1
|
Nurkanto A, Masrukhin, Erdian Tampubolon JC, Ewaldo MF, Putri AL, Ratnakomala S, Setiawan R, Fathoni A, Palupi KD, Rahmawati Y, Waluyo D, Prabandari EE, Pujiyanto S, Sumii Y, Agusta A, Shibata N, Matsumoto S, Nozaki T. Exploring Indonesian actinomycete extracts for anti-tubercular compounds: Integrating inhibition assessment, genomic analysis, and prediction of its target by molecular docking. Heliyon 2024; 10:e35648. [PMID: 39170210 PMCID: PMC11336835 DOI: 10.1016/j.heliyon.2024.e35648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Tuberculosis (TB) is the foremost cause of infectious fatality globally. The primary global challenge in combatting TB lies in addressing the emergence of drug-resistant variants of the disease. However, the number of newly approved agents for treating TB has remained remarkably low over recent decades. Hence, research endeavors for discovering novel anti-TB agents are always needed. In the present study, we screened over 1,500 culture extracts from actinomycetes isolated in Indonesia for their inhibitory activity against Mycobacterium smegmatis used as a surrogate in the primary screening. The initial screening yielded approximately 6.2 % hit extracts, with a selection criterion of >80 % growth inhibition. The confirmed hit extracts were subsequently subjected to growth inhibition assay against Mycobacterium bovis and Mycobacterium tuberculosis. Approximately 20 % of the hit extracts that showed growth inhibition also exhibited efficacy against M. bovis BCG and M. tuberculosis H37Rv pathogenic strain. An active compound was successfully purified from a large-scale culture of the most potent representative extract by high-performance liquid chromatography and thin-layer chromatography. The structure of the active compound was elucidated by mass spectrometry and nuclear magnetic resonance. This compound displayed structural similarities to actinomycin group and exhibited robust inhibition, with IC50 values of 0.74, 0.02, and 0.07 μg/mL against M. smegmatis, M. bovis, and M. tuberculosis, respectively. The Actinomycetes strain A612, which produced the active compound, was taxonomically classified by phylogenetic analysis of 16s rRNA gene and whole genome sequencing data as Streptomyces parvus. Computational genome analysis utilizing anti-SMASH 7.0 unveiled that S. parvus A612 strain harbors 40 biosynthetic gene clusters with the potential to produce 16 known (with >70 % similarity) and 24 unknown compounds. A non-ribosomal peptide synthesis (NRPS) gene cluster associated with actinomycin D biosynthesis was also identified, boasting an 85 % similarity. Molecular docking analysis of actinomycin D and 21 potential M. tuberculosis targets revealed possible interactions with multiple targets. The purified active compound inhibited recombinant M. tuberculosis shikimate kinase (MtSK), which validated the results obtained from the docking analysis.
Collapse
Affiliation(s)
- Arif Nurkanto
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Masrukhin
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Muhammad Farrel Ewaldo
- Master's Programme in Biomedical Science, Faculty of Medicine, University of Indonesia, West Java, Indonesia
| | - Ade Lia Putri
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Shanti Ratnakomala
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Ruby Setiawan
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Ahmad Fathoni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Kartika Dyah Palupi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Yulia Rahmawati
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environmental, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Danang Waluyo
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Erwahyuni Endang Prabandari
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Sri Pujiyanto
- Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Central Java, Indonesia
| | - Yuji Sumii
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Andria Agusta
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Norio Shibata
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, University of Airlangga, Surabaya, East Java, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Wang H, Wang C, Wang Z, Niu X. Active Discovery of the Allosteric Inhibitor Targeting Botrytis cinerea Chitinase Based on Neural Relational Inference for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16128-16139. [PMID: 39003764 DOI: 10.1021/acs.jafc.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep learning Neural Relational Inference (NRI) framework, we actively identified an allosteric inhibitor targeting B. cinerea Chitinase, namely, 2-acetonaphthone. 2-Acetonaphthone binds to the crucial domain of Chitinase, forming the strong interaction with the allosteric sites. Throughout the interaction process, 2-acetonaphthone diminished the overall connectivity of the protein, inducing conformational changes. These findings align with the results obtained from Chitinase activity experiments, revealing an IC50 value of 67.6 μg/mL. Moreover, 2-acetonaphthone exhibited outstanding anti-B. cinerea activity by inhibiting Chitinase. In the gray mold infection model, 2-acetonaphthone significantly extended the preservation time of cherry tomatoes, positioning it as a promising preservative for fruit storage.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Chenyang Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Ziyou Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
3
|
Brown KL, Krekhno JMC, Xing S, Huan T, Eltis LD. Cholesterol-Mediated Coenzyme A Depletion in Catabolic Mutants of Mycobacteria Leads to Toxicity. ACS Infect Dis 2024; 10:107-119. [PMID: 38054469 DOI: 10.1021/acsinfecdis.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cholesterol is a critical growth substrate for Mycobacterium tuberculosis (Mtb) during infection, and the cholesterol catabolic pathway has been targeted for the development of new antimycobacterial agents. A key metabolite in cholesterol catabolism is 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP). Many of the HIP metabolites are acyl-coenzyme A (CoA) thioesters, whose accumulation in deletion mutants can cause cholesterol-mediated toxicity. We used LC-MS/MS analysis to demonstrate that deletion of genes involved in HIP catabolism leads to acyl-CoA accumulation with concomitant depletion of free CoASH, leading to dysregulation of central metabolic pathways. CoASH and acyl-CoAs inhibited PanK, the enzyme that catalyzes the first step in the transformation of pantothenate to CoASH. Inhibition was competitive with respect to ATP with Kic values ranging from 9 μM for CoASH to 57 μM for small acyl-CoAs and 180 ± 30 μM for cholesterol-derived acyl-CoA. These findings link two critical metabolic pathways and suggest that therapeutics targeting cholesterol catabolic enzymes could both prevent the utilization of an important growth substrate and simultaneously sequester CoA from essential cellular processes, leading to bacterial toxicity.
Collapse
Affiliation(s)
- Kirstin L Brown
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Jessica M C Krekhno
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Shipei Xing
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
4
|
Xie J, Pan G, Li Y, Lai L. How protein topology controls allosteric regulations. J Chem Phys 2023; 158:105102. [PMID: 36922138 DOI: 10.1063/5.0138279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Allostery is an important regulatory mechanism of protein functions. Among allosteric proteins, certain protein structure types are more observed. However, how allosteric regulation depends on protein topology remains elusive. In this study, we extracted protein topology graphs at the fold level and found that known allosteric proteins mainly contain multiple domains or subunits and allosteric sites reside more often between two or more domains of the same fold type. Only a small fraction of fold-fold combinations are observed in allosteric proteins, and homo-fold-fold combinations dominate. These analyses imply that the locations of allosteric sites including cryptic ones depend on protein topology. We further developed TopoAlloSite, a novel method that uses the kernel support vector machine to predict the location of allosteric sites on the overall protein topology based on the subgraph-matching kernel. TopoAlloSite successfully predicted known cryptic allosteric sites in several allosteric proteins like phosphopantothenoylcysteine synthetase, spermidine synthase, and sirtuin 6, demonstrating its power in identifying cryptic allosteric sites without performing long molecular dynamics simulations or large-scale experimental screening. Our study demonstrates that protein topology largely determines how its function can be allosterically regulated, which can be used to find new druggable targets and locate potential binding sites for rational allosteric drug design.
Collapse
Affiliation(s)
- Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Gaoxiang Pan
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yibo Li
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Alzain AA, Makki AA, Ibraheem W. Insights into the Inhibition of Mycolic Acid Synthesis by Cytosporone E Derivatives for Tuberculosis Treatment Via an In Silico Multi-target Approach. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Alzain AA, Elbadwi FA. De Novo Design of Cathepsin B1 Inhibitors as Potential Anti-Schistosomal Agents Using Computational Studies. ADVANCES AND APPLICATIONS IN BIOINFORMATICS AND CHEMISTRY 2022; 15:29-41. [PMID: 35935393 PMCID: PMC9355347 DOI: 10.2147/aabc.s361626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Schistosomiasis is the world’s second most devastating disease after malaria and the leading cause of disease and mortality for more than 200 million people in developing countries. Cysteine proteases, in particular SmCB1, are the most well-researched biological targets for this disorder. Objective To apply computational techniques to design new antischistosomal agents against SmCB1 protein with favorable pharmacokinetic properties. Methods The smCB1 receptor-based pharmacophore model was created and used to screen 567,000 fragments from the Enamine library. The best scoring fragments have been linked to build novel compounds that were subjected to molecular docking, MM-GBSA free energy estimation, ADME prediction, and molecular dynamics. Results A seven-point pharmacophore hypothesis ADDDRRR was created. The developed hypothesis was used to screen 1.3 M fragment conformations. Among them, 23,732 fragments matched the hypothesis and screened against the protein. The top 50 fragments were used to design new 7745 compounds using the Breed ligand panel which were subjected to docking and MMGBSA binding energy. This led to the identification of 10 compounds with better docking scores (−8.033– −7.483 kcal/mol) and lower-bound free energies (−58.49 – −40.02 kcal/mol) compared to the reference bound ligand. Most of the designed compounds demonstrated good drug-like properties. Concerning Molecular dynamics (MD) simulation results, a low root mean square deviation (RMSD) range (0.25–1.2 Å) was found for the top 3 complexes which indicated their stability. Conclusion We identified compounds that could be potential candidates in the search for novel Schistosoma mansoni inhibitors by targeting SmCB1 utilizing various computational tools. Three newly designed compounds namely breed 1, 2, and 3 showed promising affinity to the target as well as favorable drug-like properties which might be considered potential anti-schistosomal agents.
Collapse
Affiliation(s)
- Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
- Correspondence: Abdulrahim A Alzain, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan, Tel +249-511854501, Fax +249-511861180, Email
| | - Fatima A Elbadwi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
7
|
Pepi MJ, Chacko S, Marqus GM, Singh V, Wang Z, Planck K, Cullinane RT, Meka PN, Gollapalli DR, Ioerger TR, Rhee KY, Cuny GD, Boshoff HI, Hedstrom L. A d-Phenylalanine-Benzoxazole Derivative Reveals the Role of the Essential Enzyme Rv3603c in the Pantothenate Biosynthetic Pathway of Mycobacterium tuberculosis. ACS Infect Dis 2022; 8:330-342. [PMID: 35015509 PMCID: PMC9558617 DOI: 10.1021/acsinfecdis.1c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs and new targets are urgently needed to treat tuberculosis. We discovered that d-phenylalanine-benzoxazole Q112 displays potent antibacterial activity against Mycobacterium tuberculosis (Mtb) in multiple media and in macrophage infections. A metabolomic profiling indicates that Q112 has a unique mechanism of action. Q112 perturbs the essential pantothenate/coenzyme A biosynthetic pathway, depleting pantoate while increasing ketopantoate, as would be expected if ketopantoate reductase (KPR) were inhibited. We searched for alternative KPRs, since the enzyme annotated as PanE KPR is not essential in Mtb. The ketol-acid reductoisomerase IlvC catalyzes the KPR reaction in the close Mtb relative Corynebacterium glutamicum, but Mtb IlvC does not display KPR activity. We identified the essential protein Rv3603c as an orthologue of PanG KPR and demonstrated that a purified recombinant Rv3603c has KPR activity. Q112 inhibits Rv3603c, explaining the metabolomic changes. Surprisingly, pantothenate does not rescue Q112-treated bacteria, indicating that Q112 has an additional target(s). Q112-resistant strains contain loss-of-function mutations in the twin arginine translocase TatABC, further underscoring Q112's unique mechanism of action. Loss of TatABC causes a severe fitness deficit attributed to changes in nutrient uptake, suggesting that Q112 resistance may derive from a decrease in uptake.
Collapse
Affiliation(s)
- Michael J. Pepi
- Graduate Program in Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shibin Chacko
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Gary M. Marqus
- Graduate Program in Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Vinayak Singh
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa and Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Zhe Wang
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Kyle Planck
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ryan T. Cullinane
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Penchala N. Meka
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Helena I.M. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
8
|
Mostert KJ, Sharma N, van der Zwaag M, Staats R, Koekemoer L, Anand R, Sibon OCM, Strauss E. The Coenzyme A Level Modulator Hopantenate (HoPan) Inhibits Phosphopantotenoylcysteine Synthetase Activity. ACS Chem Biol 2021; 16:2401-2414. [PMID: 34582681 DOI: 10.1021/acschembio.1c00535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pantothenate analogue hopantenate (HoPan) is widely used as a modulator of coenzyme A (CoA) levels in cell biology and disease models─especially for pantothenate kinase associated neurodegeneration (PKAN), a genetic disease rooted in impaired CoA metabolism. This use of HoPan was based on reports that it inhibits pantothenate kinase (PanK), the first enzyme of CoA biosynthesis. Using a combination of in vitro enzyme kinetic studies, crystal structure analysis, and experiments in a typical PKAN cell biology model, we demonstrate that instead of inhibiting PanK, HoPan relies on it for metabolic activation. Once phosphorylated, HoPan inhibits the next enzyme in the CoA pathway─phosphopantothenoylcysteine synthetase (PPCS)─through formation of a nonproductive substrate complex. Moreover, the obtained structure of the human PPCS in complex with the inhibitor and activating nucleotide analogue provides new insights into the catalytic mechanism of PPCS enzymes─including the elusive binding mode for cysteine─and reveals the functional implications of mutations in the human PPCS that have been linked to severe dilated cardiomyopathy. Taken together, this study demonstrates that the molecular mechanism of action of HoPan is more complex than previously thought, suggesting that the results of studies in which it is used as a tool compound must be interpreted with care. Moreover, our findings provide a clear framework for evaluating the various factors that contribute to the potency of CoA-directed inhibitors, one that will prove useful in the future rational development of potential therapies of both human genetic and infectious diseases.
Collapse
Affiliation(s)
- Konrad J. Mostert
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Nandini Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Marianne van der Zwaag
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Roxine Staats
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Lizbé Koekemoer
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Ody C. M. Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
9
|
Evans JC, Murugesan D, Post JM, Mendes V, Wang Z, Nahiyaan N, Lynch SL, Thompson S, Green SR, Ray PC, Hess J, Spry C, Coyne AG, Abell C, Boshoff HIM, Wyatt PG, Rhee KY, Blundell TL, Barry CE, Mizrahi V. Targeting Mycobacterium tuberculosis CoaBC through Chemical Inhibition of 4'-Phosphopantothenoyl-l-cysteine Synthetase (CoaB) Activity. ACS Infect Dis 2021; 7:1666-1679. [PMID: 33939919 PMCID: PMC8205227 DOI: 10.1021/acsinfecdis.0c00904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.
Collapse
Affiliation(s)
- Joanna C. Evans
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Dinakaran Murugesan
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - John M. Post
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Vitor Mendes
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Zhe Wang
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Navid Nahiyaan
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Sasha L. Lynch
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Stephen Thompson
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Simon R. Green
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Peter C. Ray
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Jeannine Hess
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christina Spry
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anthony G. Coyne
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chris Abell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Paul G. Wyatt
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Kyu Y. Rhee
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Tom L. Blundell
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Clifton E. Barry
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Valerie Mizrahi
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|