1
|
Liao J, Shao H, Zhang Y, Yan Y, Zeng J, Lan C, Gao B, Chen D, Quan Q, Xie P, Meng Y, Ho JC. Infrared In-Sensor Computing Based on Flexible Photothermoelectric Tellurium Nanomesh Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419653. [PMID: 40035105 DOI: 10.1002/adma.202419653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/24/2025] [Indexed: 03/05/2025]
Abstract
The inherent limitations of traditional von Neumann architectures hinder the rapid development of internet of things technologies. Beyond conventional, complementary metal-oxide-semiconductor technologies, imaging sensors integrated with near- or in-sensor computing architectures emerge as a promising solution. In this study, the multi-scale van der Waals (vdWs) interactions in 1D tellurium (Te) atomic chains are explored, leading to the deposition of a photothermoelectric (PTE) Te nanomesh on a polymeric polyimide substrate. The self-welding process enables the lateral vapor growth of a well-connected Te nanomesh with robust electrical and mechanical properties, including a PTE responsivity of ≈120 V W-1 in the infrared light regime. Leveraging the PTE operation, the thermal-coupled bi-directional photoresponse is investigated to demonstrate a proof-of-principle in-sensor convolutional network for edge computing. This work presents a scalable approach for assembling functional vdWs Te nanomesh and highlights its potential applications in PTE image sensing and convolutional processing.
Collapse
Affiliation(s)
- Jiachi Liao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - He Shao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yan Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Ji Zeng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Changyong Lan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Boxiang Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Quan Quan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - You Meng
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816 8580, Japan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Ye K, Yan J, Li Q, Wang L, Gao Y, Wang L, Zhang F, Jia Z, Liu L, Nie A, Wang S, Jiang Y, Liu Z. Symmetry Breaking in Twisted Mixed-Dimensional Heterostructure Interfaces for Multifunctional Polarization-Sensitive Photodetection. ACS NANO 2025; 19:1340-1351. [PMID: 39745079 DOI: 10.1021/acsnano.4c13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS2/Sb2S3 moiré superlattices. Density functional theory calculations show that the moiré potential and interlayer distance at the WS2/Sb2S3 interface can generate anisotropic electronic states. The atomic-resolution HAADF-STEM image clearly reveals angle-dependent complicated moiré periodicity. The polarization-dependent second harmonic generation, Raman, photoluminescence, and absorption spectroscopy of the WS2/Sb2S3 heterostructure confirm optical anisotropic behavior due to symmetry breaking by the moiré superlattice formation. The WS2/Sb2S3 device exhibits high on/off ratios up to 106, a relatively low leakage current of 10-13 A, and a broadband optoelectronic response range from 360 to 914 nm. Notably, the broken symmetry by C2-symmetric Sb2S3 nanowires grown on a C3-symmetric WS2 nanosheet endows the WS2/Sb2S3 photodetector with strong polarization-dependent photocurrent intensity and high-resolution polarization imaging capability. Our study demonstrates the potential for constructing multifunctional moiré materials by incorporating symmetry-breaking engineering.
Collapse
Affiliation(s)
- Kun Ye
- School of Electronics and Information Engineering, Institute of Quantum Materials and Devices, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Junxin Yan
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
| | - Qian Li
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Linyan Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yang Gao
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Liming Wang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Fang Zhang
- School of Electronics and Information Engineering, Institute of Quantum Materials and Devices, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Zhiyan Jia
- School of Electronics and Information Engineering, Institute of Quantum Materials and Devices, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Lixuan Liu
- School of Electronics and Information Engineering, Institute of Quantum Materials and Devices, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Anmin Nie
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
| | - Shouguo Wang
- Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Yong Jiang
- School of Electronics and Information Engineering, Institute of Quantum Materials and Devices, State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Zhongyuan Liu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
3
|
Zhang S, Xia Z, Meng J, Cheng Y, Jiang J, Yin Z, Zhang X. Electronic and Transport Properties of InSe/PtTe 2 van der Waals Heterostructure. NANO LETTERS 2024; 24:8402-8409. [PMID: 38935418 DOI: 10.1021/acs.nanolett.4c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Two-dimensional (2D) InSe and PtTe2 have drawn extensive attention due to their intriguing properties. However, the InSe monolayer is an indirect bandgap semiconductor with a low hole mobility. van der Waals (vdW) heterostructures produce interesting electronic and optoelectronic properties beyond the existing 2D materials and endow totally new device functions. Herein, we theoretically investigated the electronic structures, transport behaviors, and electric field tuning effects of the InSe/PtTe2 vdW heterostructures. The calculated results show that the direct bandgap type-II vdW heterostructures can be realized by regulating the stacking configurations of heterostructures. By applying an external electric field, the band alignment and bandgap of the heterostructures can also be flexibly modulated. Particularly, the hole mobility of the heterostructures is improved by 2 orders of magnitude to ∼103 cm2 V-1 s-1, which overcomes the intrinsic disadvantage of the InSe monolayer. The InSe/PtTe2 vdW heterostructures have great potential applications in developing novel optoelectronic devices.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhengchang Xia
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Junhua Meng
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yong Cheng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ji Jiang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
4
|
Lu Y, Li B, Xu N, Zhou Z, Xiao Y, Jiang Y, Li T, Hu S, Gong Y, Cao Y. One-atom-thick hexagonal boron nitride co-catalyst for enhanced oxygen evolution reactions. Nat Commun 2023; 14:6965. [PMID: 37907502 PMCID: PMC10618520 DOI: 10.1038/s41467-023-42696-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Developing efficient (co-)catalysts with optimized interfacial mass and charge transport properties is essential for enhanced oxygen evolution reaction (OER) via electrochemical water splitting. Here we report one-atom-thick hexagonal boron nitride (hBN) as an attractive co-catalyst with enhanced OER efficiency. Various electrocatalytic electrodes are encapsulated with centimeter-sized hBN films which are dense and impermeable so that only the hBN surfaces are directly exposed to reactive species. For example, hBN covered Ni-Fe (oxy)hydroxide anodes show an ultralow Tafel slope of ~30 mV dec-1 with improved reaction current by about 10 times, reaching ~2000 mA cm-2 (at an overpotential of ~490 mV) for over 150 h. The mass activity of hBN co-catalyst is found exceeding that of commercialized catalysts by up to five orders of magnitude. Using isotope experiments and simulations, we attribute the results to the adsorption of oxygen-containing intermediates at the insulating co-catalyst, where localized electrons facilitate the deprotonation processes at electrodes. Little impedance to electron transfer is observed from hBN film encapsulation due to its ultimate thickness. Therefore, our work also offers insights into mechanisms of interfacial reactions at the very first atomic layer of electrodes.
Collapse
Affiliation(s)
- Yizhen Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bixuan Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Na Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhihua Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Teng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
- Tianmushan Laboratory, Hangzhou, 310023, China.
| | - Yang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Tao Y, Tang Z, Bao D, Zhao H, Gao Z, Peng M, Zhang H, Wang K, Sun X. Surface Stoichiometry Control of Colloidal Heterostructured Quantum Dots for High-Performance Photoelectrochemical Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206316. [PMID: 36642852 DOI: 10.1002/smll.202206316] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Manipulating the separation and transfer behaviors of charges has long been pursued for promoting the photoelectrochemical (PEC) hydrogen generation based on II-VI quantum dot (QDs), but remains challenging due to the lack of effective strategies. Herein, a facile strategy is reported to regulate the recombination and transfer of interfacial charges through tuning the surface stoichiometry of heterostructured QDs. Using this method, it is demonstrated that the PEC cells based on CdSe-(Sex S1- x )4 -(CdS)2 core/shell QDs with a proper Ssurface /Cdsurface ratio exhibits a remarkably improved photocurrent density (≈18.4 mA cm-2 under one sun illumination), superior to the PEC cells based on QDs with Cd-rich or excessive S-rich surface. In-depth electrochemical and spectroscopic characterizations reveal the critical role (hole traps) of surface S atoms in suppressing the recombination of photogenerated charges, and further attribute the inferior performance of excessive S-rich QDs to the impeded charge transfer from QDs to TiO2 and electrolyte. This work puts forward a simple surface engineering strategy for improving the performance of QDs PEC cells, providing an efficient method to guide the surface design of QDs for their applications in other optoelectronic devices.
Collapse
Affiliation(s)
- Yi Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zikun Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Dequan Bao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Haiguang Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles & College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhenqiu Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Mingfa Peng
- School of Electronic and Information Engineering, Jiangsu Province Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Kanghong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Xuhui Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Sun X, Wang M, Li H, Meng L, Lv X, Li L, Li M. Pristine GaFeO 3 Photoanodes with Surface Charge Transfer Efficiency of Almost Unity at 1.23 V for Photoelectrochemical Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205907. [PMID: 36658721 PMCID: PMC10015867 DOI: 10.1002/advs.202205907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Oxide-based photoelectrodes commonly generate deep trap states associated with various intrinsic defects such as vacancies, antisites, and dislocations, limiting their photoelectrochemical properties. Herein, it is reported that rhombohedral GaFeO3 (GFO) thin-film photoanodes exhibit defect-inactive features, which manifest themselves by negligible trap-states-associated charge recombination losses during photoelectrochemical water splitting. Unlike conventional defect-tolerant semiconductors, the origin of the defect-inactivity in GFO is the strongly preferred antisite formation, suppressing the generation of other defects that act as deep traps. In addition, defect-inactive GFO films possess really appropriate oxygen vacancy concentration for the oxygen evolution reaction (OER). As a result, the as-prepared GFO films achieve the surface charge transfer efficiency (ηsurface ) of 95.1% for photoelectrochemical water splitting at 1.23 V versus RHE without any further modification, which is the highest ηsurface reported of any pristine inorganic photoanodes. The onset potential toward the OER remarkably coincides with the flat band potential of 0.43 V versus RHE. This work not only demonstrates a new benchmark for the surface charge transfer yields of pristine metal oxides for solar water splitting but also enriches the arguments for defect tolerance and highlights the importance of rational tuning of oxygen vacancies.
Collapse
Affiliation(s)
- Xin Sun
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New EnergyNorth China Electric Power UniversityBeijing102206China
| | - Min Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New EnergyNorth China Electric Power UniversityBeijing102206China
| | - Hai‐Fang Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New EnergyNorth China Electric Power UniversityBeijing102206China
| | - Linxing Meng
- School of Physical Science and TechnologyJiangsu Key Laboratory of Thin FilmsCenter for Energy Conversion Materials & Physics (CECMP)Soochow UniversitySuzhou215006China
| | - Xiao‐Jun Lv
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New EnergyNorth China Electric Power UniversityBeijing102206China
| | - Liang Li
- School of Physical Science and TechnologyJiangsu Key Laboratory of Thin FilmsCenter for Energy Conversion Materials & Physics (CECMP)Soochow UniversitySuzhou215006China
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New EnergyNorth China Electric Power UniversityBeijing102206China
| |
Collapse
|
7
|
Lin CY, Lee MP, Chang YM, Tseng YT, Yang FS, Li M, Chen JY, Chen CF, Tsai MY, Lin YC, Ueno K, Yamamoto M, Lo ST, Lien CH, Chiu PW, Tsukagoshi K, Wu WW, Lin YF. Diffused Beam Energy to Dope van der Waals Electronics and Boost Their Contact Barrier Lowering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41156-41164. [PMID: 36037311 DOI: 10.1021/acsami.2c07679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Contact engineering of two-dimensional semiconductors is a central issue for performance improvement of micro-/nanodevices based on these materials. Unfortunately, the various methods proposed to improve the Schottky barrier height normally require the use of high temperatures, chemical dopants, or complex processes. This work demonstrates that diffused electron beam energy (DEBE) treatment can simultaneously reduce the Schottky barrier height and enable the direct writing of electrical circuitry on van der Waals semiconductors. The electron beam energy projected into the region outside the electrode diffuses into the main channel, producing selective-area n-type doping in a layered MoTe2 (or MoS2) field-effect transistor. As a result, the Schottky barrier height at the interface between the electrode and the DEBE-treated MoTe2 channel is as low as 12 meV. Additionally, because selective-area doping is possible, DEBE can allow the formation of both n- and p-type doped channels within the same atomic plane, which enables the creation of a nonvolatile and homogeneous MoTe2 p-n rectifier with an ideality factor of 1.1 and a rectification ratio of 1.3 × 103. These results indicate that the DEBE method is a simple, efficient, mask-free, and chemical dopant-free approach to selective-area doping for the development of van der Waals electronics with excellent device performances.
Collapse
Affiliation(s)
- Che-Yi Lin
- Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Nanoscience, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mu-Pai Lee
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yuan-Ming Chang
- Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Nanoscience, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Tang Tseng
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Feng-Shou Yang
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mengjiao Li
- Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Nanoscience, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jiann-Yeu Chen
- Department of Material Science and Engineering and i-Center for Advanced Science and Technology (i-CAST), National Chung Hsing University, Taichung 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ciao-Fen Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Meng-Yu Tsai
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Chun Lin
- Instrument Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Keiji Ueno
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Mahito Yamamoto
- Department of Pure and Applied Physics, Kansai University, Osaka 564-8680, Japan
| | - Shun-Tsung Lo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chen-Hsin Lien
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Wen Chiu
- Institute of Electronic Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kazuhito Tsukagoshi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Ibaraki, Japan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yen-Fu Lin
- Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Nanoscience, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Material Science and Engineering and i-Center for Advanced Science and Technology (i-CAST), National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
8
|
Lin J, Pan H, Chen Z, Wang L, Li Y, Zhu S. Graphene‐Based Nanomaterials for Solar‐Driven Overall Water Splitting. Chemistry 2022; 28:e202200722. [DOI: 10.1002/chem.202200722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jingyi Lin
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Hui Pan
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhixin Chen
- School of Mechanical, Materials, Mechatronics and Biomedical Engineering University of Wollongong Wollongong 2522 Australia
| | - Lianzhou Wang
- Nanomaterials Centre School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Queensland QLD 4072 Australia
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
9
|
Ye KH, Tang T, Liang Z, Ji H, Lin Z, Yang S. Recent progress of bismuth vanadate-based photoelectrocatalytic water splitting. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Yang X, Liu X, Qu L, Gao F, Xu Y, Cui M, Yu H, Wang Y, Hu P, Feng W. Boosting Photoresponse of Self-Powered InSe-Based Photoelectrochemical Photodetectors via Suppression of Interface Doping. ACS NANO 2022; 16:8440-8448. [PMID: 35435675 DOI: 10.1021/acsnano.2c02986] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) InSe is a good candidate for high-performance photodetectors due to its good light absorption and electrical transport properties. However, 2D InSe photodetectors usually endure a large driving voltage, and 2D InSe-based heterojunction photodetectors require complex fabrication processes. Here, we demonstrate high-performance self-powered InSe-based photoelectrochemical (PEC) photodetectors using electrochemical intercalated ultrathin InSe nanosheets. The ultrathin InSe nanosheets have good crystallinity with a uniform thickness of 1.4-2.1 nm, lateral size up to 18 μm, and yield of 82%. The self-powered InSe-based PEC photodetectors show broadband photoresponse ranging from 365 to 850 nm. The photoresponse of InSe-based PEC photodetectors is boosted by suppressing p-type doping of the intercalator with annealing, which improves the electrical properties and facilitates electron transport from InSe to the electrode. The self-powered annealed InSe (A-InSe) PEC photodetectors show a high responsivity of 10.14 mA/W and fast response speed of 2/37 ms. Moreover, the self-powered PEC photodetectors have good stability under UV-NIR irradiation. Furthermore, the photoresponse can be effectively tuned by the concentration and kind of electrolyte. The facile large-scale fabrication and good photoresponse demonstrate that 2D ultrathin InSe can be applied in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xuxuan Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xin Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lihang Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Feng Gao
- Key Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China
| | - Yi Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Mengqi Cui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Huan Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yunxia Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - PingAn Hu
- Key Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
11
|
Wang Z, Zhu H, Tu W, Zhu X, Yao Y, Zhou Y, Zou Z. Host/Guest Nanostructured Photoanodes Integrated with Targeted Enhancement Strategies for Photoelectrochemical Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103744. [PMID: 34738739 PMCID: PMC8805576 DOI: 10.1002/advs.202103744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Photoelectrochemical (PEC) hydrogen production from water splitting is a green technology that can solve the environmental and energy problems through converting solar energy into renewable hydrogen fuel. The construction of host/guest architecture in semiconductor photoanodes has proven to be an effective strategy to improve solar-to-fuel conversion efficiency dramatically. In host/guest photoanodes, the absorber layer is deposited onto a high-surface-area electron collector, resulting in a significant enhancements in light-harvesting as well as charge collection and separation efficiency. The present review aims to summarize and highlight recent state-of-the-art progresses in the architecture designing of host/guest photoanodes with integrated enhancement strategies, including i) light trapping effect; ii) optimization of conductive host scaffolds; iii) hierarchical structure engineering. The challenges and prospects for the future development of host/guest nanostructured photoanodes are also presented.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
- Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Heng Zhu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
| | - Wenguang Tu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
| | - Xi Zhu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
| | - Yingfang Yao
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
- College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsu210093P. R. China
| | - Yong Zhou
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
- Jiangsu Key Laboratory for Nano TechnologyNational Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresSchool of PhysicsNanjing UniversityNanjingJiangsu210093P. R. China
| | - Zhigang Zou
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
- Jiangsu Key Laboratory for Nano TechnologyNational Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresSchool of PhysicsNanjing UniversityNanjingJiangsu210093P. R. China
| |
Collapse
|
12
|
Han Z, Li M, Li L, Jiao F, Wei Z, Geng D, Hu W. When graphene meets white graphene - recent advances in the construction of graphene and h-BN heterostructures. NANOSCALE 2021; 13:13174-13194. [PMID: 34477725 DOI: 10.1039/d1nr03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D heterostructures have very recently witnessed a boom in scientific and technological activities owing to the customized spatial orientation and tailored physical properties. A large amount of 2D heterostructures have been constructed on the basis of the combination of mechanical exfoliation and located transfer method, opening wide possibilities for designing novel hybrid systems with tuned structures, properties, and applications. Among the as-developed 2D heterostructures, in-plane graphene and h-BN heterostructures have drawn the most attention in the past few decades. The controllable synthesis, the investigation of properties, and the expansion of applications have been widely explored. Herein, the fabrication of graphene and h-BN heterostructures is mainly focused on. Then, the spatial configurations for the heterostructures are systematically probed to identify the highly related unique features. Moreover, as a most promising approach for the scaled production of 2D materials, the in situ CVD fabrication of the heterostructures is summarized, demonstrating a significant potential in the controllability of size, morphology, and quality. Further, the recent applications of the 2D heterostructures are discussed. Finally, the concerns and challenges are fully elucidated and a bright future has been envisioned.
Collapse
Affiliation(s)
- Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Li J, Long Y, Hu Z, Niu J, Xu T, Yu M, Li B, Li X, Zhou J, Liu Y, Wang C, Shen L, Guo W, Yin J. Kinetic photovoltage along semiconductor-water interfaces. Nat Commun 2021; 12:4998. [PMID: 34404782 PMCID: PMC8371154 DOI: 10.1038/s41467-021-25318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
External photo-stimuli on heterojunctions commonly induce an electric potential gradient across the interface therein, such as photovoltaic effect, giving rise to various present-day technical devices. In contrast, in-plane potential gradient along the interface has been rarely observed. Here we show that scanning a light beam can induce a persistent in-plane photoelectric voltage along, instead of across, silicon-water interfaces. It is attributed to the following movement of a charge packet in the vicinity of the silicon surface, whose formation is driven by the light-induced potential change across the capacitive interface and a high permittivity of water with large polarity. Other polar liquids and hydrogel on silicon also allow the generation of the in-plane photovoltage, which is, however, negligible for nonpolar liquids. Based on the finding, a portable silicon-hydrogel array has been constructed for detecting the shadow path of a moving Cubaris. Our study opens a window for silicon-based photoelectronics through introducing semiconductor-water interfaces.
Collapse
Affiliation(s)
- Jidong Li
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Yuyang Long
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Zhili Hu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Jiyuan Niu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Tiezhu Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Maolin Yu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Baowen Li
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xuemei Li
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Jianxin Zhou
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Laifa Shen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.
| | - Jun Yin
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.
| |
Collapse
|