMCID: PMC11097274 DOI: 10.3892/etm.2024.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
The anesthetic drug, ketamine (KTM) has been shown to induce therapeutic effects against major depressive disorder (MDD), however the related underlying mechanisms remain unclear. In the present study, HT22 neuronal cells were treated with glutamate to imitate oxidative stress injury in MDD, and it was hypothesized that the cannabinoid type 1 (CB1) receptor mediates KTM-induced neuroprotection via ameliorating mitochondrial function in glutamate-treated neuronal cells. Compared with the control, glutamate decreased cell viability and intracellular antioxidants, including glutathione (GSH), catalase and superoxide dismutase 2 levels, and inhibited mitochondrial function simultaneously. Moreover, glutamate increased lactate dehydrogenase release, cellular apoptosis level, cleaved caspase-3 expression and intracellular oxidants, such as reactive oxygen species, oxidized GSH and mitochondrial superoxide in the cells. The presence of KTM, however, significantly decreased the glutamate-induced oxidative stress injury, ameliorated the antioxidant/oxidant levels in the cells, enhanced mitochondrial function and upregulated CB1 receptor expression (P<0.05). Co-administration of the CB1 receptor antagonist AM251 markedly abolished the KTM-induced cytoprotective effects and ameliorations of antioxidant/oxidant levels and mitochondrial function, and also reversed CB1 upregulation (P<0.05). These observations indicated that KTM decreases the oxidative stress injury caused by glutamate in HT22 neuronal cells, and the neuroprotective effects may be mediated by the CB1 receptor.
Collapse
Affiliation(s)
- He Bao
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaorong Xue
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Bin Hu
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Qi Guo
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
11
|
Gobira PH, LaMar J, Marques J, Sartim A, Silveira K, Santos L, Wegener G, Guimaraes FS, Mackie K, Lu HC, Joca S. CB1 Receptor Silencing Attenuates Ketamine-Induced Hyperlocomotion Without Compromising Its Antidepressant-Like Effects. Cannabis Cannabinoid Res 2023; 8:768-778. [PMID: 36067014 PMCID: PMC10771879 DOI: 10.1089/can.2022.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.
Collapse
Affiliation(s)
- Pedro Henrique Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Jade Marques
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ariandra Sartim
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kennia Silveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luana Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | | | - Ken Mackie
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Zhornitsky S, Oliva HNP, Jayne LA, Allsop ASA, Kaye AP, Potenza MN, Angarita GA. Changes in synaptic markers after administration of ketamine or psychedelics: a systematic scoping review. Front Psychiatry 2023; 14:1197890. [PMID: 37435405 PMCID: PMC10331617 DOI: 10.3389/fpsyt.2023.1197890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Henrique N. P. Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Laura A. Jayne
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Aza S. A. Allsop
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Hartford, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
13
|
Wang L, Wei Q, Xu R, Chen Y, Li S, Bu Q, Zhao Y, Li H, Zhao Y, Jiang L, Chen Y, Dai Y, Zhao Y, Cen X. Cardiolipin and OPA1 Team up for Methamphetamine-Induced Locomotor Activity by Promoting Neuronal Mitochondrial Fusion in the Nucleus Accumbens of Mice. ACS Chem Neurosci 2023; 14:1585-1601. [PMID: 37043723 DOI: 10.1021/acschemneuro.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yue Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| |
Collapse
|
14
|
Wang Y, Li H, Zhao Y, Qin F, Wang L, Jiang L, Wang X, Chen R, He Y, Wei Q, Li S, Chen Y, Xiao Y, Dai Y, Bu Q, Zhao Y, Tian J, Wang H, Cen X. Neonatal exposure to sevoflurane induces adolescent neurobehavioral dysfunction by interfering with hippocampal glycerophoslipid metabolism in rats. Cereb Cortex 2023; 33:1955-1971. [PMID: 35584785 DOI: 10.1093/cercor/bhac185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Sevoflurane exposure in the neonatal period causes long-term developmental neuropsychological dysfunction, including memory impairment and anxiety-like behaviors. However, the molecular mechanisms underlying such effects have not been fully elucidated. In this study, we investigated the effect of neonatal exposure to sevoflurane on neurobehavioral profiles in adolescent rats, and applied an integrated approach of lipidomics and proteomics to investigate the molecular network implicated in neurobehavioral dysfunction. We found that neonatal exposure to sevoflurane caused cognitive impairment and social behavior deficits in adolescent rats. Lipidomics analyses revealed that sevoflurane significantly remodeled hippocampal lipid metabolism, including lysophatidylcholine (LPC) metabolism, phospholipid carbon chain length and carbon chain saturation. Through a combined proteomics analysis, we found that neonatal exposure to sevoflurane significantly downregulated the expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1), a key enzyme in the regulation of phospholipid metabolism, in the hippocampus of adolescent rats. Importantly, hippocampal LPCAT1 overexpression restored the dysregulated glycerophospholipid (GP) metabolism and alleviated the learning and memory deficits caused by sevoflurane. Collectively, our evidence that neonatal exposure to sevoflurane downregulates LPCAT1 expression and dysregulates GP metabolism in the hippocampus, which may contribute to the neurobehavioral dysfunction in the adolescent rats.
Collapse
Affiliation(s)
- Yonghai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Feng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Xiaojie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuman He
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Qinfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| |
Collapse
|
15
|
Li H, Chen R, Zhou Y, Wang H, Sun L, Yang Z, Bai L, Zhang J. Endocannabinoids regulate cocaine-associated memory through brain AEA-CB1R signalling activation. Mol Metab 2022; 65:101597. [PMID: 36096452 PMCID: PMC9508352 DOI: 10.1016/j.molmet.2022.101597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Contextual drug-associated memory precipitates craving and relapse in substance users, and the risk of relapse is a major challenge in the treatment of substance use disorders. Thus, understanding the neurobiological underpinnings of how this association memory is formed and maintained will inform future advances in the treatment of drug addiction. Brain endocannabinoids (eCBs) signalling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate small lipid ligand biosynthesis and metabolism in regulating drug-associated memory has not been examined. Here, we explored how manipulation of the lipase fatty acid amide hydrolase (FAAH), which is involved in mediating the level of the lipid ligand anandamide (AEA), affects cocaine-associated memory formation. Methods We applied behavioural, pharmacological and biochemical methods to detect cocaine-associated memory formation, eCBs in the dorsal dentate gyrus (dDG), and the activity of related enzymes. We further examined the roles of abnormal FAAH activity and AEA–CB1R signalling in the regulation of cocaine-associated memory formation and granule neuron dendritic structure alterations in the dDG through Western blotting, electron microscopy and immunofluorescence. Results In the present study, we found that cocaine induced a decrease in the level of FAAH in the dDG and increased the level of AEA. A high level of AEA activated cannabinoid type 1 receptors (CB1Rs) and further triggered CB1R signalling activation and granule neuron dendritic remodelling, and these effects were reversed by blockade of CB1Rs in the brain. Furthermore, inhibition of FAAH in the dDG markedly increased AEA levels and promoted cocaine-associated memory formation through CB1R signalling activation. Conclusions Together, our findings demonstrate that the lipase FAAH influences CB1R signalling activation and granule neuron dendritic structure alteration in the dDG by regulating AEA levels and that AEA and AEA metabolism play a key role in cocaine-associated memory formation. Manipulation of AEA production may serve as a potential therapeutic strategy for drug addiction and relapse prevention. AEA plays an important role in the cocaine-associated memory formation through triggering CB1Rs. Cocaine decreases FAAH level and leads to AEA increasing, which activate CB1R signaling and remodel dendritic spines structure of granule neurons. Regulating AEA degradation through manipulation of FAAH, governs the cocaine-associated memory formation.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyi Zhou
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haichuan Wang
- Department of Pediatrics, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhen Yang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Bai
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Hsa-let-7d-5p Promotes Gastric Cancer Progression by Targeting PRDM5. JOURNAL OF ONCOLOGY 2022; 2022:2700651. [PMID: 35847370 PMCID: PMC9283079 DOI: 10.1155/2022/2700651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Gastric cancer (GC) is a common malignant tumor in the digestive system and a significant health burden worldwide. In this study, we found that hsa-let-7d-5p was upregulated in GC cells, promoted GC cell proliferation, migration, and invasion, and reduced apoptosis. Moreover, we found that the expression of PRDM5 (PR domain protein 5) was downregulated in GC cells and upregulated in GC cells treated with hsa-let-7d-5p inhibitor. Further investigation showed that hsa-let-7d-5p was the target of PRDM5, and the functions of hsa-let-7d-5p on GC progression were rescued by PRDM5 overexpression in GC cells. Collectively, our findings suggested that hsa-let-7d-5p promoted the development of GC by targeting PRDM5, indicating that hsa-let-7d-5p could be a promising therapeutic molecule for the treatment of gastric cancer.
Collapse
|
17
|
Sharafi A, Pakkhesal S, Fakhari A, Khajehnasiri N, Ahmadalipour A. Rapid treatments for depression: Endocannabinoid system as a therapeutic target. Neurosci Biobehav Rev 2022; 137:104635. [PMID: 35351488 DOI: 10.1016/j.neubiorev.2022.104635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD), i.e., antidepressant drugs and psychotherapy, show delayed onset of therapeutic effect as late as 2-3 weeks or more. In the clinic, the speed of beginning of the actions of antidepressant drugs or other interventions is vital for many reasons. Late-onset means that depression, its related disability, and the potential danger of suicide remain a threat for some patients. There are some rapid-acting antidepressant interventions, such as sleep deprivation, ketamine, acute exercise, which induce a significant response, ranging from a few hours to maximally one week, and most of them share a common characteristic that is the activation of the endocannabinoid (eCB) system. Activation of this system, i.e., augmentation of eCB signaling, appears to have anti-depressant-like actions. This article puts the idea forward that the activation of eCB signaling represents a critical mechanism of rapid-acting therapeutic interventions in MDD, and this system might contribute to the development of novel rapid-acting treatments for MDD.
Collapse
Affiliation(s)
- AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Khajehnasiri
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Rawat R, Tunc-Ozcan E, McGuire TL, Peng CY, Kessler JA. Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice. Nat Commun 2022; 13:2650. [PMID: 35551462 PMCID: PMC9098911 DOI: 10.1038/s41467-022-30386-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Ketamine treatment decreases depressive symptoms within hours, but the mechanisms mediating these rapid antidepressant effects are unclear. Here, we demonstrate that activity of adult-born immature granule neurons (ABINs) in the mouse hippocampal dentate gyrus is both necessary and sufficient for the rapid antidepressant effects of ketamine. Ketamine treatment activates ABINs in parallel with its behavioral effects in both stressed and unstressed mice. Chemogenetic inhibition of ABIN activity blocks the antidepressant effects of ketamine, indicating that this activity is necessary for the behavioral effects. Conversely, chemogenetic activation of ABINs without any change in neuron numbers mimics both the cellular and the behavioral effects of ketamine, indicating that increased activity of ABINs is sufficient for rapid antidepressant effects. These findings thus identify a specific cell population that mediates the antidepressant actions of ketamine, indicating that ABINs can potentially be targeted to limit ketamine's side effects while preserving its therapeutic efficacy.
Collapse
Affiliation(s)
- Radhika Rawat
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Elif Tunc-Ozcan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
19
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, López-Picón F, Morcuende Á, Femenía T, Manzanares J. Biomarkers of the Endocannabinoid System in Substance Use Disorders. Biomolecules 2022; 12:biom12030396. [PMID: 35327588 PMCID: PMC8946268 DOI: 10.3390/biom12030396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite substance use disorders (SUD) being one of the leading causes of disability and mortality globally, available therapeutic approaches remain ineffective. The difficulty in accurately characterizing the neurobiological mechanisms involved with a purely qualitative diagnosis is an obstacle to improving the classification and treatment of SUD. In this regard, identifying central and peripheral biomarkers is essential to diagnosing the severity of drug dependence, monitoring therapeutic efficacy, predicting treatment response, and enhancing the development of safer and more effective pharmacological tools. In recent years, the crucial role that the endocannabinoid system (ECS) plays in regulating the reinforcing and motivational properties of drugs of abuse has been described. This has led to studies characterizing ECS alterations after exposure to various substances to identify biomarkers with potential diagnostic, prognostic, or therapeutic utility. This review aims to compile the primary evidence available from rodent and clinical studies on how the ECS components are modified in the context of different substance-related disorders, gathering data from genetic, molecular, functional, and neuroimaging experimental approaches. Finally, this report concludes that additional translational research is needed to further characterize the modifications of the ECS in the context of SUD, and their potential usefulness in the necessary search for biomarkers.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Francisco López-Picón
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, 20520 Turku, Finland;
| | - Álvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
| | - Teresa Femenía
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965-919-248
| |
Collapse
|
20
|
Li H, Zhou X, Chen R, Xiao Y, Zhou T. The Src-Kinase Fyn is Required for Cocaine-Associated Memory Through Regulation of Tau. Front Pharmacol 2022; 13:769827. [PMID: 35185557 PMCID: PMC8850722 DOI: 10.3389/fphar.2022.769827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Drug-associated context-induced relapse of cocaine-seeking behaviour requires the retrieval of drug-associated memory. Studies exploring the underlying neurobiological mechanism of drug memory formation will likely contribute to the development of treatments for drug addiction and the prevention of relapse. In our study, we applied a cocaine-conditioned place preference (CPP) paradigm and a self-administration paradigm (two drug-associated memory formation model) to confirm the hypothesis that the Src kinase Fyn critically regulates cocaine-associated memory formation in the hippocampus. For this experiment, we administered the Src kinase inhibitor PP2 into the bilateral hippocampus before cocaine-CPP and self-administration training, and the results showed that pharmacological manipulation of the Src kinase Fyn activity significantly attenuated the response to cocaine-paired cues in the cocaine-CPP and self-administration paradigms, indicating that hippocampal Fyn activity contributes to cocaine-associated memory formation. In addition, the regulation of cocaine-associated memory formation by Fyn depends on Tau expression, as restoring Tau to normal levels disrupted cocaine memory formation. Together, these results indicate that hippocampal Fyn activity plays a key role in the formation of cocaine-associated memory, which underlies cocaine-associated contextual stimulus-mediated regulation of cocaine-seeking behaviour, suggesting that Fyn represents a promising therapeutic target for weakening cocaine-related memory and treating cocaine addiction.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hongchun Li,
| | - Xinglong Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Drug and Equipment, China Rongtong Bayi Orthopaedic Hospital, Chengdu, China
| |
Collapse
|
21
|
Tecalco-Cruz AC, Pedraza-Chaverri J, Briones-Herrera A, Cruz-Ramos E, López-Canovas L, Zepeda-Cervantes J. Protein degradation-associated mechanisms that are affected in Alzheimer´s disease. Mol Cell Biochem 2022; 477:915-925. [PMID: 35083609 DOI: 10.1007/s11010-021-04334-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/15/2021] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia associated with age-related neurodegeneration. Alteration of several molecular mechanisms has been correlated with the progression of AD. In recent years, dysregulation of proteostasis-associated pathways has emerged as a potential risk factor for neurodegenerative diseases. This review investigated the ubiquitin-proteasome system, lysosome-associated degradation, endoplasmic-reticulum-associated degradation, and the formation of advanced glycation end products. These pathways involved in proteostasis have been reported to be altered in AD, suggesting that their study may be critical for identifying new biomarkers and target molecules for AD.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| | - Alfredo Briones-Herrera
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| | - Eduardo Cruz-Ramos
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico
| | - Jesús Zepeda-Cervantes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| |
Collapse
|
22
|
Simvastatin Blocks Reinstatement of Cocaine-induced Conditioned Place Preference in Male Mice with Brain Lipidome Remodeling. Neurosci Bull 2021; 37:1683-1702. [PMID: 34491535 DOI: 10.1007/s12264-021-00771-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Drug-associated reward memories are conducive to intense craving and often trigger relapse. Simvastatin has been shown to regulate lipids that are involved in memory formation but its influence on other cognitive processes is elusive. Here, we used a mass spectrometry-based lipidomic method to evaluate the impact of simvastatin on the mouse brain in a cocaine-induced reinstatement paradigm. We found that simvastatin blocked the reinstatement of cocaine-induced conditioned place preference (CPP) without affecting CPP acquisition. Specifically, only simvastatin administered during extinction prevented cocaine-primed reinstatement. Global lipidome analysis showed that the nucleus accumbens was the region with the greatest degree of change caused by simvastatin. The metabolism of fatty-acids, phospholipids, and triacylglycerol was profoundly affected. Simvastatin reversed most of the effects on phospholipids induced by cocaine. The correlation matrix showed that cocaine and simvastatin significantly reshaped the lipid metabolic pathways in specific brain regions. Furthermore, simvastatin almost reversed all changes in the fatty acyl profile and unsaturation caused by cocaine. In summary, pre-extinction treatment with simvastatin facilitates cocaine extinction and prevents cocaine relapse with brain lipidome remodeling.
Collapse
|
23
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|