1
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Lambert T, Niknejad HR, Kil D, Montaldo G, Nuttin B, Brunner C, Urban A. Spatiotemporal Clustering of Functional Ultrasound Signals at the Single-Voxel Level. eNeuro 2025; 12:ENEURO.0438-24.2025. [PMID: 39919816 PMCID: PMC11869936 DOI: 10.1523/eneuro.0438-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Functional ultrasound (fUS) imaging is a well-established neuroimaging technology that offers high spatiotemporal resolution and a large field of view. Typical strategies for analyzing fUS data comprise either region-based averaging, typically based on reference atlases, or correlation with experimental events. Nevertheless, these methodologies possess several inherent limitations, including a restricted utilization of the spatial dimension and a pronounced bias influenced by preconceived notions about the recorded activity. In this study, we put forth single-voxel clustering as a third method to address these issues. A comparison was conducted between the three strategies on a typical dataset comprising visually evoked activity in the superior colliculus in awake mice. The application of single-voxel clustering yielded the generation of detailed activity maps, which revealed a consistent layout of activity and a clear separation between hemodynamic responses. This method is best considered as a complement to region-based averaging and correlation. It has direct applicability to challenging contexts, such as paradigm-free analysis on behaving subjects and brain decoding.
Collapse
Affiliation(s)
- Théo Lambert
- Neuro-Electronics Research Flanders, Leuven 3000, Belgium
- VIB, Leuven 3000, Belgium
- Imec, Leuven 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Hamid Reza Niknejad
- Neuro-Electronics Research Flanders, Leuven 3000, Belgium
- VIB, Leuven 3000, Belgium
- Imec, Leuven 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven 3000, Belgium
| | - Dries Kil
- Neuro-Electronics Research Flanders, Leuven 3000, Belgium
- VIB, Leuven 3000, Belgium
- Imec, Leuven 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, Leuven 3000, Belgium
- VIB, Leuven 3000, Belgium
- Imec, Leuven 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Bart Nuttin
- Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven 3000, Belgium
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven 3000, Belgium
- VIB, Leuven 3000, Belgium
- Imec, Leuven 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, Leuven 3000, Belgium
- VIB, Leuven 3000, Belgium
- Imec, Leuven 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Li X, Guo X, Wang X, Jiang L, Li M, Dai X, Hao Q, Zhao J, Huang Y, Sun L. Wearable optical coherence tomography angiography probe with extended depth of field. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:016003. [PMID: 39845726 PMCID: PMC11752921 DOI: 10.1117/1.jbo.30.1.016003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Significance Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial. Aim We aim to address the challenge of insufficient depth of field (DOF) in wearable OCT probes for brain imaging in freely moving mice, ensuring high lateral resolution while capturing brain vasculature across varying heights. Approach We integrated diffractive optical elements (DOEs) capable of generating beams with an extended DOF into a wearable OCT probe. This design effectively overcomes the traditional trade-off between lateral resolution and DOF, enabling the capture of detailed angiographic images in a dynamic and uncontrolled environment. Results The enhanced wearable OCT probe achieved a lateral resolution superior to 8 μ m within a 450 μ m axial range. This setup allowed for high-resolution optical coherence tomography angiography (OCTA) imaging with extended DOF, making it suitable for studying brain vasculature in freely moving mice. Conclusions The incorporation of DOEs into the wearable OCT probe represents a significant advancement in wearable biomedical imaging. This technology facilitates the acquisition of high-resolution angiographic images with an extended DOF, thus enhancing the ability to study brain function in awake and naturally behaving animals.
Collapse
Affiliation(s)
- Xiaochen Li
- Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
| | - Xiangyu Guo
- Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
| | - Xinyue Wang
- Tsinghua University, School of Biomedical Engineering, Beijing, China
| | - Lingqi Jiang
- Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
| | - Mingxin Li
- Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
| | - Xiaochuan Dai
- Tsinghua University, School of Biomedical Engineering, Beijing, China
| | - Qun Hao
- Beijing Institute of Technology, School of Optics and Photonics, Beijing, China
| | - Jingjing Zhao
- Huazhong University of Science and Technology, Institute of Medical Equipment Science and Engineering, Wuhan, China
| | - Yong Huang
- Beijing Institute of Technology, School of Optics and Photonics, Beijing, China
| | - Liqun Sun
- Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
| |
Collapse
|
4
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
5
|
Bennett HC, Zhang Q, Wu YT, Manjila SB, Chon U, Shin D, Vanselow DJ, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat Commun 2024; 15:6398. [PMID: 39080289 PMCID: PMC11289283 DOI: 10.1038/s41467-024-50559-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Aging is frequently associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods and in vivo imaging to determine detailed changes in aged murine cerebrovascular networks. Whole-brain vascular tracing shows an overall ~10% decrease in vascular length and branching density with ~7% increase in vascular radii in aged brains. Light sheet imaging with 3D immunolabeling reveals increased arteriole tortuosity of aged brains. Notably, vasculature and pericyte densities show selective and significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. We find increased blood extravasation, implying compromised blood-brain barrier function in aged brains. Moreover, in vivo imaging in awake mice demonstrates reduced baseline and on-demand blood oxygenation despite relatively intact neurovascular coupling. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Neurosurgery, Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Steffy B Manjila
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Donghui Shin
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Daniel J Vanselow
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Sdobnov A, Tsytsarev V, Piavchenko G, Bykov A, Meglinski I. Beyond life: Exploring hemodynamic patterns in postmortem mice brains. JOURNAL OF BIOPHOTONICS 2024; 17:e202400017. [PMID: 38714530 DOI: 10.1002/jbio.202400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 05/10/2024]
Abstract
We utilize Laser Speckle Contrast Imaging (LSCI) for visualizing cerebral blood flow in mice during and post-cardiac arrest. Analyzing LSCI images, we noted temporal blood flow variations across the brain surface for hours postmortem. Fast Fourier Transform (FFT) analysis depicted blood flow and microcirculation decay post-death. Continuous Wavelet Transform (CWT) identified potential cerebral hemodynamic synchronization patterns. Additionally, non-negative matrix factorization (NMF) with four components segmented LSCI images, revealing structural subcomponent alterations over time. This integrated approach of LSCI, FFT, CWT, and NMF offers a comprehensive tool for studying cerebral blood flow dynamics, metaphorically capturing the 'end of the tunnel' experience. Results showed primary postmortem hemodynamic activity in the olfactory bulbs, followed by blood microflow relocations between somatosensory and visual cortical regions via the superior sagittal sinus. This method opens new avenues for exploring these phenomena, potentially linking neuroscientific insights with mysteries surrounding consciousness and perception at life's end.
Collapse
Affiliation(s)
- Anton Sdobnov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gennadi Piavchenko
- Department of Human Anatomy and Histology, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland
| | - Igor Meglinski
- Department of Human Anatomy and Histology, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Edelman BJ, Siegenthaler D, Wanken P, Jenkins B, Schmid B, Ressle A, Gogolla N, Frank T, Macé E. The COMBO window: A chronic cranial implant for multiscale circuit interrogation in mice. PLoS Biol 2024; 22:e3002664. [PMID: 38829885 PMCID: PMC11185485 DOI: 10.1371/journal.pbio.3002664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/18/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Neuroscientists studying the neural correlates of mouse behavior often lack access to the brain-wide activity patterns elicited during a specific task of interest. Fortunately, large-scale imaging is becoming increasingly accessible thanks to modalities such as Ca2+ imaging and functional ultrasound (fUS). However, these and other techniques often involve challenging cranial window procedures and are difficult to combine with other neuroscience tools. We address this need with an open-source 3D-printable cranial implant-the COMBO (ChrOnic Multimodal imaging and Behavioral Observation) window. The COMBO window enables chronic imaging of large portions of the brain in head-fixed mice while preserving orofacial movements. We validate the COMBO window stability using both brain-wide fUS and multisite two-photon imaging. Moreover, we demonstrate how the COMBO window facilitates the combination of optogenetics, fUS, and electrophysiology in the same animals to study the effects of circuit perturbations at both the brain-wide and single-neuron level. Overall, the COMBO window provides a versatile solution for performing multimodal brain recordings in head-fixed mice.
Collapse
Affiliation(s)
- Bradley J. Edelman
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute for Biological Intelligence, Planegg, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
- Dynamics of Excitable Cell Networks Research Group, Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Dominique Siegenthaler
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute for Biological Intelligence, Planegg, Germany
- Dynamics of Excitable Cell Networks Research Group, Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Paulina Wanken
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute for Biological Intelligence, Planegg, Germany
- Dynamics of Excitable Cell Networks Research Group, Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Bethan Jenkins
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Olfactory Memory Research Group, Max Planck Institute for Biological Intelligence, Planegg, Germany
- Olfactory Memory and Behavior Research Group, European Neuroscience Institute and Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Bianca Schmid
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Andrea Ressle
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Frank
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Olfactory Memory Research Group, Max Planck Institute for Biological Intelligence, Planegg, Germany
- Olfactory Memory and Behavior Research Group, European Neuroscience Institute and Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute for Biological Intelligence, Planegg, Germany
- Dynamics of Excitable Cell Networks Research Group, Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Koorliyil H, Sitt J, Rivals I, Liu Y, Bertolo A, Cazzanelli S, Dizeux A, Deffieux T, Tanter M, Pezet S. Specific and Nonuniform Brain States during Cold Perception in Mice. J Neurosci 2024; 44:e0909232023. [PMID: 38182417 PMCID: PMC10957214 DOI: 10.1523/jneurosci.0909-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024] Open
Abstract
The quest to decode the complex supraspinal mechanisms that integrate cutaneous thermal information in the central system is still ongoing. The dorsal horn of the spinal cord is the first hub that encodes thermal input which is then transmitted to brain regions via the spinothalamic and thalamocortical pathways. So far, our knowledge about the strength of the interplay between the brain regions during thermal processing is limited. To address this question, we imaged the brains of adult awake male mice in resting state using functional ultrasound imaging during plantar exposure to constant and varying temperatures. Our study reveals for the first time the following: (1) a dichotomy in the response of the somatomotor-cingulate cortices and the hypothalamus, which was never described before, due to the lack of appropriate tools to study such regions with both good spatial and temporal resolutions. (2) We infer that cingulate areas may be involved in the affective responses to temperature changes. (3) Colder temperatures (ramped down) reinforce the disconnection between the somatomotor-cingulate and hypothalamus networks. (4) Finally, we also confirm the existence in the mouse brain of a brain mode characterized by low cognitive strength present more frequently at resting neutral temperature. The present study points toward the existence of a common hub between somatomotor and cingulate regions, whereas hypothalamus functions are related to a secondary network.
Collapse
Affiliation(s)
- Haritha Koorliyil
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Jacobo Sitt
- PICNIC Lab, Inserm U 1127, ICM, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, Paris 75005, France
| | - Yushan Liu
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, Paris 75005, France
| | - Adrien Bertolo
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
- Iconeus, Paris 75014, France
| | - Silvia Cazzanelli
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
- Iconeus, Paris 75014, France
| | - Alexandre Dizeux
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Thomas Deffieux
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Mickael Tanter
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| | - Sophie Pezet
- Physics for Medicine Paris, INSERM, ESPCI Paris, CNRS, PSL Research University, Paris 70015, France
| |
Collapse
|
9
|
Guo X, Li X, Wang X, Li M, Dai X, Kong L, Hao Q, Zhao J, Huang Y, Sun L. Wearable optical coherence tomography angiography probe for freely moving mice. BIOMEDICAL OPTICS EXPRESS 2023; 14:6509-6520. [PMID: 38420312 PMCID: PMC10898568 DOI: 10.1364/boe.506513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 03/02/2024]
Abstract
Optical coherence tomography (OCT) is an emerging optical imaging technology that holds great potential in medical and biological applications. Apart from its conventional ophthalmic uses, it has found extensive applications in studying various brain activities and disorders in anesthetized/restricted rodents, with a particular focus on visualizing brain blood vessel morphology and function. However, developing a compact wearable OCT probe for studying the brain activity/disorders in freely moving rodents is challenging due to the requirements for stability and lightweight design. Here, we report a robust wearable OCT probe, which, to the best of our knowledge, is the first wearable OCT angiography probe capable of long-term monitoring of mouse brain blood flow. This wearable imaging probe has a maximum scanning speed of 76 kHz, with a 12 µm axial resolution, 5.5 µm lateral resolution, and a large field of view (FOV) of 4 mm × 4 mm. It offers easy assembly and stable imaging, enabling it to capture brain vessels in freely moving rodents. We tested this probe to monitor cerebral hemodynamics for up to 4 hours during the acute ischemic phase after photothrombotic stroke in mice, highlighting the reliability and long-term stability of our probe. This work contributes to the advancement of wearable biomedical imaging.
Collapse
Affiliation(s)
- Xiangyu Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiaochen Li
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian, Beijing 100081, China
| | - Xinyue Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingxin Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiaochuan Dai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian, Beijing 100081, China
| | - Jingjing Zhao
- Department of Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yong Huang
- School of Optics and Photonics, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian, Beijing 100081, China
| | - Liqun Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Eisenstein M. A sound solution for deep-brain imaging. Nat Methods 2023; 20:1623-1628. [PMID: 37903911 DOI: 10.1038/s41592-023-02055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
|
11
|
Gheres KW, Ünsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. Commun Biol 2023; 6:738. [PMID: 37460780 PMCID: PMC10352318 DOI: 10.1038/s42003-023-05121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drive vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes.
Collapse
Affiliation(s)
- Kyle W Gheres
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hayreddin S Ünsal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Xu Han
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick J Drew
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA.
- Departments of Neurosurgery and Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
12
|
Bennett HC, Zhang Q, Wu YT, Chon U, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541998. [PMID: 37305850 PMCID: PMC10257218 DOI: 10.1101/2023.05.23.541998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aging is the largest risk factor for neurodegenerative disorders, and commonly associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts the vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods (serial two-photon tomography and light sheet microscopy) and in vivo imaging (wide field optical spectroscopy and two-photon imaging) to determine detailed changes in aged cerebrovascular networks. Whole-brain vascular tracing showed an overall ~10% decrease in vascular length and branching density, and light sheet imaging with 3D immunolabeling revealed increased arteriole tortuosity in aged brains. Vasculature and pericyte densities showed significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. Moreover, in vivo imaging in awake mice identified delays in neurovascular coupling and disrupted blood oxygenation. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Equal contribution
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Equal contribution
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Lead contact
| |
Collapse
|
13
|
Claron J, Provansal M, Salardaine Q, Tissier P, Dizeux A, Deffieux T, Picaud S, Tanter M, Arcizet F, Pouget P. Co-variations of cerebral blood volume and single neurons discharge during resting state and visual cognitive tasks in non-human primates. Cell Rep 2023; 42:112369. [PMID: 37043356 DOI: 10.1016/j.celrep.2023.112369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
To better understand how the brain allows primates to perform various sets of tasks, the ability to simultaneously record neural activity at multiple spatiotemporal scales is challenging but necessary. However, the contribution of single-unit activities (SUAs) to neurovascular activity remains to be fully understood. Here, we combine functional ultrasound imaging of cerebral blood volume (CBV) and SUA recordings in visual and fronto-medial cortices of behaving macaques. We show that SUA provides a significant estimate of the neurovascular response below the typical fMRI spatial resolution of 2mm3. Furthermore, our results also show that SUAs and CBV activities are statistically uncorrelated during the resting state but correlate during tasks. These results have important implications for interpreting functional imaging findings while one constructs inferences of SUA during resting state or tasks.
Collapse
Affiliation(s)
- Julien Claron
- Stem Cell and Brain Research Institute, INSERM U1208, Bron, France; Paris Brain Institute, Institut du Cerveau, INSERM 1127, CNRS 7225 Sorbonne Université, Paris, France
| | | | - Quentin Salardaine
- Paris Brain Institute, Institut du Cerveau, INSERM 1127, CNRS 7225 Sorbonne Université, Paris, France
| | - Pierre Tissier
- Paris Brain Institute, Institut du Cerveau, INSERM 1127, CNRS 7225 Sorbonne Université, Paris, France
| | - Alexandre Dizeux
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France
| | - Thomas Deffieux
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France
| | - Serge Picaud
- Institut de la Vision, CNRS, INSERM, Sorbonne Université, Paris, France
| | - Mickael Tanter
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France.
| | - Fabrice Arcizet
- Institut de la Vision, CNRS, INSERM, Sorbonne Université, Paris, France.
| | - Pierre Pouget
- Paris Brain Institute, Institut du Cerveau, INSERM 1127, CNRS 7225 Sorbonne Université, Paris, France.
| |
Collapse
|
14
|
Jacob M, Ford J, Deacon T. Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI. Front Hum Neurosci 2023; 17:976036. [PMID: 37113322 PMCID: PMC10126302 DOI: 10.3389/fnhum.2023.976036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a living organ with distinct metabolic constraints. However, these constraints are typically considered as secondary or supportive of information processing which is primarily performed by neurons. The default operational definition of neural information processing is that (1) it is ultimately encoded as a change in individual neuronal firing rate as this correlates with the presentation of a peripheral stimulus, motor action or cognitive task. Two additional assumptions are associated with this default interpretation: (2) that the incessant background firing activity against which changes in activity are measured plays no role in assigning significance to the extrinsically evoked change in neural firing, and (3) that the metabolic energy that sustains this background activity and which correlates with differences in neuronal firing rate is merely a response to an evoked change in neuronal activity. These assumptions underlie the design, implementation, and interpretation of neuroimaging studies, particularly fMRI, which relies on changes in blood oxygen as an indirect measure of neural activity. In this article we reconsider all three of these assumptions in light of recent evidence. We suggest that by combining EEG with fMRI, new experimental work can reconcile emerging controversies in neurovascular coupling and the significance of ongoing, background activity during resting-state paradigms. A new conceptual framework for neuroimaging paradigms is developed to investigate how ongoing neural activity is "entangled" with metabolism. That is, in addition to being recruited to support locally evoked neuronal activity (the traditional hemodynamic response), changes in metabolic support may be independently "invoked" by non-local brain regions, yielding flexible neurovascular coupling dynamics that inform the cognitive context. This framework demonstrates how multimodal neuroimaging is necessary to probe the neurometabolic foundations of cognition, with implications for the study of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael Jacob
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Judith Ford
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terrence Deacon
- Department of Anthropology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
15
|
Berthon B, Bergel A, Matei M, Tanter M. Decoding behavior from global cerebrovascular activity using neural networks. Sci Rep 2023; 13:3541. [PMID: 36864293 PMCID: PMC9981746 DOI: 10.1038/s41598-023-30661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Functional Ultrasound (fUS) provides spatial and temporal frames of the vascular activity in the brain with high resolution and sensitivity in behaving animals. The large amount of resulting data is underused at present due to the lack of appropriate tools to visualize and interpret such signals. Here we show that neural networks can be trained to leverage the richness of information available in fUS datasets to reliably determine behavior, even from a single fUS 2D image after appropriate training. We illustrate the potential of this method with two examples: determining if a rat is moving or static and decoding the animal's sleep/wake state in a neutral environment. We further demonstrate that our method can be transferred to new recordings, possibly in other animals, without additional training, thereby paving the way for real-time decoding of brain activity based on fUS data. Finally, the learned weights of the network in the latent space were analyzed to extract the relative importance of input data to classify behavior, making this a powerful tool for neuroscientific research.
Collapse
Affiliation(s)
- Béatrice Berthon
- Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France.
| | - Antoine Bergel
- Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France
| | - Marta Matei
- Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France
| |
Collapse
|
16
|
Gheres KW, Ünsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529057. [PMID: 36824895 PMCID: PMC9949139 DOI: 10.1101/2023.02.18.529057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drives vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes. Significance Statement In the adult brain, increases in neural activity are often followed by vasodilation, allowing activity to be monitored using optical or magnetic resonance imaging. However, in neonates, sensory stimulation can drive vasoconstriction, whose origin was not understood. We used optical and magnetic resonance imaging approaches to investigate hemodynamics in neonatal mice. We found that sensory-induced vasoconstriction occurred when the mice were asleep, as sleep is associated with dilation of the vasculature of the brain relative to the awake state. The stimulus awakens the mice, causing a constriction due to the arousal state change. Our study shows the importance of monitoring arousal state, particularly when investigating subjects that may sleep, and the dominance arousal effects on brain hemodynamics.
Collapse
|
17
|
Drew PJ. Neurovascular coupling: motive unknown. Trends Neurosci 2022; 45:809-819. [PMID: 35995628 PMCID: PMC9768528 DOI: 10.1016/j.tins.2022.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
In the brain, increases in neural activity drive changes in local blood flow via neurovascular coupling. The common explanation for increased blood flow (known as functional hyperemia) is that it supplies the metabolic needs of active neurons. However, there is a large body of evidence that is inconsistent with this idea. Baseline blood flow is adequate to supply oxygen needs even with elevated neural activity. Neurovascular coupling is irregular, absent, or inverted in many brain regions, behavioral states, and conditions. Increases in respiration can increase brain oxygenation without flow changes. Simulations show that given the architecture of the brain vasculature, areas of low blood flow are inescapable and cannot be removed by functional hyperemia. As discussed in this article, potential alternative functions of neurovascular coupling include supplying oxygen for neuromodulator synthesis, brain temperature regulation, signaling to neurons, stabilizing and optimizing the cerebral vascular structure, accommodating the non-Newtonian nature of blood, and driving the production and circulation of cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Patrick J Drew
- Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery, Biology, and Biomedical Engineering, The Pennsylvania State University, W-317 Millennium Science Complex, University Park, PA 16802, USA.
| |
Collapse
|
18
|
Abstract
Functional ultrasound (fUS) is a neuroimaging method that uses ultrasound to track changes in cerebral blood volume as an indirect readout of neuronal activity at high spatiotemporal resolution. fUS is capable of imaging head-fixed or freely behaving rodents and of producing volumetric images of the entire mouse brain. It has been applied to many species, including primates and humans. Now that fUS is reaching maturity, it is being adopted by the neuroscience community. However, the nature of the fUS signal and the different implementations of fUS are not necessarily accessible to nonspecialists. This review aims to introduce these ultrasound concepts to all neuroscientists. We explain the physical basis of the fUS signal and the principles of the method, present the state of the art of its hardware implementation, and give concrete examples of current applications in neuroscience. Finally, we suggest areas for improvement during the next few years.
Collapse
Affiliation(s)
- Gabriel Montaldo
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, and Interuniversity Microelectronics Centre, Leuven, Belgium;
| | - Alan Urban
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, and Interuniversity Microelectronics Centre, Leuven, Belgium; .,Department of Neuroscience, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,Current address: Max Planck Institute for Biological Intelligence, In Foundation, Martinsried, Germany;
| |
Collapse
|
19
|
Nunez-Elizalde AO, Krumin M, Reddy CB, Montaldo G, Urban A, Harris KD, Carandini M. Neural correlates of blood flow measured by ultrasound. Neuron 2022; 110:1631-1640.e4. [PMID: 35278361 PMCID: PMC9235295 DOI: 10.1016/j.neuron.2022.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022]
Abstract
Functional ultrasound imaging (fUSI) is an appealing method for measuring blood flow and thus infer brain activity, but it relies on the physiology of neurovascular coupling and requires extensive signal processing. To establish to what degree fUSI trial-by-trial signals reflect neural activity, we performed simultaneous fUSI and neural recordings with Neuropixels probes in awake mice. fUSI signals strongly correlated with the slow (<0.3 Hz) fluctuations in the local firing rate and were closely predicted by the smoothed firing rate of local neurons, particularly putative inhibitory neurons. The optimal smoothing filter had a width of ∼3 s, matched the hemodynamic response function of awake mice, was invariant across mice and stimulus conditions, and was similar in the cortex and hippocampus. fUSI signals also matched neural firing spatially: firing rates were as highly correlated across hemispheres as fUSI signals. Thus, blood flow measured by ultrasound bears a simple and accurate relationship to neuronal firing.
Collapse
Affiliation(s)
| | - Michael Krumin
- UCL Institute of Ophthalmology, University College London, London WC1E 6AE, UK
| | - Charu Bai Reddy
- UCL Institute of Ophthalmology, University College London, London WC1E 6AE, UK
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, 3001 Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium; imec, 3001 Leuven, Belgium; Department of Neuroscience, KU Leuven, 3000 Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, 3001 Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium; imec, 3001 Leuven, Belgium; Department of Neuroscience, KU Leuven, 3000 Leuven, Belgium
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London WC1E 6AE, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London WC1E 6AE, UK.
| |
Collapse
|
20
|
Réaux-Le-Goazigo A, Beliard B, Delay L, Rahal L, Claron J, Renaudin N, Rivals I, Thibaut M, Nouhoum M, Deffieux T, Tanter M, Pezet S. Ultrasound localization microscopy and functional ultrasound imaging reveal atypical features of the trigeminal ganglion vasculature. Commun Biol 2022; 5:330. [PMID: 35393515 PMCID: PMC8989975 DOI: 10.1038/s42003-022-03273-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
The functional imaging within the trigeminal ganglion (TG) is highly challenging due to its small size and deep localization. This study combined a methodological framework able to dive into the rat trigeminal nociceptive system by jointly providing 1) imaging of the TG blood vasculature at microscopic resolution, and 2) the measurement of hemodynamic responses evoked by orofacial stimulations in anesthetized rats. Despite the small number of sensory neurons within the TG, functional ultrasound imaging was able to image and quantify a strong and highly localized hemodynamic response in the ipsilateral TG, evoked not only by mechanical or chemical stimulations of corneal nociceptive fibers, but also by cutaneous mechanical stimulations of the ophthalmic and maxillary orofacial regions using a von Frey hair. The in vivo quantitative imaging of the TG’s vasculature using ultrasound localization microscopy combined with in toto labelling reveals particular features of the vascularization of the area containing the sensory neurons, that are likely the origin of this strong vaso-trigeminal response. This innovative imaging approach opens the path for future studies on the mechanisms underlying changes in trigeminal local blood flow and evoked hemodynamic responses, key mechanisms for the understanding and treatment of debilitating trigeminal pain conditions. Visualisation of rat trigeminal ganglia activation during ophthalmic or maxillary nociceptive stimulations shows atypical tortuous vascularisation and a somatotopic hemodynamic response.
Collapse
Affiliation(s)
| | - Benoit Beliard
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Lauriane Delay
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Line Rahal
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Julien Claron
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Noémi Renaudin
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, 10 rue Vauquelin, 75005, Paris, France
| | - Miguel Thibaut
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Mohamed Nouhoum
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France.,Iconeus, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Sophie Pezet
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
21
|
Zhang Q, Turner KL, Gheres KW, Hossain MS, Drew PJ. Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. NEUROPHOTONICS 2022; 9:021905. [PMID: 35639834 PMCID: PMC8802326 DOI: 10.1117/1.nph.9.2.021905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 06/15/2023]
Abstract
Significance: Functional brain imaging in awake animal models is a popular and powerful technique that allows the investigation of neurovascular coupling (NVC) under physiological conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spontaneous fluctuations in neural and hemodynamic signals. During periods without movement, animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state changes can be several times larger than sensory-evoked responses. Given the outsized influence of facial and body motions and arousal signals in neural and hemodynamic signals, it is imperative to detect and monitor these events in experiments with un-anesthetized animals. Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-anesthetized rodents, and describe how to incorporate detailed behavioral and physiological measurements in imaging experiments. Approach: We review the effects of movements and sleep-related signals (heart rate, respiration rate, electromyography, intracranial pressure, whisking, and other body movements) on brain hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup. We summarize the measurement methods currently used in animal models for detection of those behaviors and arousal changes. We then provide a guide on how to incorporate this measurements with functional brain imaging and electrophysiology measurements. Results: We provide a how-to guide on monitoring and interpreting a variety of physiological signals and their applications to NVC experiments in awake behaving mice. Conclusion: This guide facilitates the application of neuroimaging in awake animal models and provides neuroscientists with a standard approach for monitoring behavior and other associated physiological parameters in head-fixed animals.
Collapse
Affiliation(s)
- Qingguang Zhang
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
| | - Kevin L. Turner
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Kyle W. Gheres
- The Pennsylvania State University, Graduate Program in Molecular Cellular and Integrative Biosciences, University Park, Pennsylvania, United States
| | - Md Shakhawat Hossain
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Patrick J. Drew
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Neurosurgery, University Park, Pennsylvania, United States
| |
Collapse
|
22
|
Functional ultrasound imaging: A useful tool for functional connectomics? Neuroimage 2021; 245:118722. [PMID: 34800662 DOI: 10.1016/j.neuroimage.2021.118722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Functional ultrasound (fUS) is a hemodynamic-based functional neuroimaging technique, primarily used in animal models, that combines a high spatiotemporal resolution, a large field of view, and compatibility with behavior. These assets make fUS especially suited to interrogating brain activity at the systems level. In this review, we describe the technical capabilities offered by fUS and discuss how this technique can contribute to the field of functional connectomics. First, fUS can be used to study intrinsic functional connectivity, namely patterns of correlated activity between brain regions. In this area, fUS has made the most impact by following connectivity changes in disease models, across behavioral states, or dynamically. Second, fUS can also be used to map brain-wide pathways associated with an external event. For example, fUS has helped obtain finer descriptions of several sensory systems, and uncover new pathways implicated in specific behaviors. Additionally, combining fUS with direct circuit manipulations such as optogenetics is an attractive way to map the brain-wide connections of defined neuronal populations. Finally, technological improvements and the application of new analytical tools promise to boost fUS capabilities. As brain coverage and the range of behavioral contexts that can be addressed with fUS keep on increasing, we believe that fUS-guided connectomics will only expand in the future. In this regard, we consider the incorporation of fUS into multimodal studies combining diverse techniques and behavioral tasks to be the most promising research avenue.
Collapse
|
23
|
Nour MM, Liu Y, Arumuham A, Kurth-Nelson Z, Dolan RJ. Impaired neural replay of inferred relationships in schizophrenia. Cell 2021; 184:4315-4328.e17. [PMID: 34197734 PMCID: PMC8357425 DOI: 10.1016/j.cell.2021.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
An ability to build structured mental maps of the world underpins our capacity to imagine relationships between objects that extend beyond experience. In rodents, such representations are supported by sequential place cell reactivations during rest, known as replay. Schizophrenia is proposed to reflect a compromise in structured mental representations, with animal models reporting abnormalities in hippocampal replay and associated ripple activity during rest. Here, utilizing magnetoencephalography (MEG), we tasked patients with schizophrenia and control participants to infer unobserved relationships between objects by reorganizing visual experiences containing these objects. During a post-task rest session, controls exhibited fast spontaneous neural reactivation of presented objects that replayed inferred relationships. Replay was coincident with increased ripple power in hippocampus. Patients showed both reduced replay and augmented ripple power relative to controls, convergent with findings in animal models. These abnormalities are linked to impairments in behavioral acquisition and subsequent neural representation of task structure.
Collapse
Affiliation(s)
- Matthew M Nour
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Centre for Human Neuroimaging (WCHN), University College London, London WC1N 3AR, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Deepmind, London NC1 4AG, UK
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Centre for Human Neuroimaging (WCHN), University College London, London WC1N 3AR, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BIH Visiting Professor, Stiftung Charité, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
24
|
Edelman BJ, Macé E. Functional ultrasound brain imaging: Bridging networks, neurons, and behavior. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|