1
|
Deng Q, Qiang J, Liu C, Ding J, Tu J, He X, Xia J, Peng X, Li S, Chen X, Ma W, Zhang L, Jiang Y, Shao Z, Chen C, Liu S, Xu J, Zhang L. SOSTDC1 Nuclear Translocation Facilitates BTIC Maintenance and CHD1-Mediated HR Repair to Promote Tumor Progression and Olaparib Resistance in TNBC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306860. [PMID: 38864559 PMCID: PMC11304230 DOI: 10.1002/advs.202306860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Breast tumor-initiating cells (BTICs) of triple-negative breast cancer (TNBC) tissues actively repair DNA and are resistant to treatments including chemotherapy, radiotherapy, and targeted therapy. Herein, it is found that a previously reported secreted protein, sclerostin domain containing 1 (SOSTDC1), is abundantly expressed in BTICs of TNBC cells and positively correlated with a poor patient prognosis. SOSTDC1 knockdown impairs homologous recombination (HR) repair, BTIC maintenance, and sensitized bulk cells and BTICs to Olaparib. Mechanistically, following Olaparib treatment, SOSTDC1 translocates to the nucleus in an importin-α dependent manner. Nuclear SOSTDC1 interacts with the N-terminus of the nucleoprotein, chromatin helicase DNA-binding factor (CHD1), to promote HR repair and BTIC maintenance. Furthermore, nuclear SOSTDC1 bound to β-transducin repeat-containing protein (β-TrCP) binding motifs of CHD1 is found, thereby blocking the β-TrCP-CHD1 interaction and inhibiting β-TrCP-mediated CHD1 ubiquitination and degradation. Collectively, these findings identify a novel nuclear SOSTDC1 pathway in regulating HR repair and BTIC maintenance, providing insight into the TNBC therapeutic strategies.
Collapse
Affiliation(s)
- Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Cuicui Liu
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiajun Ding
- Department of ThyroidBreast and Vascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xian Chen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yi‐Zhou Jiang
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunming650201China
- Academy of Biomedical Engineering & The Third Affiliated HospitalKunming Medical UniversityKunming650118China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
2
|
Wang KJ, Huang Y, Kartzinel T, Majaneva M, Richter N, Liao S, Andresen CS, Vermassen F. Group 2i Isochrysidales thrive in marine and lacustrine systems with ice cover. Sci Rep 2024; 14:11449. [PMID: 38769380 PMCID: PMC11106077 DOI: 10.1038/s41598-024-62162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Global warming is causing rapid changes to the cryosphere. Predicting the future trajectory of the cryosphere requires quantitative reconstruction of its past variations. A recently identified sea-ice-associated haptophyte, known as Group 2i Isochrysidales, has given rise to a new sea-ice proxy with its characteristic alkenone distributions. However, apart from the occurrence of Group 2i Isochrysidales in regions with sea ice, and the empirical relationship between C37:4 alkenone abundance and sea-ice concentration, little is known about the ecology of these haptophyte species. Here, we systematically mapped the spatial and temporal occurrence of known Group 2i Isochrysidales based on environmental DNA in both marine and lacustrine environments. Our results indicate Group 2i is widely distributed in icy marine and lacustrine environments in both Northern and Southern Hemisphere, but is absent in warm environments. Temporally, Group 2i is part of the sea-ice algae bloom during the cold seasons, in contrast to other Isochrysidales that bloom in open waters during warm seasons. Our results indicate that ice is a prerequisite for the occurrence of the psychrophilic Group 2i haptophytes in marine and lacustrine ecosystems and further affirms its value for past ice reconstructions.
Collapse
Affiliation(s)
- Karen J Wang
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA.
- Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA.
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA.
- Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA.
| | - Tyler Kartzinel
- Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, 02912, USA
| | - Markus Majaneva
- Norwegian Institute for Nature Research (NINA), NO-7485, Trondheim, Norway
| | - Nora Richter
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA
- Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1790 AB, Den Burg, The Netherlands
| | - Sian Liao
- Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Camilla S Andresen
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350, Copenhagen K, Denmark
| | - Flor Vermassen
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350, Copenhagen K, Denmark
- Department of Geological Sciences, Stockholm University, 106 91, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
3
|
O’Neil GW, Keller A, Balila J, Golden S, Sipila N, Stone B, Nelson RK, Reddy CM. Monitoring Changes to Alkenone Biosynthesis in Commercial Tisochrysis lutea Microalgae. ACS OMEGA 2024; 9:16374-16383. [PMID: 38617607 PMCID: PMC11007839 DOI: 10.1021/acsomega.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
Alkenones are unique lipids produced by certain species of microalgae, well-known for use in paleoclimatology, and more recently pursued to advance sustainability across multiple industries. Beginning in 2018, the biosynthesis of alkenones by commercially grown Tisochrysis lutea (T-Iso) microalgae from one of the world's most established producers, Necton S.A., changed dramatically from structures containing 37 and 38 carbons, to unusual shorter-chain C35 and C36 diunsaturated alkenones (C35:2 and C36:2 alkenones). While the exact reasons for this change remain unknown, analysis of alkenones isolated from T-Iso grown in 2021 and 2023 revealed that this change has persisted. The structure of these rare shorter-chain alkenones, including double bond position, produced by Necton T-Iso remained the same over the last five years, which was determined using a new and optimized cross-metathesis derivatization approach with analysis by comprehensive two-dimensional gas chromatography and NMR. However, noticeable differences in the alkenone profiles among the different batches were observed. Combined with fatty acid compositional analysis, the data suggest a connection between these lipid classes (e.g., increased DHA corresponds to lower amounts of shorter-chain alkenones) and the ability to manipulate their biosynthesis in T-Iso with changes to cultivation conditions.
Collapse
Affiliation(s)
- Gregory W. O’Neil
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Allison Keller
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Jazmine Balila
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Sydney Golden
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Nate Sipila
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Britton Stone
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98225 (United States)
| | - Robert K. Nelson
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
4
|
Zhang H, Huang Y, Wijker R, Cacho I, Torner J, Santos M, Kost O, Wei B, Stoll H. Iberian Margin surface ocean cooling led freshening during Marine Isotope Stage 6 abrupt cooling events. Nat Commun 2023; 14:5390. [PMID: 37666864 PMCID: PMC10477208 DOI: 10.1038/s41467-023-41142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
The high-resolution paleoclimate records on the Iberian Margin provide an excellent archive to study the mechanism of abrupt climate events. Previous studies on the Iberian Margin proposed that the surface cooling reconstructed by the alkenone-unsaturation index coincided with surface water freshening inferred from an elevated percentage of tetra-unsaturated alkenones, C37:4%. However, recent data indicate that marine alkenone producers, coccolithophores, do not produce more C37:4 in culture as salinity decreases. Hence, the causes for high C37:4 are still unclear. Here we provide detailed alkenone measurements to trace the producers of alkenones in combination with foraminiferal Mg/Ca and oxygen isotope ratios to trace salinity variations. The results indicate that all alkenones were produced by coccolithophores and the high C37:4% reflects decrease in SST instead of freshening. Furthermore, during the millennial climate changes, a surface freshening did not always trigger a cooling, but sometimes happened in the middle of multiple-stage cooling events and likely amplified the temperature decrease.
Collapse
Affiliation(s)
- Hongrui Zhang
- Geological Institute, ETH Zürich, 8092, Zürich, Switzerland.
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - Reto Wijker
- Geological Institute, ETH Zürich, 8092, Zürich, Switzerland
| | - Isabel Cacho
- Grup de Recerca Consolidat en Geociències Marines, Department de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain
| | - Judit Torner
- Grup de Recerca Consolidat en Geociències Marines, Department de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain
| | | | - Oliver Kost
- Geological Institute, ETH Zürich, 8092, Zürich, Switzerland
| | - Bingbing Wei
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Heather Stoll
- Geological Institute, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
5
|
Margari V, Hodell DA, Parfitt SA, Ashton NM, Grimalt JO, Kim H, Yun KS, Gibbard PL, Stringer CB, Timmermann A, Tzedakis PC. Extreme glacial cooling likely led to hominin depopulation of Europe in the Early Pleistocene. Science 2023; 381:693-699. [PMID: 37561880 DOI: 10.1126/science.adf4445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/22/2023] [Indexed: 08/12/2023]
Abstract
The oldest known hominin remains in Europe [~1.5 to ~1.1 million years ago (Ma)] have been recovered from Iberia, where paleoenvironmental reconstructions have indicated warm and wet interglacials and mild glacials, supporting the view that once established, hominin populations persisted continuously. We report analyses of marine and terrestrial proxies from a deep-sea core on the Portugese margin that show the presence of pronounced millennial-scale climate variability during a glacial period ~1.154 to ~1.123 Ma, culminating in a terminal stadial cooling comparable to the most extreme events of the last 400,000 years. Climate envelope-model simulations reveal a drastic decrease in early hominin habitat suitability around the Mediterranean during the terminal stadial. We suggest that these extreme conditions led to the depopulation of Europe, perhaps lasting for several successive glacial-interglacial cycles.
Collapse
Affiliation(s)
- Vasiliki Margari
- Environmental Change Research Centre, Department of Geography, University College London, London WC1E 6BT, UK
| | - David A Hodell
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Simon A Parfitt
- Institute of Archaeology, University College London, London WC1H 0PY, UK
- Centre for Human Evolution Research, The Natural History Museum, London SW7 5BD, UK
| | - Nick M Ashton
- Department of Britain, Europe and Prehistory, British Museum, London N1 5QJ, UK
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
| | - Hyuna Kim
- Institute for Basic Science, Center for Climate Physics, Busan 46241, South Korea
- Department of Climate System, Pusan National University, Busan 46241, South Korea
| | - Kyung-Sook Yun
- Institute for Basic Science, Center for Climate Physics, Busan 46241, South Korea
- Pusan National University, Busan 46241, South Korea
| | - Philip L Gibbard
- Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER, UK
| | - Chris B Stringer
- Centre for Human Evolution Research, The Natural History Museum, London SW7 5BD, UK
| | - Axel Timmermann
- Institute for Basic Science, Center for Climate Physics, Busan 46241, South Korea
- Pusan National University, Busan 46241, South Korea
| | - Polychronis C Tzedakis
- Environmental Change Research Centre, Department of Geography, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
Skeffington A, Fischer A, Sviben S, Brzezinka M, Górka M, Bertinetti L, Woehle C, Huettel B, Graf A, Scheffel A. A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores. Nat Commun 2023; 14:3749. [PMID: 37353496 PMCID: PMC10290126 DOI: 10.1038/s41467-023-39336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO3 scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Alastair Skeffington
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Axel Fischer
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Sanja Sviben
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Magdalena Brzezinka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Michał Górka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Luca Bertinetti
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Christian Woehle
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Alexander Graf
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - André Scheffel
- Technische Universität Dresden, Faculty of Biology, 01307, Dresden, Germany.
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany.
| |
Collapse
|
7
|
Ice and ocean constraints on early human migrations into North America along the Pacific coast. Proc Natl Acad Sci U S A 2023; 120:e2208738120. [PMID: 36745804 PMCID: PMC9963817 DOI: 10.1073/pnas.2208738120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.
Collapse
|
8
|
Judd EJ, Tierney JE, Huber BT, Wing SL, Lunt DJ, Ford HL, Inglis GN, McClymont EL, O'Brien CL, Rattanasriampaipong R, Si W, Staitis ML, Thirumalai K, Anagnostou E, Cramwinckel MJ, Dawson RR, Evans D, Gray WR, Grossman EL, Henehan MJ, Hupp BN, MacLeod KG, O'Connor LK, Sánchez Montes ML, Song H, Zhang YG. The PhanSST global database of Phanerozoic sea surface temperature proxy data. Sci Data 2022; 9:753. [PMID: 36473868 PMCID: PMC9726822 DOI: 10.1038/s41597-022-01826-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies.
Collapse
Affiliation(s)
- Emily J Judd
- Smithsonian National Museum of Natural History, Department of Paleobiology, Washington, DC, 20560, USA.
| | - Jessica E Tierney
- University of Arizona, Department of Geosciences, Tuscon, AZ, 85721, USA
| | - Brian T Huber
- Smithsonian National Museum of Natural History, Department of Paleobiology, Washington, DC, 20560, USA
| | - Scott L Wing
- Smithsonian National Museum of Natural History, Department of Paleobiology, Washington, DC, 20560, USA
| | - Daniel J Lunt
- University of Bristol, School of Geographical Sciences, Bristol, BS8 1SS, UK
| | - Heather L Ford
- Queen Mary University of London, School of Geography, London, E1 4NS, UK
| | - Gordon N Inglis
- University of Southampton, School of Ocean and Earth Science, National Oceanography Centre Southampton, Southampton, SO14 3ZH, UK
| | | | | | | | - Weimin Si
- Brown University, Department of Earth, Environmental and Planetary Sciences, Providence, RI, 02912, USA
| | - Matthew L Staitis
- University of Edinburgh, School of Geosciences, Edinburgh, EH8 9XP, UK
| | | | - Eleni Anagnostou
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148, Kiel, Germany
| | - Marlow Julius Cramwinckel
- University of Southampton, School of Ocean and Earth Science, National Oceanography Centre Southampton, Southampton, SO14 3ZH, UK
- Utrecht University, Department of Earth Sciences, Utrecht, 3584 CB, The Netherlands
| | - Robin R Dawson
- University of Massachusetts Amherst, Department of Geosciences, Amherst, MA, 01003, USA
| | - David Evans
- Goethe University Frankfurt, Institute of Geosciences, 60438, Frankfurt am Main, Germany
| | - William R Gray
- Université Paris-Saclay, Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France
| | - Ethan L Grossman
- Texas A&M University, Department of Geology and Geophysics, College Station, TX, 77843, USA
| | - Michael J Henehan
- GFZ German Research Centre for Geosciences, Section 3.3 Earth Surface Geochemistry, 14473, Potsdam, Germany
| | - Brittany N Hupp
- Oregon State University, College of Earth, Ocean and Atmospheric Sciences, Corvallis, OR, 97331, USA
| | - Kenneth G MacLeod
- University of Missouri, Department of Geological Sciences, Columbia, MO, 65211, USA
| | - Lauren K O'Connor
- University of Manchester, Department of Earth and Environmental Sciences, Manchester, M13 9PL, UK
| | | | - Haijun Song
- China University of Geosciences, State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, Wuhan, 430074, China
| | - Yi Ge Zhang
- Texas A&M University, Department of Oceanography, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Rigual-Hernández AS, Sierro FJ, Flores JA, Trull TW, Rodrigues T, Martrat B, Sikes EL, Nodder SD, Eriksen RS, Davies D, Bravo N, Sánchez-Santos JM, Abrantes F. Influence of environmental variability and Emiliania huxleyi ecotypes on alkenone-derived temperature reconstructions in the subantarctic Southern Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152474. [PMID: 34952068 DOI: 10.1016/j.scitotenv.2021.152474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Long-chain unsaturated alkenones produced by haptophyte algae are widely used as paleotemperature indicators. The unsaturation relationship to temperature is linear at mid-latitudes, however, non-linear responses detected in subpolar regions of both hemispheres have suggested complicating factors in these environments. To assess the influence of biotic and abiotic factors in alkenone production and preservation in the Subantarctic Zone, alkenone fluxes were quantified in three vertically-moored sediment traps deployed at the SOTS observatory (140°E, 47°S) during a year. Alkenone fluxes were compared with coccolithophore assemblages, satellite measurements and surface-water properties obtained by sensors at SOTS. Alkenone-based temperature reconstructions generally mirrored the seasonal variations of SSTs, except for late winter when significant deviations were observed (3-10 °C). Annual flux-weighted averages in the 3800 m trap returned alkenone-derived temperatures ~1.5 °C warmer than those derived from the 1000 m trap, a distortion attributed to surface production and signal preservation during its transit through the water column. Notably, changes in the relative abundance of E. huxleyi var. huxleyi were positively correlated with temperature deviations between the alkenone-derived temperatures and in situ SSTs (r = 0.6 and 0.7 at 1000 and 2000 m, respectively), while E. huxleyi var. aurorae, displayed an opposite trend. Our results suggest that E. huxleyi var. aurorae produces a higher proportion of C37:3 relative to C37:2 compared to its counterparts. Therefore, the dominance of var. aurorae south of the Subtropical Front could be at least partially responsible for the less accurate alkenone-based SST reconstructions in the Southern Ocean using global calibrations. However, the observed correlations were largely influenced by the samples collected during winter, a period characterized by low particle fluxes and slow sinking rates. Thus, it is likely that other factors such as selective degradation of the most unsaturated alkenones could also account for the deviations of the alkenone paleothermometer.
Collapse
Affiliation(s)
- A S Rigual-Hernández
- Área de Paleontología, Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain.
| | - F J Sierro
- Área de Paleontología, Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
| | - J A Flores
- Área de Paleontología, Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
| | - T W Trull
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7001, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia; Antarctic Climate and Ecosystems Cooperative Research Centre and Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - T Rodrigues
- Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de Geologia Marinha (DivGM), Rua Alfredo Magalhães Ramalho 6, Lisboa, Portugal; CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - B Martrat
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain
| | - E L Sikes
- Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - S D Nodder
- National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand
| | - R S Eriksen
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7001, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - D Davies
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7001, Australia; Antarctic Climate and Ecosystems Cooperative Research Centre and Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - N Bravo
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain
| | - J M Sánchez-Santos
- Departamento de Estadística, Universidad de Salamanca, 37008 Salamanca, Spain
| | - F Abrantes
- Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de Geologia Marinha (DivGM), Rua Alfredo Magalhães Ramalho 6, Lisboa, Portugal; CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
10
|
Tesi T, Muschitiello F, Mollenhauer G, Miserocchi S, Langone L, Ceccarelli C, Panieri G, Chiggiato J, Nogarotto A, Hefter J, Ingrosso G, Giglio F, Giordano P, Capotondi L. Rapid Atlantification along the Fram Strait at the beginning of the 20th century. SCIENCE ADVANCES 2021; 7:eabj2946. [PMID: 34818051 PMCID: PMC8612687 DOI: 10.1126/sciadv.abj2946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recent expansion of Atlantic waters into the Arctic Ocean represents undisputable evidence of the rapid changes occurring in this region. Understanding the past variability of this “Atlantification” is thus crucial in providing a longer perspective on the modern Arctic changes. Here, we reconstruct the history of Atlantification along the eastern Fram Strait during the past 800 years using precisely dated paleoceanographic records based on organic biomarkers and benthic foraminiferal data. Our results show rapid changes in water mass properties that commenced in the early 20th century—several decades before the documented Atlantification by instrumental records. Comparison with regional records suggests a poleward expansion of subtropical waters since the end of the Little Ice Age in response to a rapid hydrographic reorganization in the North Atlantic. Understanding of this mechanism will require further investigations using climate model simulations.
Collapse
Affiliation(s)
- Tommaso Tesi
- Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche ISP-CNR, 40129 Bologna, Italy
- Corresponding author.
| | - Francesco Muschitiello
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK
- NORCE Norwegian Research Centre, 5007 Bergen, Norway
| | - Gesine Mollenhauer
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Sciences, 27570 Bremerhaven, Germany
- MARUM Center for Marine Environmental Research, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Stefano Miserocchi
- Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche ISP-CNR, 40129 Bologna, Italy
| | - Leonardo Langone
- Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche ISP-CNR, 40129 Bologna, Italy
| | - Chiara Ceccarelli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali—BiGeA, 40126 Bologna, Italy
| | - Giuliana Panieri
- CAGE—Center of Arctic Gas Hydrate, Environment and Climate, Department of Geolosciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jacopo Chiggiato
- Istituto di Scienze Marine–Consiglio Nazionale delle Ricerche ISMAR-CNR, 40129 Bologna, Italy
| | - Alessio Nogarotto
- Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche ISP-CNR, 40129 Bologna, Italy
- Campus Scientifico, Università Ca’ Foscari Venezia, 30172 Venezia Mestre, Italy
| | - Jens Hefter
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Sciences, 27570 Bremerhaven, Germany
| | - Gianmarco Ingrosso
- Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche ISP-CNR, 40129 Bologna, Italy
| | - Federico Giglio
- Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche ISP-CNR, 40129 Bologna, Italy
| | - Patrizia Giordano
- Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche ISP-CNR, 40129 Bologna, Italy
| | - Lucilla Capotondi
- Istituto di Scienze Marine–Consiglio Nazionale delle Ricerche ISMAR-CNR, 40129 Bologna, Italy
| |
Collapse
|
11
|
Globally resolved surface temperatures since the Last Glacial Maximum. Nature 2021; 599:239-244. [PMID: 34759364 DOI: 10.1038/s41586-021-03984-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
Climate changes across the past 24,000 years provide key insights into Earth system responses to external forcing. Climate model simulations1,2 and proxy data3-8 have independently allowed for study of this crucial interval; however, they have at times yielded disparate conclusions. Here, we leverage both types of information using paleoclimate data assimilation9,10 to produce the first proxy-constrained, full-field reanalysis of surface temperature change spanning the Last Glacial Maximum to present at 200-year resolution. We demonstrate that temperature variability across the past 24 thousand years was linked to two primary climatic mechanisms: radiative forcing from ice sheets and greenhouse gases; and a superposition of changes in the ocean overturning circulation and seasonal insolation. In contrast with previous proxy-based reconstructions6,7 our results show that global mean temperature has slightly but steadily warmed, by ~0.5 °C, since the early Holocene (around 9 thousand years ago). When compared with recent temperature changes11, our reanalysis indicates that both the rate and magnitude of modern warming are unusual relative to the changes of the past 24 thousand years.
Collapse
|
12
|
O'Neil GW, Gale AC, Nelson RK, Dhaliwal HK, Reddy CM. Unusual
Shorter‐Chain C
35
and
C
36
Alkenones from Commercially Grown
Isochrysis
sp. Microalgae. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gregory W. O'Neil
- Department of Chemistry Western Washington University Bellingham WA 98225 USA
| | - Amanda C. Gale
- Department of Chemistry Western Washington University Bellingham WA 98225 USA
| | - Robert K. Nelson
- Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Herman K. Dhaliwal
- Department of Chemistry Western Washington University Bellingham WA 98225 USA
| | - Christopher M. Reddy
- Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| |
Collapse
|