1
|
Jordan S, Shorttle O, Rimmer PB. Tracing the inner edge of the habitable zone with sulfur chemistry. SCIENCE ADVANCES 2025; 11:eadp8105. [PMID: 39879310 PMCID: PMC11777254 DOI: 10.1126/sciadv.adp8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
The circumstellar liquid-water habitable zone guides our search for potentially inhabited exoplanets but remains observationally untested. We show that the inner edge of the habitable zone can now be mapped among exoplanets using their lack of surface water, which, unlike the presence of water, can be unambiguously revealed by atmospheric sulfur species. Using coupled climate-chemistry modeling, we find that the observability of sulfur gases on exoplanets depends critically on the ultraviolet (UV) flux of their host star, a property with wide variation: Most M-dwarfs have a low UV flux and thereby allow the detection of sulfur gases as a tracer of dry planetary surfaces; however, the UV flux of Trappist-1 may be too high for sulfur to disambiguate uninhabitable from habitable surfaces on any of its planets. We generalize this result to show how a population-level search for sulfur chemistry on M-dwarf planets can be used to empirically define the habitable zone in the near future.
Collapse
Affiliation(s)
- Sean Jordan
- Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
- ETH Zurich, Institute for Particle and Astrophysics, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
| | - Oliver Shorttle
- Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Paul B. Rimmer
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
2
|
Chandru K, Potiszil C, Jia TZ. Alternative Pathways in Astrobiology: Reviewing and Synthesizing Contingency and Non-Biomolecular Origins of Terrestrial and Extraterrestrial Life. Life (Basel) 2024; 14:1069. [PMID: 39337854 PMCID: PMC11433091 DOI: 10.3390/life14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact. This interaction could lead to life as we know it, dominated by biomolecules, or to alternative forms of life where non-biomolecules could play a pivotal role. Such alternative forms of life could be found beyond Earth, i.e., on exoplanets and the moons of Jupiter and Saturn. Challenging the notion that all life, including ET life, must use the same building blocks as life on Earth, the concept of contingency-when expanded beyond its macroevolution interpretation-suggests that non-biomolecules may have played essential roles at the OoL. Here, we review the possible role of contingency and non-biomolecules at the OoL and synthesize a conceptual model formally linking contingency with non-biomolecular OoL theories. This model emphasizes the significance of considering the role of non-biomolecules both at the OoL on Earth or beyond, as well as their potential as agnostic biosignatures indicative of ET Life.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600, Malaysia
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa 682-0193, Tottori, Japan
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku 152-8550, Tokyo, Japan
| |
Collapse
|
3
|
Bogumil M, Mittal T, Lithgow-Bertelloni C. The effects of bathymetry on the long-term carbon cycle and CCD. Proc Natl Acad Sci U S A 2024; 121:e2400232121. [PMID: 38748585 PMCID: PMC11126914 DOI: 10.1073/pnas.2400232121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/27/2024] Open
Abstract
The shape of the ocean floor (bathymetry) and the overlaying sediments provide the largest carbon sink throughout Earth's history, supporting ~one to two orders of magnitude more carbon storage than the oceans and atmosphere combined. While accumulation and erosion of these sediments are bathymetry dependent (e.g., due to pressure, temperature, salinity, ion concentration, and available productivity), no systemic study has quantified how global and basin scale bathymetry, controlled by the evolution of tectonics and mantle convection, affects the long-term carbon cycle. We reconstruct bathymetry spanning the last 80 Myr to describe steady-state changes in ocean chemistry within the Earth system model LOSCAR. We find that both bathymetry reconstructions and representative synthetic tests show that ocean alkalinity, calcite saturation state, and the carbonate compensation depth (CCD) are strongly dependent on changes in shallow bathymetry (ocean floor ≤600 m) and on the distribution of the deep marine regions (>1,000 m). Limiting Cenozoic evolution to bathymetry alone leads to predicted CCD variations spanning 500 m, 33 to 50% of the total observed variations in the paleoproxy records. Our results suggest that neglecting bathymetric changes leads to significant misattribution to uncertain carbon cycle parameters (e.g., atmospheric CO2 and water column temperature) and processes (e.g., biological pump efficiency and silicate-carbonate riverine flux). To illustrate this point, we use our updated bathymetry for an Early Paleogene C cycle case study. We obtain carbonate riverine flux estimates that suggest a reversal of the weathering trend with respect to present-day, contrasting with previous studies, but consistent with proxy records and tectonic reconstructions.
Collapse
Affiliation(s)
- Matthew Bogumil
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA90095-1567
| | - Tushar Mittal
- Department of Geosciences, The Pennsylvania State University, University Park, PA16802
| | | |
Collapse
|
4
|
Watanabe Y, Tajika E, Ozaki K. Evolution of iron and oxygen biogeochemical cycles during the Precambrian. GEOBIOLOGY 2023; 21:689-707. [PMID: 37622474 DOI: 10.1111/gbi.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/05/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Iron (Fe) is an essential element for life, and its geochemical cycle is intimately linked to the coupled history of life and Earth's environment. The accumulated geologic records indicate that ferruginous waters existed in the Precambrian oceans not only before the first major rise of atmospheric O2 levels (Great Oxidation Event; GOE) during the Paleoproterozoic, but also during the rest of the Proterozoic. However, the interactive evolution of the biogeochemical cycles of O2 and Fe during the Archean-Proterozoic remains ambiguous. Here, we develop a biogeochemical model to investigate the coupled biogeochemical evolution of Fe-O2 -P-C cycles across the GOE. Our model demonstrates that the marine Fe cycle was less sensitive to changes in the production rate of O2 before the GOE (atmospheric pO2 < 10-6 PAL; present atmospheric level). When the P supply rate to the ocean exceeds a certain threshold, the GOE occurs and atmospheric pO2 rises to ~10-3 -10-1 PAL. After the GOE, the marine Fe(II) concentration is highly sensitive to atmospheric pO2 , suggesting that the marine redox landscape during the Proterozoic may have fluctuated between ferruginous conditions and anoxic non-ferruginous conditions with sulfidic water masses around continental margins. At a certain threshold value of atmospheric pO2 of ~0.3% PAL, the primary oxidation pathway of Fe(II) shifts from the activity of Fe(II)-utilizing anoxygenic photoautotrophs in sunlit surface waters to abiotic process in the deep ocean. This is accompanied by a shift in the primary deposition site of Fe(III) hydroxides from the surface ocean to the deep sea, providing a plausible mechanistic explanation for the observed cessation of iron formations during the Proterozoic.
Collapse
Affiliation(s)
- Yasuto Watanabe
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Eiichi Tajika
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazumi Ozaki
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Alternative Earths Team, Interdisciplinary Consortia for Astrobiology Research, National Aeronautics and Space Administration, Riverside, California, USA
| |
Collapse
|
5
|
Watanabe Y, Tajika E, Ozaki K. Biogeochemical transformations after the emergence of oxygenic photosynthesis and conditions for the first rise of atmospheric oxygen. GEOBIOLOGY 2023; 21:537-555. [PMID: 36960595 DOI: 10.1111/gbi.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The advent of oxygenic photosynthesis represents the most prominent biological innovation in the evolutionary history of the Earth. The exact timing of the evolution of oxygenic photoautotrophic bacteria remains elusive, yet these bacteria profoundly altered the redox state of the ocean-atmosphere-biosphere system, ultimately causing the first major rise in atmospheric oxygen (O2 )-the so-called Great Oxidation Event (GOE)-during the Paleoproterozoic (~2.5-2.2 Ga). However, it remains unclear how the coupled atmosphere-marine biosphere system behaved after the emergence of oxygenic photoautotrophs (OP), affected global biogeochemical cycles, and led to the GOE. Here, we employ a coupled atmospheric photochemistry and marine microbial ecosystem model to comprehensively explore the intimate links between the atmosphere and marine biosphere driven by the expansion of OP, and the biogeochemical conditions of the GOE. When the primary productivity of OP sufficiently increases in the ocean, OP suppresses the activity of the anaerobic microbial ecosystem by reducing the availability of electron donors (H2 and CO) in the biosphere and causes climate cooling by reducing the level of atmospheric methane (CH4 ). This can be attributed to the supply of OH radicals from biogenic O2 , which is a primary sink of biogenic CH4 and electron donors in the atmosphere. Our typical result also demonstrates that the GOE is triggered when the net primary production of OP exceeds >~5% of the present oceanic value. A globally frozen snowball Earth event could be triggered if the atmospheric CO2 level was sufficiently small (<~40 present atmospheric level; PAL) because the concentration of CH4 in the atmosphere would decrease faster than the climate mitigation by the carbonate-silicate geochemical cycle. These results support a prolonged anoxic atmosphere after the emergence of OP during the Archean and the occurrence of the GOE and snowball Earth event during the Paleoproterozoic.
Collapse
Affiliation(s)
- Yasuto Watanabe
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Eiichi Tajika
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazumi Ozaki
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
6
|
Höning D, Spohn T. Land Fraction Diversity on Earth-like Planets and Implications for Their Habitability. ASTROBIOLOGY 2023; 23:372-394. [PMID: 36848252 DOI: 10.1089/ast.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A balanced ratio of ocean to land is believed to be essential for an Earth-like biosphere, and one may conjecture that plate-tectonics planets should be similar in geological properties. After all, the volume of continental crust evolves toward an equilibrium between production and erosion. If the interior thermal states of Earth-sized exoplanets are similar to those of Earth-a straightforward assumption due to the temperature dependence of mantle viscosity-one might expect a similar equilibrium between continental production and erosion to establish, and hence a similar land fraction. We show that this conjecture is not likely to be true. Positive feedback associated with the coupled mantle water-continental crust cycle may rather lead to a manifold of three possible planets, depending on their early history: a land planet, an ocean planet, and a balanced Earth-like planet. In addition, thermal blanketing of the interior by the continents enhances the sensitivity of continental growth to its history and, eventually, to initial conditions. Much of the blanketing effect is, however, compensated by mantle depletion in radioactive elements. A model of the long-term carbonate-silicate cycle shows the land and the ocean planets to differ by about 5 K in average surface temperature. A larger continental surface fraction results both in higher weathering rates and enhanced outgassing, partly compensating each other. Still, the land planet is expected to have a substantially dryer, colder, and harsher climate possibly with extended cold deserts in comparison with the ocean planet and with the present-day Earth. Using a model of balancing water availability and nutrients from continental crust weathering, we find the bioproductivity and the biomass of both the land and ocean planets to be reduced by a third to half of those of Earth. The biosphere on these planets might not be substantial enough to produce a supply of free oxygen.
Collapse
Affiliation(s)
- Dennis Höning
- Potsdam-Institute for Climate Impact Research, Potsdam, Germany
| | - Tilman Spohn
- International Space Science Institute, Bern, Switzerland
| |
Collapse
|
7
|
Graham RJ, Lichtenberg T, Pierrehumbert RT. CO 2 Ocean Bistability on Terrestrial Exoplanets. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007456. [PMID: 36589718 PMCID: PMC9787872 DOI: 10.1029/2022je007456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
Cycling of carbon dioxide between the atmosphere and interior of rocky planets can stabilize global climate and enable planetary surface temperatures above freezing over geologic time. However, variations in global carbon budget and unstable feedback cycles between planetary sub-systems may destabilize the climate of rocky exoplanets toward regimes unknown in the Solar System. Here, we perform clear-sky atmospheric radiative transfer and surface weathering simulations to probe the stability of climate equilibria for rocky, ocean-bearing exoplanets at instellations relevant for planetary systems in the outer regions of the circumstellar habitable zone. Our simulations suggest that planets orbiting G- and F-type stars (but not M-type stars) may display bistability between an Earth-like climate state with efficient carbon sequestration and an alternative stable climate equilibrium where CO2 condenses at the surface and forms a blanket of either clathrate hydrate or liquid CO2. At increasing instellation and with ineffective weathering, the latter state oscillates between cool, surface CO2-condensing and hot, non-condensing climates. CO2 bistable climates may emerge early in planetary history and remain stable for billions of years. The carbon dioxide-condensing climates follow an opposite trend in pCO2 versus instellation compared to the weathering-stabilized planet population, suggesting the possibility of observational discrimination between these distinct climate categories.
Collapse
Affiliation(s)
- R. J. Graham
- Atmospheric, Oceanic and Planetary PhysicsDepartment of PhysicsUniversity of OxfordOxfordUK
| | - Tim Lichtenberg
- Atmospheric, Oceanic and Planetary PhysicsDepartment of PhysicsUniversity of OxfordOxfordUK
| | | |
Collapse
|
8
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
9
|
Jin Z, Yu C, Wang R, Wei W, Jing Y, Wang Q. Preparation of precipitated calcium carbonate using wollastonite and CO2 from industrial exhaust. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|